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Skillful multiyear prediction of flood frequency along
the US Northeast Coast using a high-resolution

modeling system
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Using tide gauge (TG) observations, we identify pronounced multidecadal fluctuations in sea level along the US
Northeast Coast (USNEC) superimposed on a long-term increasing trend. This multidecadal sea level variability,
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largely arising from fluctuations in the buoyancy-driven Atlantic meridional overturning circulation (AMOC), sub-
stantially modulates the frequency of flood occurrences along the USNEC and serves as a source of multiyear
predictability. Using an initialized dynamical downscaling decadal prediction system with a '/12° ocean resolution,
we demonstrate that flood frequency along the USNEC can be predicted on multiyear to decadal timescales. The
long-term increasing trend in flood frequency, mainly driven by increasing greenhouse gases and associated ra-
diative forcing changes, can be predicted a decade ahead. Furthermore, detrended flood frequency along the
USNEC exhibits prediction skill for up to 3 years, as verified by TG observation. This multiyear prediction skill is
achieved using prediction models that are initialized from our best estimate of observed AMOC.

INTRODUCTION

Sea level rise (SLR) poses one of the most pressing and societally rel-
evant challenges, as the climate continues to warm (1-9). While the
global mean sea level is rising, regional sea level changes are distrib-
uted unevenly, with certain regions experiencing faster rates of rise
than the global average (10-15). The US Northeast Coast (USNEC)
has been identified as a hotspot for accelerated SLR over the North
Atlantic (NA) Ocean in most recent decades (12-15). The weaken-
ing of Atlantic meridional overturning circulation (AMOC) due to
global warming has been proposed as a primary cause for the rapid
SLR along the USNEC in future climates (12, 15). However, the con-
tribution of present-day AMOC variations, influenced by both exter-
nal forcing and internal variability (16, 17), to sea level variability
along the USNEC remains unclear.

The USNEC is particularly vulnerable to sea level changes due to
its high population density and the resulting socioeconomic conse-
quences (15, 18). In comparison to other US coastal regions, such as
the Gulf Coast or the West Coast, sea level variations along the
USNEC tend to be more influenced by the interaction between large-
scale oceanic currents (such as the Gulf Stream and AMOC) and
local features. The timescale can range from short-term variations
due to storms, waves, or tides to long-term changes driven by climate
factors and ocean circulation shifts (7, 14, 15, 18-21). Long-term
SLR and low-frequency sea level variabilities establish a background
state that modulates the short-term water levels (22). Coastal flood-
ing typically occurs because of synoptic weather events (14) and is
often compounded by high tide and decadal to centennial SLR. In
tide gauge (TG) observations, the detrended sea level time series
along the USNEC display a notable multidecadal variation (Fig. 1A
and fig. S1) (23, 24), very likely stemming from the AMOC signal.
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The multidecadal increase in background sea level is anticipated to
markedly increase the risk of coastal flooding, particularly when
they coincide with storms, hurricanes, ocean waves, or high tides.
Furthermore, the AMOC not only has the potential to influence
background sea level state but may also affect storms and the associ-
ated storm surges, thereby further amplifying the risk of coastal
flooding (25).

Flooding along the USNEC has the potential to reshape the coast-
al environment by displacing barrier islands and damaging habitats
crucial for supporting wildlife (8, 9). Moreover, it poses threats to
both lives and infrastructure in coastal regions, resulting in popula-
tion relocation (1-3, 23). Hence, there is an urgent necessity to un-
derstand and forecast the frequency of flood occurrences along the
USNEC to aid in mitigating and adapting to the impacts of flooding.
In this study, we combine the Geophysical Fluid Dynamics Labora-
tory (GFDL) global decadal prediction system using a coarse resolu-
tion ocean model (26, 27) with a regional high ocean resolution
(1/1,°) model (28, 29) to provide regionally refined predictions of the
frequency of flood occurrences along the USNEC. We demonstrate
that the multidecadal sea level variations along the USNEC in ob-
servations are largely influenced by buoyancy-driven fluctuations in
the AMOC. These AMOC multidecadal variations have the poten-
tial to modulate the frequency of flood occurrences and substan-
tially increase flood risk along the USNEC after 2005. Using a
dynamically downscaled decadal prediction system (28, 29), we find
that, in addition to a predictable response to the climate change-
driven SLR trend, variations in flood frequency along the USNEC
associated with the AMOC can be predicted up to 3 years in advance.

RESULTS

AMOC-driven multidecadal sea level variations

along the USNEC

To explore the potential role of AMOC in the observed multidecadal
sea level variations along the USNEC, we use two GFDL reanalyses:
the Seamless system for Prediction and Earth system Research
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A US Northeast Coast sea level time series versus AMOC index
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Fig. 1. Multidecadal sea level variations along the USNEC in observation and

GFDL reanalyses. (A) Time series of the detrended annual mean sea level anomalies

composited along the USNEC in TG observation (red and blue shadings), Geophysical Fluid Dynamics Laboratory (GFDL) Seamless system for Prediction and Earth system
Research (SPEAR) global reanalysis (magenta line), and dynamical downscaling reanalysis (light blue line), along with the anomalous AMOC index in SPEAR global re-
analysis (gray line). Units are millimeters and sverdrup for the sea level and AMOC index, respectively. The black line denotes the 15-year low pass—filtered sea level time
series in TG observations. The AMOC index is defined as the maximum value of the Atlantic stream function below 500 m within the 20°N to 60°N latitude band in-depth
space. An inset plot in (A) shows the TG locations along the USNEC. obs, observation; Cor, correlation. (B) Regression of the annual mean sea level anomalies over the NA
Ocean against the normalized AMOC index in global reanalysis, multiplied by a factor of —1. The unit is millimeters. (C) Same as (B) but for the steric sea level component.

(D) Same as (B) but for the mass redistribution component.

(SPEAR) global reanalysis with a 1° ocean resolution (27) and a dy-
namically downscaled reanalysis with a '/},° ocean resolution (28).
Both datasets are partially constrained by atmospheric and sea sur-
face temperature (SST) observations (see Materials and Methods).
In Fig. 1A, we display the detrended annual mean sea level time se-
ries composited along the USNEC in TG observations and two re-
analyses, alongside the AMOC index in global reanalysis. The sea
level anomalies in TG observations exhibit pronounced multi-
decadal variability (Fig. 1A and fig. S1), with elevated sea levels be-
fore 1920, during 1945-1980, and after 2005, and decreased sea
levels during 1920-1940 and 1975-2005. Both the global and down-
scaled reanalyses effectively capture the observed multidecadal sea
level variations, with correlations of 0.72 and 0.65 (P < 0.01) with
TG observations, respectively. Sea levels at TG stations are anticor-
related with the AMOC index in global reanalysis, with a correlation
of —0.73 (P < 0.01). We further demonstrate in fig. S2 that this mul-
tidecadal sea level variability extends beyond coastal regions, en-
compassing the entire NA basin (fig. S2A). The empirical orthogonal
function (EOF) analysis of detrended NA sea level in global reanaly-
sis reveals that the first principal component (PC1) fluctuates on mul-
tidecadal timescales, aligning in phase with the low pass-filtered TG
sea level observations and out of phase with the AMOC index (fig.
S2B). These phenomena imply that the multidecadal variations in sea
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level over the NA Ocean and USNEC are closely linked to multidecadal
fluctuations in the AMOC.

To verify this hypothesis, we conduct a regression analysis of
NA sea level in global reanalysis against the AMOC index (Fig. 1B).
We observe comma-shaped sea level anomalies in the western
Atlantic, characterized by elevated sea levels in the western subpo-
lar ocean during a negative AMOC phase and with a maximum east
of Newfoundland extending southwestward to the USNEC (Fig. 1B),
and, conversely, reduced sea levels during a positive AMOC phase. This
sea level pattern shares great similarities with the EOF1 spatial pat-
tern of NA sea level in the reanalysis (fig. S2A), suggesting that the
AMOC serves as a driver of multidecadal sea level fluctuations over
the NA. This sea level pattern also closely resembles the sea level
changes projected in future climate scenarios due to forced AMOC
weakening (15), indicating that the AMOC has the potential to af-
fect the USNEC sea level in both current and future climates. We
further decompose the AMOC-associated dynamic sea level anom-
alies (Fig. 1B) into contributions from the steric sea level compo-
nent (Fig. 1C), which results from density changes, and the mass
redistribution component (Fig. 1D), which arises from bottom pres-
sure changes. The elevated sea levels along the USNEC during the
AMOC negative phase are largely attributed to the mass redistribu-
tion term (Fig. 1D), driven by the horizontal gradient of steric SLR
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between the interior ocean and the coastal region (Fig. 1C). During
the negative phase of AMOC, the weakening of deep-water forma-
tion and its associated southward propagation induce warming in
the deep ocean, resulting in steric SLR along the path of the deep
western boundary current. Conversely, steric SLR is very small
along coastal regions due to its shallow depth. This steep steric SLR
gradient across the shelf break ultimately leads to increased mass
loadings along the USNEC (15, 30), consequently causing high sea
levels in that area. The opposite occurs during the positive phase
of AMOC.

Past work has shown that the simulated multidecadal variations
of the AMOC can be driven by the observed multidecadal fluctua-
tions of the NA Oscillation (NAO) (31). During the positive phase
of NAO, cold and dry air from the North American continent is
transported over the warm oceans, resulting in increased heat flux
loss from the ocean to the atmosphere in the Labrador Sea and the
subpolar region of NA. This process enhances deep-water forma-
tion, consequently strengthening the AMOC, and vice versa during
the negative phase of NAO (31, 32). Through a sensitivity experi-
ment with realistic additional NAO flux anomalies (fig. S3) (31), we
observe that the observed multidecadal NAO variability drives mul-
tidecadal AMOC variations. This, in turn, induces multidecadal sea
level variations along the USNEC through steric sea level anomalies
and the resulting mass redistribution processes. In this sensitivity
run, multidecadal sea level variations along the USNEC show high
correlations with both TG sea level observations and the NAO-driven
AMOC index in the model, yielding correlation coeflicients of 0.67
and —0.77 (P < 0.01), respectively.

Modulation effect of the AMOC on the flood frequency
along the USNEC

The multidecadal AMOC fluctuations drive multidecadal sea level
variations along the USNEC, which further modulate the frequency of
coastal flood occurrences. In Fig. 2 (A to H), we present the annual
expected exceedances for daily maximum water levels in 2005-2022
relative to the 1983-2001 mean higher high water (MHHW) tidal da-
tum at eight TG stations along the USNEC (see Materials and Meth-
ods), using observations and two GFDL reanalyses. The dark red lines
in Fig. 2 (A to H) represent the minor flood threshold specified in the
National Oceanic and Atmospheric Administration (NOAA) techni-
cal report (33), indicating flooding when the daily maximum water
level surpasses this threshold. To assess the impact of linear trend and
AMOC on the number of exceedances, we calculate annual exceed-
ances after removing these processes from water level records (see Ma-
terials and Methods). Overall, both GFDL reanalyses reasonably
capture the distributions of exceedances, although they generally ex-
hibit smaller magnitudes than observed at most stations. This outcome
is expected, as our models have relatively low atmosphere resolution
and do not incorporate certain real-world processes such as land ice
melting and vertical land movement (27, 28). At most TG stations, the
downscaled reanalysis outperforms the global reanalysis, largely due
to its higher ocean resolution and inclusion of explicit tides (29).

As expected, the strongest influence on the increasing flood fre-
quency is the linear SLR trend, primarily reflecting the role of green-
house gas warming and land subsidence. The removal of this linear
trend from sea level records results in a reduction of annual exceed-
ances by more than twofold at all stations (black versus magenta
lines in Fig. 2, A to H). While the influence of AMOC is of secondary
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importance, it remains substantial. Eliminating the multidecadal
fluctuations of AMOC from the USNEC would decrease the num-
ber of exceedances during 2005-2022 by ~20 to 50% across different
TG stations (black versus blue lines in Fig. 2, A to H). The reliability
of multidecadal AMOC fluctuations in reanalysis also introduces
some uncertainties in this range. However, because there are no di-
rect multidecadal observations of AMOC, using the AMOC signal
from the reanalysis remains our best available option. We further
show in Fig. 3 the temporal variation in observed flood days and the
changes in flood days after subtracting the linear trend and AMOC-
related influence from TG observations (see Materials and Meth-
ods). Because of global warming and land subsidence, the number
of flood days per year has been steadily increasing (22), with a no-
table acceleration after 2005 (Fig. 3, A and C, and figs. S4 and S5).
Besides the SLR trend, AMOC fluctuations amplify flood risk post-
2005 along the USNEC, particularly north of the Boston station
(Fig. 3B and figs. S4 and S5). The AMOC-related sea level changes
contribute up to eight flood days per year post-2005 along the USNEC
in observation, comprising ~20 to 50% of the total flooding events
across different TG stations (Fig. 3, A and B). This modulation effect
of AMOC on coastal flooding is also evident in GFDL reanalyses
post-2005, albeit with some underestimation (overestimation) of
flood risk north (south) of Boston (figs. S4 and S5). This discrepancy
could arise from the reanalyses potentially exaggerating or reducing
AMOC variability and its impact in certain areas or from differences
in flood sensitivity to AMOC changes between the model and the
observations. In contrast, the AMOC mitigated the number of floods
during 1980-2005, acting in opposition to the SLR trend (Fig. 3, B
and C). Before 1980, the AMOC increased the flood risk, thus posi-
tively reinforcing the long-term SLR trend (Fig. 3, B and C). The
modulation effect of AMOC on flooding risk, characterized by its
up and down fluctuations, aligns with the mean sea level character-
istics associated with AMOC fluctuations in reanalysis (Fig. 1A and
fig. S2B). Here, the influence of tides on the number of flood days is
illustrated by comparing Fig. 3A with figs. S4A and S5A. At the East-
port station (the first row in each subplot), flood day peaks are ob-
served in 1979, 1998, and 2016 in TG observation (Fig. 3A), which
coincide with peaks in the 18.6-year nodal modulation of tidal am-
plitude (34). Similar flood peaks appear in the dynamically down-
scaled reanalysis due to the explicit inclusion of tides (fig. S5A), but
these peaks are absent in the SPEAR global reanalysis (fig. S4A),
which lacks tide simulation.

The modulation effect of AMOC on coastal floods is further sup-
ported by the SPEAR control simulation (see Materials and Meth-
ods). In Fig. 2I, the annual exceedance for daily mean water levels
relative to the long-term mean water levels is depicted along the
USNEC during different phases of AMOC in the control run. The
number of exceedances during the AMOC negative phase is more
than that during the AMOC positive phase. The probability density
functions for the annual occurrence of extreme sea level (ESL) (see
Materials and Methods) along the USNEC during the AMOC nega-
tive phase shift toward higher occurrences of ESL, consequently in-
creasing the probability of coastal flooding (Fig. 2J). The mean sea
level background along the USNEC is high during the negative
phase of AMOC largely due to the mass redistribution term (fig. S6).
These higher-than-normal background sea levels are more favorable
to produce ESLs compared to the AMOC positive phase, thus sub-
stantially increasing flood risk along the USNEC.
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Fig. 2. Modulation effect of the linear trend and AMOC on the USNEC flood risk. (A to H) Annual exceedances of daily maximum water levels averaged in 2005-2022
with respect to 1983-2001 MHHW tidal datum at Eastport (A), Portland (B), Boston (C), Nantucket (D), Woods Hole (E), Newport (F), New London (G), and Montauk (H)
stations along the USNEC in TG observation (solid lines), dynamical downscaling reanalysis (dashed lines), and SPEAR global reanalysis (dotted lines). The black lines de-
note the total water level records, the blue lines denote the records with the removal of AMOC-related sea level, and the magenta lines denote the records with the linear
trend subtracted. The dark red lines in (A) to (H) denote the NOAA minor flood thresholds specified in the NOAA technical report. () Annual exceedance for daily mean
water levels respective to the long-term mean daily mean water levels composited along the USNEC during the AMOC positive phase (baby blue line), the AMOC negative
phase (red line), and all phases (gray line) in SPEAR_HI control simulation. (J) Probability density functions (PDFs) for the extreme sea level (ESL) occurrence frequency
composited along the USNEC during different phases of AMOC in SPEAR_HI control simulation. The day of ESL occurrence is defined as the day when the daily water
level exceeds the 95th percentile threshold of the daily water level distribution across all days and years in the control run. The AMOC index is defined as the maximum
value of the Atlantic stream function below 500 m within the 20°N to 60°N latitude band. Positive (negative) phases of the AMOC are identified when the AMOC index
exceed:s (falls below) 1 SD from the mean. Unit is days per year for the annual exceedances and ESL occurrence frequency.

Multiyear to decadal predictability of flood frequency to assess the perfect model predictability of the frequency of ESL
along the USNEC occurrence (number of days exceeding the 95th percentile in a year;
In this section, we aim to explore whether the predictable AMOC  see Materials and Methods) over the NA Ocean in the SPEAR con-
(35-37) could serve as a source of multiyear to decadal predictabil-  trol simulation. The APT analysis resembles EOF decomposition
ity for the frequency of coastal flood occurrences. First, we use a  but focuses on decomposing predictability rather than variance. We
diagnostic method called average predictability time (APT) (38-40)  show in Fig. 4 (A and B) the leading predictable component of the
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Fig. 3. Influence of the AMOC and linear trend on the USNEC flood days in TG observations. (A) The number of flood days (days per year) at each TG station along the
USNEC as a function of time. A day is identified as a flood day when hourly water levels exceed the minor flood threshold at least once within a 24-hour period. (B) Flood
day difference between the total number of flood days [denoted in (A)] and the number of flood days after removing the AMOC-related sea level from water level records.
(€) Same as (B) but for the flood day difference between the total number of flood days and the number of flood days after removing the linear trend from water level
records. The last row in each subplot shows the average number of flood days for eight TG stations along the USNEC.

ESL occurrence frequency over the NA Ocean. The most predictable
component (APT1) has large loadings over the western subpolar
ocean, peaking east of Newfoundland and extending toward the
USNEC. When we apply the APT analysis to a smaller region to zoom
into the Northwest Atlantic (NWA) Ocean, similar results are ob-
tained (Fig. 4, C and D). The squared multiple correlation R* indi-
cates that this component has a predictability of up to 7 years (Fig. 4,
B and D). This APT1 spatial pattern shares great similarities with
the annual mean sea level pattern associated with the AMOC fluc-
tuations (Fig. 1B) and also resembles the most predictable annual
mean sea level pattern over the NA in previous work (24). These
similarities suggest a strong connection between the multiyear predict-
ability of ESL occurrence frequency over the NA and the background

Zhang et al., Sci. Adv. 11, eads4419 (2025) 16 May 2025

sea level predictability, both of which are attributable to multi-
decadal AMOC variations. Figure 4E shows the lagged regressions
of the Atlantic stream function against the NA APT1 time series. At
a lag of 0 years, the APT1 component corresponds to a peak nega-
tive phase of the AMOC. The lagged regressions (—16 to 16 years)
reveal a clear evolution of the AMOC cycle. Analyses from the con-
trol run suggest that if we could accurately initialize the AMOC in
a decadal prediction model, then the future forecast of flood fre-
quency along the USNEC is potentially predictable on multiyear
timescales.

We then investigate whether the flood frequency predictability
described above can be translated to actual prediction skill in the
GFDL initialized dynamically downscaled decadal prediction system
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Fig. 4. The multiyear predictability of ESL occurrence frequency in the SPEAR control simulation. (A) Spatial pattern of the leading predictable (APT1) ESL occur-
rence frequency (days per year) over the NA Ocean in SPEAR_HI control simulation diagnosed from the APT method. The gray box in (A) denotes the small NWA region.
(B) Perfect model predictability of the APT1 component, quantified by the squared multiple correlation coefficient R% The dashed black line denotes the 95% confidence
level estimated by Monte Carlo experiments. (Cand D) Same as (A) and (B) but for the small NWA region. (E) Lagged regressions (—12 to 16 years) of AMOC stream function
against the NA APT1 time series. Negative (positive) lags indicate that the AMOC leads (lags) the APT1 time series. Unit is sverdrup.
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(28) (see Materials and Methods). Figure 5 (A to F) displays the
most predictable components of ESL occurrence frequency in the
decadal hindcasts and their associated prediction skills. The APT1
component shows an upward trend, with widespread increases in
the frequency of ESL occurrences in the NWA Ocean except over
the Gulf Stream extension region (Fig. 5, A, C, and E). This compo-
nent primarily reflects the influence of external forcing, as demon-
strated by the similarity between the hindcast time series and the
externally forced time series (yellow line in Fig. 5C), where the ex-
ternal forcing is derived by projecting the ensemble mean of large
ensemble historical simulations onto the APT1 spatial pattern. This

APT2 spatial

component exhibits prediction skill for a decade, verified by satellite
observations (Fig. 5E). We note that the APT1 component strongly
imprints on the USNEC (Fig. 5A), indicating an increasing frequen-
cy of coastal floods, which is predictable on decadal timescales (Fig.
5, G and I). The flood frequency along the USNEC in hindcasts at
different lead years closely correlates with that in reanalysis and TG
observations (Fig. 5G), predicting a decade in advance when veri-
fied by both reanalysis and TG observation (Fig. 5I).

The second most predictable component of the frequency of ESL
occurrence in the downscaled hindcasts (APT2) exhibits a peak to
the east of Newfoundland that extends to the US East Coast (Fig. 5B).
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Fig. 5. The multiyear to decadal prediction skill of the frequency of ESL or flood occurrences in the downscaled decadal hindcasts. (A) Spatial pattern of the lead-
ing predictable ESL occurrence frequency (days per year) (APT1) obtained from the APT method. (B) Spatial pattern of the secondary most predictable component (APT2).
(C) The APT1 (ensemble mean, thick gray line; ensemble spread, two thin gray lines) time series as a function of lead times in the hindcasts initialized (Ini) from 1965 to
2022.The red line is the time series for projecting the downscaled reanalysis onto the APT1 spatial pattern. The yellow line is the time series for projecting the ensemble
mean of large ensemble historical simulations onto the APT1 spatial pattern, representing the external forcing. (D) Same as (C) but for the APT2 time series. The baby blue
line denotes the AMOC index in global reanalysis (maximum stream function within 20°N to 60°N and below 500 m). (E) The prediction skill of the APT1 component, esti-
mated by correlations (Cor) between the APT1 time series in hindcasts and the projected satellite observation time series, where the satellite time series is obtained by
projecting the satellite observation onto the APT1 spatial pattern. (F) Same as (E) but for the APT2 time series. (G) Time series of the total flood days composited along the
USNEC [color dots in (A)] in TG observation (red line), downscaled reanalysis (blue line), and hindcasts at leads of 1 and 3 years (black and magenta lines). (H) Same as (G)
but for the linear detrended flood days. (I) Anomaly correlation between the total flood days in TG observation (orange line) and downscaled reanalysis (pink line) and the
flood days in initialized hindcasts as a function of lead time. (J) Same as (1) but for the prediction skill of linear detrended flood days. The dashed lines denote the 90%
confidence level using a Monte Carlo method.
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It displays pronounced multidecadal variability and varies out of
phase with the AMOC index in SPEAR global reanalysis (Fig. 5D),
suggesting that the APT2 component originates from the buoyancy-
driven AMOC variations similar to the APT1 component of the
SPEAR control simulation (Fig. 4). We find that this component can
be predicted up to ~4 years in advance when verified by satellite
observation, although this skill is lower than the perfect model skill
in control run, presumably due to initialization uncertainties, as-
similation errors, and model biases (Fig. 5F versus Fig. 4, B and D).
Inaddition, the APT2 component notably affects the USNEC. Notably,
the detrended frequency of flood occurrences composited along the
USNEC in TG observation shows fluctuations on multidecadal tim-
escales, with a high risk of flooding before 1985 and after 2005 and
a low risk of flooding during 1985-2005 (Fig. 5H). The detrended
flood frequency along the USNEC exhibits prediction skill for up to
3 years, as verified by TG observation (Fig. 5]). This multiyear skill
primarily results from successfully capturing multidecadal variabil-
ity in the frequency of flood occurrences, largely driven by the
AMOC. However, this skill is lower than that verified by downscal-
ing reanalysis because of model biases, assimilation errors, and ini-
tialization uncertainties. The downscaled model (*/1,° ocean) provides
a clearer depiction of the continental shelf break and a larger ampli-
tude of the frequency of ESL occurrences than the global SPEAR
model (1° ocean) (Fig. 4, A and C, versus Fig. 5, A and B). This is
probably because the higher ocean resolution better resolves the con-
tinental shelf and therefore improves the mass redistribution process.

DISCUSSION

In TG observations, we notice pronounced multidecadal fluctuations in
sea levels along the USNEC. In this study, we use the GFDL modeling
systems to verify that this observed multidecadal sea level variability is
largely driven by the multidecadal variations in the buoyancy-driven
AMOC, attributed to the observed multidecadal NAO variations. A
weaker-than-normal AMOC corresponds to a higher-than-normal sea
level along the USNEC and vice versa. This anticorrelated relationship
between the AMOC and the sea level is only established on multi-
decadal timescales. On shorter timescales, sea level variabilities can be
substantially influenced by other factors such as the alongshore wind,
Gulf Stream position, wind-driven AMOC, and so on (7, 14, 15, 18-
21). On multidecadal timescales, the AMOC-induced zonal steric
sea level gradient anomalies lead to mass redistributions along the
USNEGC, fulfilling the geostrophic balance and consequently causing
sea level anomalies in that area. This mechanism operates over multi-
decadal timescales and aligns with the dynamics of sea level change in
future climate projections (15).

Our study further highlights that the AMOC-influenced multi-
decadal sea level background state substantially affects the frequency of
flood occurrences along the USNEC, providing a source of multiyear
predictability. Elevated background sea levels markedly increase the
risk of flooding, while low levels decrease it. Since 2005, the frequency
of flood occurrences along the USNEC has been substantially influ-
enced by the weakening of AMOC, accounting for ~20 to 50% of all
flooding events across different TG stations. This contribution is sub-
stantial when compared to the influence of the global warming trend.
Using an initialized decadal prediction system with a 1/15° ocean resolu-
tion, we demonstrate the potential to predict the frequency of flood
occurrences along the USNEC on multiyear timescales. The long-term
increasing trend in flood frequency, largely attributed to external

Zhang et al., Sci. Adv. 11, eads4419 (2025) 16 May 2025

radiative forcing, can be predicted a decade ahead. In addition, the
detrended number of floods along the USNEC exhibits prediction
skill for up to 3 years, as verified by TG observation. This multiyear
predictive capability primarily arises from successfully capturing
multidecadal variability in the frequency of flood occurrences, pre-
dominantly influenced by the AMOC.

Our study focuses on identifying potential physical drivers and
sources of predictability, rather than precisely separating the forced
signal from internal variability. While the multidecadal variations in
AMOC and sea level may be predominantly internally driven, they
could also be partially attributed to external forcing (41, 42). We
also acknowledge that the GFDL model used here has relatively low
atmosphere resolutions, lacks land ice components, and does not
simulate climate-unrelated factors (26-29). The impacts of Green-
land ice sheet melts on the AMOC and sea level are not accounted
for in the model, resulting in a lower magnitude of SLR and likely
degradation in the prediction skill of flood frequency. We hope fu-
ture advancements in modeling and intermodel comparisons can
address these and other shortcomings, thus offering more precise
prediction insights for enhanced decision-making and socioeco-
nomic management.

MATERIALS AND METHODS

Model

In our study, we use the GFDL model known as SPEAR (26). The
ocean and ice components of SPEAR are derived from Modular
Ocean Model version 6 (MOMS6) (43), featuring 75 hybrid ocean
vertical layers and ~1° horizontal resolution, with a refined '/3° me-
ridional resolution in the tropics. The atmosphere and land compo-
nents are sourced from Atmospheric and Oceanic Models version 4
(AM4-1LM4) (44, 45), which consists of 33 vertical levels. The low-
resolution SPEAR (SPEAR_LO) has a horizontal resolution of ~100 km
for the AM4-LM4, while the high-resolution SPEAR (SPEAR_HI)
has a horizontal AM4-LM4 resolution of ~25 km. We conduct thou-
sands of years of control simulation for SPEAR_LO and SPEAR_H]I,
with fixed radiative forcing at preindustrial 1850 concentrations. In
both SPEAR control simulations, the AMOC fluctuates on multi-
decadal timescales, with a peak period of around 35 years (fig.
S6) (24, 26).

We developed a global coupled reanalysis using SPEAR_LO to ini-
tialize a retrospective global decadal prediction system (27). In SPEAR
global reanalysis, the atmospheric temperature and winds were re-
stored toward the 55-year Japanese Reanalysis at 6-hour intervals (46),
while SST restoring was constrained to the Extended Reconstructed
Sea Surface Temperature version 5 within 60°S to 60°N (47). These
restorations help generate realistic air-sea boundary conditions (sur-
face heat flux, momentum flux, and freshwater flux) in our coupled
model, which, in turn, drives more accurate multidecadal AMOC
variations in the reanalysis (27). We chose this modeling strategy to
avoid the uncertainties introduced by sparse ocean observations and
the potential disconnections between ocean circulation, other ocean
variables, and atmospheric forcings. The high correlation of the
AMOC time series at 26.5°N between the SPEAR reanalysis here and
the Rapid climate change-Meridional circulation and heat flux array
(RAPID array) significantly boosts our confidence in the SPEAR re-
analysis (fig. S7). The SPEAR global reanalysis is then used to initialize
the retrospective decadal prediction system (27). The decadal hindcasts
are based on SPEAR_LO and consist of 10 ensemble members, each
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initialized on 1 January of every year from 1961 to 2023, starting from
various members of the global reanalysis. These hindcasts were inte-
grated for 10 years, forced by realistic time-evolving radiative forcings.

We also used the MOM6_NWA12 model (29), a }/1,° ocean and
sea ice model specific to the NWA Ocean (260°E to 330°E, 5°N to
58°N), to downscale the SPEAR global coupled reanalysis and decadal
hindcasts (28). This model, MOM6_NWA12, has three open bound-
aries, using the Flather-Orlansky radiation boundary scheme. Com-
pared to the low-resolution global model, MOM6_NWA12 features a
more realistic representation of the Gulf Stream position and coastal
circulation, and it also includes tide simulation (28, 29). The dynami-
cal downscaling reanalysis based on the MOM6_NWA12 is achieved
by driving the model with surface forcing and ocean boundary condi-
tions from the SPEAR global coupled reanalysis. The global reanalysis
provides daily atmospheric [sea level pressure (SLP), precipitation,
temperature, and specific humidity at 2 m and winds at 10 m] and
monthly oceanic [temperature, salinity, sea surface height (SSH), and
velocity] data outputs, which are used as lateral boundary conditions for
dynamical downscaling within the MOM6_NWA12 framework. This
dynamically downscaled reanalysis comprises 10 ensemble members,
each starting from 1 January 1958 and ending on 31 December 2022. To
eliminate the spin-up process of the model, we discard data from the
initial 7 years. We then use this dynamical downscaling reanalysis to ini-
tialize the downscaled retrospective decadal prediction system. In this
prediction system, based on MOM6_NWA12, initial conditions are
sourced from the dynamically downscaled reanalysis, whereas the sur-
face atmospheric forcing and three open boundary conditions are taken
from the corresponding SPEAR_LO-based global decadal hindcasts
mentioned previously. The downscaled decadal hindcasts consist of
10 members, each initialized on 1 January every year from 1965 to
2022 and integrated forward for 10 years. During the analysis of the
hindcast output, we minimize the systematic drift of the model by
removing the lead time-dependent climatology. More detailed de-
scriptions of the downscaled model and prediction configurations
are summarized in a previous study (28, 29).

Observations

We use hourly water level observations from TG stations (48), span-
ning back to the 20th century, which can be downloaded from the
NOAA’ National Ocean Service. In addition, we use daily gridded
SSH data with a 0.25° resolution observed by satellite (49), obtained
from the Copernicus Marine and Environment Monitoring Service.
To account for land subsidence at the US TG stations, we use the
vertical land movement estimates from the Glacial Isostatic Adjust-
ment model (50), distributed by the Permanent Service for Mean
Sea Level (PSMSL).

Flooding and ESL definitions

For the TG observations, water levels are referenced relative to the
MHHW tidal datum, which represents the time mean of the higher
high water height observed during each tidal day throughout the
National Tidal Datum Epoch (1983-2001). As detailed in a previous
study (22), the flooding threshold at each TG station is based on the
minor flood threshold water levels specified in the NOAA technical
report (33). The minor flood threshold refers to the stage at which
flooding begins to cause some noticeable impacts, but these impacts
are generally limited and not widespread. The minor flood threshold
varies across different TG stations (table S1). A day is classified
as a flood day when hourly water levels exceed the minor flood
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threshold at least once within a 24-hour period. In Fig. 2, the annual
exceedances count the number of days per year when water levels
exceed a specific value above the MHHW. We estimate the relative
contribution of the linear trend and buoyancy-driven AMOC to the
frequency of flood occurrences by counting the number of annual
flood days or exceedances after subtracting each of these processes
from total water level records. For example, to obtain the AMOC-
related sea level fluctuations at TG stations, we regress the TG water
level records onto the PC1 time series of NA sea level variability in
the reanalysis (fig. S2B), which serves as a representative fingerprint
of the AMOC. We acknowledge that the observation-constrained
AMOC in our reanalysis could still differ from the real-world
AMOC due to model biases. The reliability of multidecadal AMOC
fluctuations in reanalysis may introduce some uncertainties in our
calculations. However, because there are no direct multidecadal ob-
servations of AMOC, using the AMOC or AMOC fingerprint from
the reanalysis remains our best available option.

In both GFDL reanalyses and initialized downscaling hindcasts,
we output the daily maximum water levels. The sea level in GFDL
models or reanalyses largely reflects the dynamic sea level (with a
global mean of zero). The dynamic sea level in the model can be
further decomposed into two components (15): the steric sea level,
associated with density changes, and the contribution from mass re-
distribution, denoted by changes in bottom pressure. To align with
TG observations, we incorporate the global mean steric SLR (GSSL),
inverted barometer (IB) effect, and land subsidence estimates into
the model. The GSSL is diagnosed from the three-dimensional den-
sity field:

GSSL = —éfa th pinApdzda, where p is the in situ density anoma-
lies of seawater, pis the reference density of seawater, a is the surface
area of the global ocean, his the ocean depth, and n is dynamic sea level.
The IB is defined as IB = — P_fj%, where P is local SLP, Py, 15 the
global ocean-averaged SLP, p, is the seawater density, and g is the ac-
celeration of gravity. The land subsidence is estimated from the Glacial
Isostatic Adjustment model (50), available from the PSMSL. However,
the process of land ice melting is currently not accounted for in our re-
analyses, and the tide process is also absent from the SPEAR global re-
analysis. These factors contribute to a smaller magnitude of water levels
in GFDL reanalysis and models compared to TG observations. Given
these discrepancies between the GFDL reanalysis and the TG observa-
tions, we define the frequency of floods in GFDL reanalyses based on
the model’s own quantities. Here, the water levels in reanalyses are ref-
erenced relative to the average of daily maximum water levels within
the 1983-2001 period. At each TG station, we search for the nearest
ocean point in the model and use this nearest grid as the corresponding
station in reanalyses. The minor flood threshold at each station in re-
analysis is defined as the 99th percentile threshold of the daily maxima
water level anomaly distribution from all days and years during 1965-
2022. A day is classified as a flood day when the daily maximum water
level exceeds the minor flood threshold. We then count the number of
flood days each year, as illustrated in Fig. 3 (B and C). Furthermore, we
examined the 90th percentile and 95th percentile thresholds and ob-
served that the lower threshold results in more flood days. Despite po-
tential slight variations in magnitude, the conclusion drawn from Fig. 3
remains unaffected by the choice of flood threshold. In addition, we
used the 99th percentile threshold to define flood days in TG observa-
tion (Fig. 5, G to J). Our analysis reveals that the annual number
of flood days exceeds that reported in the NOAA technical report
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mentioned earlier, indicating that the criterion used in the report
is even more stringent. However, similar to our previous find-
ings, the choice of threshold does not alter the overall conclusion of
our argument.

In the SPEAR control simulation, we only output the daily mean
water levels. The dynamic daily water levels are initially corrected
for the IB and global steric SLR effects. Subsequently, they are refer-
enced relative to the long-term mean daily water levels throughout
the model integration period. In the control run, we use the APT
method (38, 39) to evaluate the perfect model predictability of water
levels across the entire NA Ocean (Fig. 4). Flooding and the frequency
of flood occurrences are commonly associated with coastal regions,
with an emphasis on societally relevant issues. In the entire NA, we
use the concept of ESL occurrence frequency throughout the paper.
The day of ESL occurrence in each model grid is defined as the day
when the daily water level exceeds the 95th percentile threshold of
the daily water level anomaly distribution across all days and years
during the entire model integration period. Here, we choose a mod-
erate 95th percentile threshold to represent a modest extreme, which
also ensures an adequate number of samples for the APT analysis.
Similarly, in our analysis of initialized downscaled decadal hindcasts
and satellite observations (Fig. 5), we use the moderate 95th percen-
tile threshold to define the frequency of ESL occurrence, thereby en-
hancing the sample size for APT analysis and verification purposes.

APT method

The APT method (38, 39) is used to identify the most predictable
components of the frequency of ESL occurrences in both the SPEAR
control simulation and the initialized downscaled decadal predic-
tion system. The APT is defined as twice the integral of predictabil-
ity across all lead times

APT:Zi

=1

62

1-= (1)
2

600
where Si represents the ensemble forecast variance at a lead time of ©
and 6; denotes climatological variance. An APT value of 1 indicates a
perfect prediction, while a value of 0 suggests that the ensemble forecast
variance equals the climatological variance and thus no predictability.
To maximize the APT, we seek an inner product q”x, where q is a pro-
jection vector, x is the state vector, and T denotes the transpose opera-
tion. Maximizing the APT leads to a generalized eigenvalue problem

2:2()(200— Y )a=rY a @)

where A is the eigenvalue and also represents the APT value. This
makes the APT decomposition analogous to an EOF analysis, except
that, here, we decompose predictability rather than variance.

When applying the APT method to control simulation or decadal
hindcasts, we first extract the leading 30 PCs of the climate variables
and then use these PCs to maximize the APT in Eq. 2. For the ini-
tialized decadal hindcasts, obtaining the climatological variance and
forecast variance at different lead years is straightforward, given that
we have 10 ensemble members and 10 years of prediction run. For
the control run, however, we only have a single long ensemble mem-
ber, and, thus, we adopt a linear regression model to estimate the
APT as suggested by previous studies (38-40). The PCs from the
control run are then split into two halves: The first half is used as
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training data to maximize the APT in Eq. 1, while the second half is
reserved for verification. The squared multiple correlation R? is used
to evaluate the potential predictability in the control run

- T
&= q’Cc.C;'Clq )
T q'Cyq

We use the training data to calculate q and the verification data to
obtain the C_and C, two covariance terms. Last, we apply the Monte
Carlo method to test the statistical significance of APT (38, 39).
Overall, the APT method is a more nuanced approach that integrates
forecast variance, climatological variance, and lead time, providing a
better understanding of where and when predictions are most reliable.

Supplementary Materials
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Figs.S1to S7

Table S1
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