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Supplementary Text 

Supplementary Text 1. Efficacy of the XRO in simulating ENSO and other climate modes 

First, the XRO captures the observed seasonal synchronization of ENSO, with the Niño3.4 SSTA 
standard deviation peaking in November-December-January (Fig. 2a). This seasonal synchronization is 
primarily governed by the seasonal modulation of the SSTA growth rate due to the tropical Pacific 
background seasonal cycle (Stein et al. 2014; Chen and Jin 2021; Levine and McPhaden 2015). Second, 
the XRO successfully replicates El Niño-La Niña asymmetry, manifesting as positively skewed Niño3.4 
SSTAs (Fig. 2b). This asymmetry arises from multiple nonlinear physical processes, such as oceanic 
nonlinear dynamical heating (An and Jin 2004; An et al. 2020) and nonlinear SST-wind stress coupling 
due to the nonlinear dependence of deep convection on SST (Kang and Kug 2002; Choi et al. 2013; Geng 
et al. 2020). Third, the observed ENSO periodicity is reasonably captured, with a Niño3.4 spectral peak 
at periods of 2-6 years (Fig. 2c).The XRO also captures the lead-time of warm water volume (WWV) 
anomaly ahead of ENSO SSTA by approximately 6-9 months (Fig. 2d), which is largely controlled by 
ENSO periodicity (Zhao et al. 2021). Fourth, the XRO generates the observed irregular interannual 
oscillations between El Niño and La Niña, including occurrences of single- and multi-year ENSO events 
(Supplementary Fig. 3). Various mechanisms governing multi-year ENSO occurrences have been well-
documented, including nonlinearity (Okumura et al. 2011; DiNezio and Deser 2014), ENSO-combination 
mode and anomalous Ekman transport (Iwakiri and Watanabe 2021, 2022), the NPMM and North Pacific 
Oscillation (Ding et al. 2022; Geng et al. 2023; Park et al. 2021; Kim et al. 2023), as well as inter-basin 
interactions with tropical Indian and/or Atlantic Oceans (Kim and Yu 2022). Notably, the XRO model 
incorporates all these elements either explicitly or implicitly (See “Extended Nonlinear Recharge-
Oscillator model (XRO)” in Methods). Fifth, the XRO accurately reproduces the rapid decline in ENSO 
SSTA autocorrelation across boreal spring, commonly referred to as the spring persistence barrier 
(Supplementary Fig. 4). 

The XRO reproduces the seasonal synchronization of the other climate modes that is seen in 
observations (Supplementary Fig. 5a-h), which in this model is largely caused by the seasonally varying 
damping rates of the individual modes, together with their coupled interactions (see diagonal axis in 
Extended Data Fig. 1). Notably, ENSO-driven processes play a pronounced role in the seasonal 
synchronization of some of the modes. For instance, the IOB warming, forced by El Niño, reaches its 
mature phase during boreal spring and summer, following the mature phase of El Niño (Supplementary 
Fig. 5c). The variance of the TNA peaks in boreal spring, due to both the seasonal modulation of its 
damping rate and the remote forcing from ENSO (Chen et al. 2021; Jiang et al. 2023). Moreover, the 
XRO reasonably reproduces the observed asymmetries of both the IOB and IOD, manifesting as positively 
skewed SSTAs in the central and western tropical Indian Ocean, and negatively skewed SSTAs in the 
eastern Indian Ocean near Java and Sumatra (Supplementary Fig. 5k-l). The positive skewness of the IOB 
primarily arises as a response to the skewed remote forcing from ENSO, while the IOD asymmetry is 
dominated by local nonlinear processes (An et al. 2023). Furthermore, the XRO accurately reproduces the 
observed seasonal autocorrelation of the other modes (Supplementary Fig. 6). 
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Supplementary Tables 

Supplementary Table 1. Definition of SST indices for climate modes used in the study. 

Climate Mode Acronym Description References 

El Niño-Southern Oscillation ENSO SSTAs averaged over Niño3.4 region 170°–120°W, 5°S–5°N (Trenberth 1997) 

North Pacific Meridional Mode NPMM SSTAs averaged over 160°-120°W, 10°-25°N (Richter et al. 2022) 

South Pacific Meridional Mode SPMM SSTAs averaged over 110°-90°W, 25°-15°S (Zhang et al. 2014) 

Indian Ocean Basin mode IOB SSTAs averaged over 40°–100°E, 20°S–20°N (Xie et al. 2009) 

Indian Ocean Dipole mode IOD SSTAs averaged over 50°–70°E, 10°S–10°N minus those 

averaged over 90°–110°E, 10°S–0°N 

(Saji et al. 1999) 

Southern Indian Ocean Dipole mode SIOD SSTAs averaged over 65°–85°E, 25°–10°S minus those 

averaged over 90°–120°E, 30°–10°S 

(Jo et al. 2022) 

Tropical North Atlantic variability TNA SSTAs averaged over 55°–15°W, 5°–25°N (Enfield et al. 1999) 

Atlantic Niño ALT3 SSTAs averaged over 20°W–0°E, 3°S–3°N (Nnamchi et al. 2015) 

South Atlantic Subtropical Dipole SASD SSTAs averaged over 60°–0°W, 45°–35°S minus those 

averaged over 40°W–20°E, 30°–20°S 

(Rodrigues et al. 2015) 

 

  



4 

Supplementary Table 2. Observational data used in the study. 

Dataset 
(Period) 

Variables Description and Reference Source 

HadISST 
(1871-2023) SST 

Hadley Centre Sea Ice and Sea Surface Temperature dataset 
version 1.1 (Rayner et al. 2003) 

https://www.metoffice.gov.uk/hadobs/hadisst/ 

ERSSTv5 
(1871-2023) SST 

Extended Reconstructed Sea Surface Temperature version 5 
(Huang et al. 2017) 

https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html 

COBE-SST2 
(1871-2023) SST 

Centennial in situ Observation-Based Estimates of Sea Surface 
Temperature version 2 (Hirahara et al. 2014) 

https://ds.data.jma.go.jp/tcc/tcc/products/elnino/cobesst_doc.html 

GECCO3 
(1950-2018) SST, Temp* 

German contribution to Estimating the Circulation and Climate 
of the Ocean version 3 (Köhl 2020) 

https://icdc.cen.uni-
hamburg.de/thredds/catalog/ftpthredds/EASYInit/GECCO3/regula
r_1x1_grid/catalog.html 

GODAS 
(1950-2023) 

SST, Temp Global Ocean Data Assimilation System (Behringer and Xue 
2004) 

https://psl.noaa.gov/data/gridded/data.godas.html 

ORAS5 
(1958-2023) SST, Temp 

ECMWF Ocean Reanalysis System 5 (Zuo et al. 2019) https://doi.org/10.24381/cds.67e8eeb7 

ORA20C 
(1900-2009) 

SST, Temp 
ECMWF Ocean Reanalysis of the 20th Century (de Boisséson 
et al. 2018) 

https://www.cen.uni-hamburg.de/en/icdc/data/ocean/easy-init-
ocean/ecmwf-ensemble-of-ocean-reanalyses-of-the-20th-century-
ora-20c.html 

PEODAS 
(1960-2014) 

SST, Temp Predictive Ocean Atmosphere Model for Australia Ensemble 
Ocean Data Assimilation System (Yin et al. 2011) 

http://opendap.bom.gov.au:8080/thredds/catalogs/bmrc-poama-
catalog.html 

SODA224 
(1871-2010) 

SST, Temp Simple Ocean Data Assimilation Phase 2.2.4 (Carton and 
Giese 2008) 

https://apdrc.soest.hawaii.edu/dods/public_data/SODA 

ERA5 
(1979-2022) 

Surface air 
temperature 

ECMWF Atmospheric Reanalysis v5 (Hersbach et al. 2020) https://doi.org/10.24381/cds.f17050d7 

CMAP 
(1979-2022) Precipitation 

Gridded precipitation from the Climate Prediction Center 
Merged Analysis of Precipitation (Xie and Arkin 1997) 

https://psl.noaa.gov/data/gridded/data.cmap.html 

*Temp is 3-dimensional ocean temperature 
  

https://www.metoffice.gov.uk/hadobs/hadisst/
https://psl.noaa.gov/data/gridded/data.noaa.ersst.v5.html
https://ds.data.jma.go.jp/tcc/tcc/products/elnino/cobesst_doc.html
https://icdc.cen.uni-hamburg.de/thredds/catalog/ftpthredds/EASYInit/GECCO3/regular_1x1_grid/catalog.html
https://icdc.cen.uni-hamburg.de/thredds/catalog/ftpthredds/EASYInit/GECCO3/regular_1x1_grid/catalog.html
https://icdc.cen.uni-hamburg.de/thredds/catalog/ftpthredds/EASYInit/GECCO3/regular_1x1_grid/catalog.html
https://psl.noaa.gov/data/gridded/data.godas.html
https://doi.org/10.24381/cds.67e8eeb7
https://www.cen.uni-hamburg.de/en/icdc/data/ocean/easy-init-ocean/ecmwf-ensemble-of-ocean-reanalyses-of-the-20th-century-ora-20c.html
https://www.cen.uni-hamburg.de/en/icdc/data/ocean/easy-init-ocean/ecmwf-ensemble-of-ocean-reanalyses-of-the-20th-century-ora-20c.html
https://www.cen.uni-hamburg.de/en/icdc/data/ocean/easy-init-ocean/ecmwf-ensemble-of-ocean-reanalyses-of-the-20th-century-ora-20c.html
http://opendap.bom.gov.au:8080/thredds/catalogs/bmrc-poama-catalog.html
http://opendap.bom.gov.au:8080/thredds/catalogs/bmrc-poama-catalog.html
https://apdrc.soest.hawaii.edu/dods/public_data/SODA
https://doi.org/10.24381/cds.f17050d7
https://psl.noaa.gov/data/gridded/data.cmap.html
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Supplementary Table 3. El Niño type forecasts for the Nov-Dec-Jan target season, based on Niño3 and Niño4 indices at a 9-month lead-time. 

Year ORAS5 
XRO2 fitted on 1979-2022 

(lead=9) 

XRO2 fitted on 1950-1990 

(lead=9) 
AI (lead=9) NMME (lead=9) 

1982 EP EP - - MIX 

1986 MIX MIX - MIX MIX 

1991 MIX MIX MIX MIX MIX 

1997 EP EP EP MIX MIX 

2002 MIX MIX MIX Neutral state MIX 

2009 MIX EP Neutral state MIX MIX 

2015 MIX MIX MIX MIX MIX 

 

Supplementary Table 4. Details of the NMME models used in this study. 

Model Name used here Period Ensemble size 
Maximum lead time 

(months) 

CMC1-CanCM3 CanCM3 January 1981–December 2019 10 11 

CMC2-CanCM4 CanCM4 January 1981–December 2019 10 11 

COLA-RSMAS-CCSM4 CCSM4 January 1982–December 2017 10 11 

NCEP-CFSv2 CFSv2 January 1982–July 2022 24 9 

GEM-NEMO GEM-NEMO January 1981–December 2020 10 11 

GFDL-CM2p1-aer04 GFDL January 1982–December 2021 10 11 

GFDL-CM2p5-FLOR-A06 GFDL-FLOR March 1980–December 2021 12 11 

GFDL-CM2p5-FLOR-B01 GFDL-FLOR March 1980–December 2021 12 11 

GFDL-SPEAR GFDL-SPEAR January 1991–December 2020 15 11 

NASA-GEOSS2S NASA-GEOSS2S January 1981–December 2020 10 8 
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Supplementary Table 5. Lists of the 91 CMIP5/6 climate models used in this study. 

CMIP5 No. CMIP5 Models Member  CMIP6 No. CMIP6 Models Member 
1 ACCESS1-0 r1i1p1 1 ACCESS-CM2 r1i1p1f1 
2 ACCESS1-3 r1i1p1 2 ACCESS-ESM1-5 r1i1p1f1 
3 bcc-csm1-1 r1i1p1 3 AWI-CM-1-1-MR r1i1p1f1 
4 bcc-csm1-1-m r1i1p1 4 BCC-CSM2-MR r1i1p1f1 
5 BNU-ESM r1i1p1 5 BCC-ESM1 r1i1p1f1 
6 CanESM2 r1i1p1 6 CAMS-CSM1-0 r1i1p1f1 
7 CCSM4 r1i1p1 7 CAS-ESM2-0 r1i1p1f1 
8 CESM1-BGC r1i1p1 8 CESM2 r4i1p1f1 
9 CESM1-CAM5 r1i1p1 9 CESM2-FV2 r1i1p1f1 
10 CESM1-FASTCHEM r1i1p1 10 CESM2-WACCM r1i1p1f1 
11 CESM1-WACCM r1i1p1 11 CESM2-WACCM-FV2 r1i1p1f1 
12 CMCC-CESM r1i1p1 12 CIESM r1i1p1f1 
13 CMCC-CM r1i1p1 13 CMCC-CM2-HR4 r1i1p1f1 
14 CMCC-CMS r1i1p1 14 CMCC-CM2-SR5 r1i1p1f1 
15 CNRM-CM5 r1i1p1 15 CMCC-ESM2 r1i1p1f1 
16 CSIRO-Mk3-6-0 r1i1p1 16 CNRM-CM6-1 r1i1p1f2 
17 FGOALS-g2 r1i1p1 17 CNRM-ESM2-1 r1i1p1f2 
18 FGOALS-s2 r1i1p1 18 CanESM5 r1i1p1f1 
19 FIO-ESM r1i1p1 19 E3SM-1-0 r1i1p1f1 
20 GFDL-CM3 r1i1p1 20 E3SM-1-1 r1i1p1f1 
21 GFDL-ESM2G r1i1p1 21 E3SM-1-1-ECA r1i1p1f1 
22 GFDL-ESM2M r1i1p1 22 EC-Earth3 r1i1p1f1 
23 GISS-E2-H-CC r1i1p1 23 EC-Earth3-Veg r1i1p1f1 
24 GISS-E2-H r1i1p1 24 FGOALS-f3-L r1i1p1f1 
25 GISS-E2-R-CC r1i1p1 25 FGOALS-g3 r1i1p1f1 
26 GISS-E2-R r1i1p1 26 FIO-ESM-2-0 r1i1p1f1 
27 HadCM3 r1i1p1 27 GFDL-CM4 r1i1p1f1 
28 HadGEM2-AO r1i1p1 28 GFDL-ESM4 r1i1p1f1 
29 HadGEM2-CC r1i1p1 29 GISS-E2-1-G r1i1p1f1 
30 HadGEM2-ES r1i1p1 30 GISS-E2-1-G-CC r1i1p1f1 
31 IPSL-CM5A-LR r1i1p1 31 GISS-E2-1-H r1i1p1f1 
32 IPSL-CM5A-MR r1i1p1 32 HadGEM3-GC31-LL r1i1p1f3 
33 IPSL-CM5B-LR r1i1p1 33 INM-CM4-8 r1i1p1f1 
34 MIROC5 r1i1p1 34 INM-CM5-0 r10i1p1f1 
35 MIROC-ESM-CHEM r1i1p1 35 IPSL-CM6A-LR r1i1p1f1 
36 MIROC-ESM r1i1p1 36 MIROC6 r1i1p1f1 
37 MPI-ESM-LR r1i1p1 37 MIROC-ES2L r1i1p1f2 
38 MPI-ESM-MR r1i1p1 38 MPI-ESM-1-2-HAM r1i1p1f1 
39 MPI-ESM-P r1i1p1 39 MPI-ESM1-2-HR r1i1p1f1 
40 MRI-CGCM3 r1i1p1 40 MPI-ESM1-2-LR r10i1p1f1 
41 MRI-ESM1 r1i1p1 41 MRI-ESM2-0 r1i2p1f1 
42 NorESM1-ME r1i1p1 42 NESM3 r1i1p1f1 
43 NorESM1-M r1i1p1 43 NorESM2-LM r1i1p1f1 
   44 NorESM2-MM r1i1p1f1 
   45 SAM0-UNICON r1i1p1f1 
   46 TaiESM1 r1i1p1f1 
   47 UKESM1-0-LL r1i1p1f2 
   48 NorCPM1 r1i1p1f1 
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Supplementary Figures 

 

Supplementary Fig. 1| Observed differences in tropical SSTA pattern and evolution between the 
1997/98 and 2015/16 El Niño events derived from ORAS5 reanalysis. The SSTAs during (a) 1997 
MAM, (b) 2015 MAM, (c) 1997 JJA, (d) 2015 JJA, (e) 1997 SON, (f) 2015 SON, (g) 1997/98 DJF and 
(h) 2015/16 DJF. In each panel, the values of Niño3, Niño4, IOD, and NPMM SSTAs are indicated in the 
corresponding boxes, and the value of Niño3.4 is indicated in the title. The 1997/98 and 2015/16 El Niño 
events have different SSTA patterns in the central and far eastern equatorial Pacific, as well as different 
associated IOD and NPMM intensities. The 1997 event exhibits eastern Pacific El Niño characteristics 
with the warmest SSTAs in the far eastern equatorial Pacific and a strong concurrent IOD, partly due to 
stronger WWV preconditioning. In 2015, the SSTA peak is located closer to the central Pacific, possibly 
due to the strong coupling of the NPMM and central equatorial Pacific SST. 

 



8 

 

Supplementary Fig. 2| Observed surface air temperature (SAT) anomalies for the 1997/98 and 
2015/16 El Niño events during December-March (DJFM). The (a) 1997/98 and (b) 2015/16 El Niño 
events were associated with different pan-Arctic SAT, consistent with Jeong et al. (2022). 
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Supplementary Fig. 3| ENSO time series in the observation and XRO stochastic simulation. The 3-
month running mean of Niño3.4 SSTA for (a) the ensemble mean of multiple observational SST datasets 
for 1923-2022 (Supplementary Table 2), and (b) the 10 consecutive centuries (numbered) from the XRO 
stochastic simulation. The red/blue shading denote the SSTA above 0.5 / below -0.5℃, respectively. The 
XRO stochastic simulation reproduces the irregular interannual oscillations between El Niño and La Niña.  
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Supplementary Fig. 4| Seasonal autocorrelation of Niño3.4 SST index. Correlations of Niño3.4 index 
with itself, as a function of initialization month (ordinate) and target month (abscissa) for the ORAS5 
reanalysis (1979-2022) (a) and for the XRO stochastic simulations (b, ensemble mean). Hatching 
highlights correlation skills less than 0.5. The dashed vertical blue lines denote the spring predictability 
barrier season. The XRO accurately reproduces the rapid decline in ENSO SSTA autocorrelation across 
boreal spring. 
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Supplementary Fig. 5| Seasonal statistics of SSTA indices for the other climate modes. a-h, 
Seasonally varying standard deviation of the SSTA indices for the NPMM, SPMM, IOB, IOD, SIOD, 
TNA, ATL3, and SASD, respectively, in the ORAS5 observations (1979-2022) (bars) and the XRO 
stochastic simulations (red curves). Red shading indicates the 10%-90% spread bands of simulated 43-
year epochs, obtained from splitting a 43,000-year XRO simulation into 1000 non-overlapping blocks. 
The month of peak standard deviation for each observed mode is indicated in green. i-p, Same as a-h, but 
for seasonally varying skewness. The XRO accurately simulates the observed seasonal synchronization of 
specific climate modes, and reasonably reproduces the observed warm/cold asymmetries of both the IOB 
and IOD. 
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Supplementary Fig. 6| Seasonal autocorrelation of SSTA indices for other climate modes. 
Correlations of each index with itself, as a function of initialization month (ordinate) and target month 
(abscissa) for the ORAS5 reanalysis (1979-2022) (upper row) and for the XRO stochastic simulations 
(bottom row, ensemble mean). Hatching highlights correlation skills less than 0.5. The XRO accurately 
reproduces the seasonal autocorrelation structures of the other climate modes. 

 



13 

 

Supplementary Fig. 7| ENSO’s lead-lag relationship with equatorial Pacific warm water volume 
(WWV) index and SSTA indices of other climate modes in CMIP historical simulations. Shown as 
monthly cross-correlations of each index with the lagged Niño3.4 index in ORAS5 reanalysis (1979-2022) 
(black) and CMIP5/6 historical simulations (1900-1999) (ensemble mean in red curves; red shading 
indicates the 10%-90% spread bands of 91 individual models). The dashed curves show the ensemble 
mean autocorrelation of Niño3.4 index in CMIP5/6 historical simulations (shading indicates the 10%-90% 
spread bands of 91 individual models). Abscissas are the lead-time, with negative values representing 
months for which the Niño3.4 index lags, and positive values representing months for which the Niño3.4 
index leads. It is challenging for climate models to realistically simulates the observed ENSO SSTA lead-
lag relationship with WWV anomalies and the SSTA indices for the other climate modes, especially for 
WWV index and Atlantic Ocean SST indices. 

 



14 

 

Supplementary Fig. 8| Robustness of the XRO parameter fitting and reforecasting ENSO. a, the all-
months correlation skill of the 3-month running mean Niño3.4 index during 1979-2022 as a function of 
forecast lead for the XRO control forecast (black curve) and cross-validated XRO forecast that excluded 
from 2 to 7 years data (coloured curves), the mean skill difference between cross-validated XRO forecast 
and control forecast (bars). The dashed lines indicate 0.5, 0.1, and zero correlation skills. b-d, Same as a, 
but for skill for LENS perfect model “Same-Member” and “Cross-Member” experiments for CESM1, 
CESM2, MIROC6, and MPI-ESM during 1959-2002, respectively (See “Large ensemble simulations and 
perfect model reforecasting experiments” in Methods). The shadings denote the 10%-90% spread among 
the ensemble members within each LENS. The bottom bars denote the mean difference between “Same-
Member” and “Cross-Member” experiments with error bars denote the 10%-90% spread among the 
ensemble members within each LENS. The XRO fitting and reforested ENSO is robust with uncertainty 
in Niño3.4 correlation skill less than 0.1 within 21 lead months. 
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Supplementary Fig. 9| Seasonality of correlation forecast skill for ENSO. The correlation skills 
verified during 1979-2022 of various model forecasts of the Niño3.4 SSTA index, as a function of the 
start month (ordinate) and target month (abscissa; superscripts 0, 1, 2 denote the current and subsequent 
years, respectively), for the nRO (a), Cross-validated nRO (b), XRO (c), Cross-validated XRO (d), AI 
model (e), multi-model mean of NMME ensemble means (f), and ensemble means from individual 
dynamical models in the North American Multi-Model Ensemble (NMME)(g-o). Hatching highlights the 
forecasts with correlation skill less than 0.5. The dashed vertical blue lines denote the spring predictability 
barrier season. The nRO and most of the dynamical models exhibit a pronounced spring predictability 
barrier in May-June-July. The SPB is much less pronounced in the XRO, which is comparable in skill 
with the AI model in all seasons. 
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Supplementary Fig. 10| Root Mean Square Error (RMSE) forecast metric for ENSO. a, The all-
months RMSE forecasts verified on 2002-2022 of the 3-month running mean Niño3.4 SSTA index, as a 
function of the forecast lead month in the out-of-sample nRO fitted on 1950-1999 (magenta), out-of-
sample XRO fitted on 1950-1999 (red), the AI model, the XRO control fitted on 1979-2022 (black curve) 
and operational models aggregated by the International Research Institute for Climate and Society (IRI), 
ensemble mean of dynamical models (DYN AVG, dark purple curve), ensemble mean of statistical 
models (STAT AVG, dark cyan curve). b, same as a, but for RMSE skill of Niño3.4 forecasts verified  
1979-2022 in the in-sample nRO (magenta), in-sample XRO model (red), AI model (blue), dynamical 
models from the North American Multi-Model Ensemble (NMME) project (multi-model ensemble of 
NMME in black, ensemble mean from individual models in other colours); c-q, The relative RMSE of 
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Niño3.4 SSTA forecasts, normalized by the seasonally-varying standard deviation of the observations, as 
a function of the forecast start month (ordinate) and target month (abscissa; superscripts 0, 1, 2 denote the 
current and subsequent years, respectively), for the nRO, cross-validated nRO, XRO, cross-validated XRO, 
AI model, dynamical models from the North American Multi-Model Ensemble (NMME) project (multi-
model ensemble of NMME, ensemble mean from individual models). The dashed vertical blue lines 
denote the spring predictability barrier season.  The superior efficacy of the XRO in ENSO forecasting is 
supported by the RMSE metric. 
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Supplementary Fig. 11| Comparison role of climate-mode interactions on Niño3.4 forecast between 
the component due to other climate modes’ initial state and the component due to the ENSO initial 
state. Shown are the differences of Niño3.4 SSTA (shading) as a function of forecast lead and target time 
between the control and uninitialized ExPO+IO+AO experiment (a), and between the uninitialized 
ExPO+IO+AO and decoupled ExPO+IO+AO experiment forecasts (b). Vertical reference dashed lines 
denote December of El Niño (red) and La Niña (blue) years, respectively. The observed normalized time 
series of Niño3.4 SSTA index is indicated in the bottom axis. In b, the arrows indicate the flow of forecast 
integration started from the selected time. The other climate modes mainly affect ENSO via their initial 
condition memory. 
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Supplementary Fig. 12| Quantifying the reduced ENSO forecast Root Mean Square Error (RMSE) 
from the coupled influences outside equatorial Pacific during 1979-2022. Shown is the relative RMSE 
difference of the Niño3.4 SSTA forecasts, normalized by the seasonally-varying standard deviation of the 
observations, as a function of the forecast start month (ordinate) and target month (abscissa; superscripts 
0, 1, 2 denote the current and subsequent years, respectively). a-d, the skill difference between XRO and 
DExPO+IO+AO (a), between XRO and UExPO+IO+AO (b), and between UExPO+IO+AO and DExPO+IO+AO (c); e-n,  
the skill difference between control and the uninitialized ExPO, IO, AO, NPMM, SPMM, IOB, IOD, 
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SIOD, TNA, ATL3, and SASD experiments, respectively. The importance of climate mode interactions 
in ENSO forecasting is supported by the RMSE metric. 
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Supplementary Fig. 13| Impact of ENSO’s initialization to other climate mode forecasts. Left panels 
(a-h) show the all-months correlation skill of the 3-month running mean each climate mode index during 
1979-2022 as a function of forecast lead for the XRO control forecast (red curve) and uninitialized ENSO 
experiment (𝑈!"#$) forecast (blue curve). Right panels (h-o) show the difference of other climate mode 
SSTA (shading) as a function of forecast lead and target time, between control and uninitialized ENSO 
experiment (𝑈!"#$). The normalized time series of each climate mode SSTA index is indicated in the 
bottom axis. The XRO sensitivity experiments quantify how the initial states of ENSO affect the 
predictability of the other climate modes. 
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Supplementary Fig. 14| Pantropical SSTA forecast skill at 9-month lead time verified on 1982-2022. 
Correlation skill (a-m) and RMSE (n-z) for the SST forecasts include XRO2, cross-validated XRO2, XRO, 
cross-validated XRO, and the available nine NMME models. The XRO2 provide more skilful SSTA 
forecast than the operatorial climate models in most of the pantropical regions.  



24 

 

Supplementary Fig. 15| Time series of various SSTA indices and WWV anomaly index in multiple 
observation/reanalysis datasets. SST datasets include (HadISST: 1871-2023, ERSSTv5: 1871-2023, 
COBE-SST2: 1871-2023, ORAS5: 1958-2023, SODA224: 1871-2010, ORA20C: 1900-2009, PEODAS: 
1960-2014, GECOO3: 1948-2018, GODAS: 1980-2023), WWV datasets include (ORAS5: 1958-2023, 
SODA224: 1871-2010, ORA20C: 1900-2009, PEODAS: 1960-2014, GECOO3: 1948-2018, GODAS: 
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1980-2023). The monthly anomalies were calculated by removing the monthly climatology for 1980-2010 
and the quadratic trend over the whole period. The black curve is mean of all datasets, the red shading 
denotes the 10%-90% inter-dataset spread, the grey shading indicates the number of datasets calculated 
for each month, the blue vertical reference lines denote January of 1950 and 1979. There are large 
uncertainties in the data before 1950, especially for equatorial Pacific WWV and SSTA in other basins 
(large inter-dataset spread shown by red shadings), and during time of World War II (1936-1949). There 
are also periods that are not physically consistent with current theory or understanding of ENSO, for 
instance, the multiple El Niño events occurred when a long period of discharged WWV state during 1895-
1908 (blue shading period, compare with the Nino34 SSTA and WWV anomaly). 
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Supplementary Fig. 16| 100-member stochastic forecasts of ENSO by the XRO. a-b, Time series of 
XRO-forecasted Niño3.4 SSTA, at lead-times of (a) 6 months and (b) 12 months. Black curves correspond 
to a deterministic forecast, in which the stochastic forcing term is neglected during the integration. 
Forecasts from a 100-member stochastic XRO ensemble are shown in red (dark red for the ensemble mean, 
red shadings indicate the central 68% range of the ensemble members). The correlation and regression 
slope between the deterministic forecast and the stochastic ensemble mean are indicated in the 
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corresponding legends. c-f, Niño3.4 SSTA forecasts initialized in (a) 1997 April, (b) 1997 November, (c) 
2015 April, and (d) 2023 August. Red curves show the ensemble-mean XRO forecast; dark red envelope 
is the central 68% range of the ensemble members; lighter red is the central 95% range; black curves show 
the observations. The ensemble mean of the XRO stochastic forecasts is almost identical to the 
deterministic XRO forecast. The XRO stochastic forecasts provide an opportunity for probabilistic ENSO 
forecasts. The seasonality of the ENSO growth rate leads to a substantial spread in forecast outcomes from 
November to February. This inherent spread reflects a higher degree of uncertainty in predicting the peak 
amplitude of ENSO during this period. Conversely, from April to June, the forecast spread is narrower. 
However, this does not necessarily imply a better forecast skill, as the actual signal during this period is 
quite weak, resulting in a low signal-to-noise ratio. 
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Supplementary Fig. 17| Effects of the XRO operator’s annual and semiannual cycles on its ENSO 
forecast skill during 1979-2022. a-b, The all-months (a) correlation skill and (b) RMSE of the forecasted 
3-month running mean Niño3.4 SSTA index, as a function of forecast lead, for the XRO in which the 
annual mean, annual cycle, and semiannual components are all considered in the linear and nonlinear 
parameters (red), XROac=0 in which only the annual mean component is considered (blue), and XROac=1 
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in which both the annual mean and annual cycle components are considered (orange). c-d, the skill 
difference of the Niño3.4 index, as a function of start month (ordinate) and target month (abscissa), 
between XRO and the deseasonalized experiments: (c) XROac=0 and (d) XROac=1. Hatching indicates that 
the correlation difference is significant at 90% confidence level using the two-tailed Fisher z‐
transformation test. The dashed vertical blue lines denote the spring predictability barrier (SPB) season. 
a-d, the parameters for XROac=0 and XROac=1 are refitted separately; e-h, same as a-d, but for XROac=0 and 

XROac=1 in which the parameters are taken from the XRO control experiment. The seasonal cycle is 
critically important for suppressing the SPB for ENSO, while the semi-annual cycle is less important. 
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Supplementary Fig. 18| Effects of the XRO nonlinear operators on its ENSO forecast skill during 
1979-2022. a, The all-months (a) correlation skill of the forecasted 3-month running mean Niño3.4 SSTA 
index, as a function of forecast lead for the XRO control (red), XROlinear (blue), XROlinearENSO (purple 
square), and XROlinearIOD (green stars). b, the skill difference of the Niño3.4 index, as a function of start 
month (ordinate) and target month (abscissa), between XRO and XROlinearENSO. The dashed vertical blue 
lines denote the spring predictability barrier season. c-d, monthly Niño3.4 SSTA forecasts initialized in 
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(a) 1997 April and (b) 2015 April for the XRO control (red), XROlinear (blue), XROlinearENSO (purple 
square), and XROlinearIOD (green stars); black curves show the observations. a-d, the parameters for 
XROlinear, XROlinearENSO, and XROlinearIOD are refitted separately; e-h, same as a-d, but for XROlinear, 
XROlinearENSO, and XROlinearIOD in which the parameters are taken from the XRO control experiment. The 
ENSO nonlinear dynamics are critically important for ENSO forecast skill, especially for forecasting the 
amplitude of the peak phase and fast transition from El Niño to La Niña. The impact of the IOD’s 
nonlinearity on ENSO forecast skill is neglectable. 
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