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ABSTRACT: This study shows that the frequency of North American summertime (June–August) heat extremes is skill-
fully predicted several months in advance in the newly developed Geophysical Fluid Dynamics Laboratory (GFDL) Seam-
less System for Prediction and Earth System Research (SPEAR) seasonal forecast system. Using a statistical optimization
method, the average predictability time, we identify three large-scale components of the frequency of North American
summer heat extremes that are predictable with significant correlation skill. One component, which is related to a secular
warming trend, shows a continent-wide increase in the frequency of summer heat extremes and is highly predictable at
least 9 months in advance. This trend component is likely a response to external radiative forcing. The second component
is largely driven by the sea surface temperatures in the North Pacific and North Atlantic and is significantly correlated with
the central U.S. soil moisture. The second component shows largest loadings over the central United States and is signifi-
cantly predictable 9 months in advance. The third component, which is related to the central Pacific El Niño, displays a
dipole structure over North America and is predictable up to 4 months in advance. Potential implications for advancing
seasonal predictions of North American summertime heat extremes are discussed.
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1. Introduction

Observational evidence has revealed an overall increase in
the number of hot days at the global scale since the middle of
the twentieth century (Seneviratne et al. 2012). The Intergov-
ernmental Panel on Climate Change (IPCC) reported that it
is very likely that the length, frequency, and/or intensity of
heat extremes will increase over most land areas through the
twenty-first century (Seneviratne et al. 2012). Heat extremes,
such as heatwaves, have profound societal, economic, and
ecological impacts. They can burden health and emergency
services, increase stress on water resources and transporta-
tion, and disrupt energy systems, resulting in power shortages.
According to the World Health Organization, from 1998 to
2017, more than 166 000 people died due to heatwaves, includ-
ing more than 70 000 who died during the 2003 heatwave in
Europe. The 2003 European heatwave also caused forest fires
(Fischer et al. 2007) and decreased agricultural production. It
has been estimated that more than 800 deaths can be attrib-
uted to the 1995 mid-July heatwave over the central United
States (Changnon et al. 1996). Predicting heat extremes on
seasonal time scales is crucial in developing early warning sys-
tems to improve societal preparedness.

Most of the earlier studies on the predictability and predic-
tion of heat extremes are on medium-range to subseasonal
time scales (Vitart and Robertson 2018; Mandal et al. 2019;
Hudson et al. 2011; White et al. 2014; Vitart 2005; Teng et al.

2013; McKinnon et al. 2016). Little progress has been made
thus far on forecasting heat extremes on seasonal and longer
time scales, because it has been historically challenging to pre-
dict extremes on such long time scales. We emphasize that
prediction of extreme events on seasonal and longer time
scales is important for planners and decision makers in
management and response. Although predicting individual
extreme events on seasonal time scales is extremely challeng-
ing, predicting the statistics of the extreme events on seasonal
time scales may be possible. So far, there have been few
attempts to assess the skill of extremes on or beyond seasonal
scales (Hanlon et al. 2013; Hamilton et al. 2012; Pepler et al.
2015). For example, a study by Hamilton et al. (2012) showed
skill in predicting the number of daily temperature extremes
in the Northern Hemisphere land area over 3-month periods
at 1-month lead time, and attributed the skill to the model’s
ability to predict El Niño–Southern Oscillation (ENSO) and
climate change, as well as the initialization of soil moisture.
However, there is still a lack of studies quantifying how pre-
dictable the extremes are, and distinguishing the predictability
sources for different types of extremes. To fill this gap, this
study examines the seasonal prediction skill of the frequency
of North American (area north of 238N) summertime heat
extremes at various lead times from 0 to 9 months, and
explores the potential sources of the prediction skill. We
apply a statistical optimization technique to identify
predictable components of North American summertime
heat extremes, measured by the frequency of summertime
hot days (HDs), in the newly developed Geophysical FluidCorresponding author: Liwei Jia, liwei.jia@noaa.gov
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Dynamics Laboratory (GFDL) Seamless System for Predic-
tion and Earth System Research (SPEAR) seasonal forecast
system, and reveal that the year-to-year variations in the fre-
quency of HDs are skillfully predictable several months in
advance. The SPEAR seasonal forecast system will be described
briefly in section 2. The results are presented in section 3. This
paper concludes with a summary and discussion.

2. Model, data, and methodology

a. SPEAR retrospective forecasts

SPEAR is the newly developed next-generation GFDL
modeling system for seasonal to multidecadal prediction and
projection (Delworth et al. 2020). It is a coupled ocean–
atmosphere–land–sea ice model. The atmosphere and land
components are the GFDL AM4-LM4 model (Zhao et al.
2018); the ocean and sea ice components are the MOM6 and
SIS2 (Adcroft et al. 2019). This study utilizes the medium-
resolution SPEAR version with an atmospheric and land
resolution of 50 km and 33 atmospheric vertical levels. For
computational speed SPEAR uses a coarse ocean resolution
of approximately 1.08 with tropical refinement to 0.38. Com-
prehensive details are described in Delworth et al. (2020) and
Lu et al. (2020).

To evaluate prediction skill in the SPEAR prediction sys-
tem, an extensive set of reforecasts (also called hindcasts)
were conducted. For each month, from January 1992 through
December 2019, a 15-member ensemble of reforecasts was
conducted. Each reforecast was of 12-month duration and
was initialized using reanalysis from the first day of each
month. The oceanic initial conditions of the reforecasts are
from a 30-member ocean analysis, produced by an ocean data
assimilation (ODA) run in the coupled SPEARmodel. Ocean
tendency adjustment (OTA) is also used in both the analysis
and forecast to reduce model biases (Lu et al. 2020). The
atmospheric, land, and sea ice initial conditions for the refore-
casts were obtained from a 5-member ensemble of SPEAR
restoring simulations in which atmospheric temperature,
winds, and moisture were damped back toward values from
the Climate Forecast System Reanalysis (CFSR; Saha et al.
2010), and the sea surface temperature was restored to the
Optimum Interpolation Sea Surface Temperature (OISST;
Reynolds et al. 2002). The 15-member ensemble of refore-
casts is generated by applying the 5 restoring members to the
first 5 ODAmembers, the same 5 restoring members to ODA
members 6 through 10, and the same 5 restoring members to
ODA members 11 through 15. SPEAR has shown significant
skill in the prediction of the Niño-3.4 index, temperature over
land, midlatitude baroclinic waves, Antarctic sea ice, and
atmospheric rivers over western North America (Lu et al.
2020; Zhang et al. 2021; Bushuk et al. 2021; Tseng et al. 2021).

We used 15 members of SPEAR historical simulations to
estimate the externally forced pattern of North American
summer heat extremes. The 15 members of simulations are
initialized from conditions in the SPEAR 1850 control simula-
tion that are 20 years apart at years 101, 121, and every
20 years thereafter until year 381. The radiative forcing agents

in the historical simulations are prescribed before year 2014,
whereas projections for the Shared Socioeconomic Pathway
5–8.5 (Riahi et al. 2017) are applied after 2014.

b. Verification data

The European Centre for Medium-Range Weather Fore-
casts (ECMWF) ERA5 data (Hersbach et al. 2020), including
hourly maximum 2-m temperature, monthly soil moisture
(from surface to 289-cm depth), geopotential height at 500 hPa,
and SST, are used as the verification data. The daily maximum
temperature is calculated based on the hourly maximum tem-
perature. The ERA5 data are on a 0.258 horizontal resolution.
These reanalysis data are referred to as observations hereafter.
We use the observed Pacific decadal oscillation (PDO) index
(Mantua et al. 1997) and Atlantic multidecadal oscillation
(AMO) index (Enfield et al. 2001) to identify their relation-
ship with predictable components of North American summer
heat extremes. The observed PDO index derived from the
ERA5 SST is calculated as the leading principal component
from an empirical orthogonal function (EOF) analysis of
monthly North Pacific SST anomalies north of 208N (Mantua
and Hare 2002). The AMO index was downloaded from
https://psl.noaa.gov/data/correlation/amon.us.data. It is defined
as the area weighted average SST over the North Atlantic
(08–708N). The observed Niño-4 index (averaged SST anoma-
lies over the central equatorial Pacific: 58S–58N, 1608E–1508W)
was downloaded from https://psl.noaa.gov/gcos_wgsp/Timeseries/
Data/nino4.long.anom.data.

c. Average predictability time analysis

To identify predictable components of the frequency of
North American summer HDs, we employ the average pre-
dictability time (APT) analysis}a statistical optimization
method that determines components that maximize predict-
ability. This method was developed by DelSole and Tippett
(2009a,b), and has been widely used in predictability studies
(Jia et al. 2015; Jia and DelSole 2011, 2012; Yang et al. 2015;
Wu et al. 2016; Xiang et al. 2019). Here, we summarize the
APT analysis as follows. In the context of initialized ensemble
forecasts, the predictability is measured by

P t( ) 5 1 2
s 2
t

s 2
‘

, (1)

where s2
t is the forecast variance at lead time t and s2

‘ is the
climatological variance. It can be shown that P(t) is related to
the signal-to-noise ratio (Jia 2011), which is often used to
measure predictability. APT is then defined as twice the sum
of P(t) over all lead times:

APT 5 2
∑‘
t50

1 2
s 2
t

s 2
‘

( )
Dt: (2)

It yields a time scale that agrees with the usual e-folding time
for an exponentially decaying forecast signal. Note that the
APT is computed from model forecasts that are independent
of the observations. In this study, for the target season of
June–August (JJA), the sum is from lead 0 to 9 months. The
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lead 0-month forecasts correspond to forecasts initialized on 1
June, lead 1-month forecasts correspond to forecasts initial-
ized on 1 May, and so on.

To maximize APT, we seek the projection vector q, such
that the time series qTx(t, e) maximizes APT, where x(t, e) is
the state vector specifying the amplitudes of ensemble fore-
casts at fixed lead time t and ensemble member e. The super-
script T denotes the transpose operation. The component
qTx(t, e) has respective forecast and climatological variances
as follows:

s 2
t 5 qTRtq and s 2

‘ 5 qTR‘q, (3)

where Rt is the estimated forecast covariance matrix at t.
Substituting (3) into (2) gives

APT 5 2
∑‘
t50

qT R‘ 2 Rt( )q
qTR‘q

( )
Dt: (4)

DelSole and Tippett (2009b) showed that maximizing APT
leads to a generalized eigenvalue problem:

2
∑‘
t50

R‘ 2 Rt( )Dtq 5 kR‘q: (5)

The eigenvalue k gives the APT value, and each eigenvector q
corresponds to a component. Equation (5) above has more
than a single solution; thus, it yields multiple components.
The time series of each component is uncorrelated with one
another. We order the eigenvalues and their associated eigen-
vectors by decreasing order such that the first component
maximizes APT, the second maximizes APT subject to being
uncorrelated with the first, and so on. That is, the first compo-
nent is most predictable (such as a trend or low-frequency
variability), the second component is the second most predict-
able component, and the last component is the least predict-
able component. The spatial pattern associated with each
component is obtained by projecting the component time
series qTx(t, e) on the original data, which gives

p 5 R‘q: (6)

When solving the above eigenvalue problem, we project
the forecast data onto 15 leading principal components (PCs)
and then maximize APT only in the subspace spanned by the
15 PCs. This is done because the number of grid points in the
forecast data exceeds the number of samples, which results in
singular covariance matrices and an eigenvalue problem that
cannot be solved. We have determined that the APT values
are not very sensitive to the number of PCs used when using
more than 15 PCs.

To test the significance of the predictability of each compo-
nent, we adopt the Monte Carlo methods under the null
hypothesis that forecasts are drawn independently from a
white noise process (DelSole et al. 2011). More specifically,
for M spatial dimensions, N time steps, E ensemble members,
and L lead times, an M 3 N 3 E 3 L data array was created
by drawing independent random numbers from a normal

distribution with zero mean and unit variance. APT analysis
was applied to this array to produce an ordered sequence of
APT values. The procedure was repeated 1000 times. The 5%
significance level for each APT associated with each compo-
nent was determined by selecting the 95th percentile of the
APT values derived from the random data. A component is
then considered to be potentially predictable if its APT value
is high enough to reject the null hypothesis at a 5% signifi-
cance level. The application of Monte Carlo methods in pre-
dictability study can be found in a number of studies (DelSole
et al. 2011; Jia and DelSole 2011; Yang et al. 2015; Jia et al.
2015).
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FIG. 1. The 90th-percentile daily Tmax (8C) threshold for defin-
ing summer hot days in (a) the observations (ERA5), (b) the
SPEAR model hindcast initialized on 1 Jun, and (c) the difference
between the model and the observations.
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3. Results

a. Definition of summertime heat index

Following Hamilton et al. (2012) and Pepler et al. (2015),
we define a “summer hot day” as the occurrence of the daily
maximum temperature (Tmax) anytime during JJA exceeding
the 90th-percentile threshold of the climatological daily
Tmax distribution from all days in JJA for all years during
1992–2019. In this study, we choose a moderate 90th-percentile
threshold to allow a sufficient sample for verification. Based on
the threshold, the percentage of days in JJA when daily Tmax
exceeds the threshold, denoted as TX90p, is calculated at each
grid point and for each year. This study assesses the predictive
skill of the TX90p. According to the definition, the TX90p
averaged over all years (1992–2019) is 10 at each grid point,
but varies with years. To give an idea of the magnitude of
TX90p, in the 2012 North American summer heatwave, TX90p
is over 40 (i.e., 40% of the days in JJA are hot days) in many
areas of the midwestern United States.

In the hindcasts, the threshold is calculated by considering
daily Tmax distribution from all days in JJA during 1992–2019
and from all ensemble members, and is computed for each

lead time. The TX90p is then computed for each ensemble
member and lead time independently. Since the thresholds in
the observations and hindcasts are calculated separately, there
is no need to remove model biases when calculating the
TX90p.

As used in previous studies (Pepler et al. 2015; Zhang et al.
2018, 2019; Hamilton et al. 2012), a static threshold is used in
this study. Using a static threshold might lead to the TX90p
varying throughout the season for places that show seasonal-
ity of Tmax. To know if a day is an extreme relative to the
same day in the historical period, a moving threshold that
changes day by day can be used to define a hot day if it
exceeds the 90th percentile of its own daily Tmax distribution.
Accounting for the seasonal cycle would allow each day in the
summer season to have an equal chance to be an extreme, but
it would introduce a possible disadvantage of including days
with less extreme heat during climatologically cooler times of
the season. Another disadvantage of the moving threshold is
that it is generally noisy because of limited sample size on
a specific day, such that a temporal/spatial smoothing is
required. The choice of static or moving threshold would
depend on the application. In many applications, a threshold
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FIG. 2. Pointwise rank correlation of TX90p (percentage of days when daily Tmax exceeds the 90th percentile)
over North America between the observations and the ensemble-mean hindcasts at (a) lead 0 (initialized on 1 Jun),
(b) lead 3 (initialized on 1 Mar), (c) lead 6 (initialized on 1 Dec of the previous year), and (d) lead 9 (initialized on
1 Sep of the previous year) months. Stippling indicates correlations are locally significant at 5% significance level
based on a one-tailed Student’s t test. The correlation patterns are field significant with a false discovery rate of 10%
for all leads (Benjamini and Hochberg 1995).
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that is constant throughout the season is of interest. As an
example, power lines have lower capacities under extreme
heat, so an absolute temperature threshold is most relevant.

The 90th-percentile thresholds of daily Tmax over North
America in the observations, SPEAR hindcasts, and their dif-
ference are shown in Fig. 1. Here, the modeled threshold is
calculated from SPEAR hindcasts initialized on 1 June (i.e.,
lead 0 months). There is little difference in the thresholds at
different lead times (not shown). In the observations, a Tmax
of approximately 358C and above can be considered a hot day
for most areas south of 408N. The Tmax threshold generally
decreases with latitude. The spatial structures of the threshold
in the model bear strong similarities with the observations
(Figs. 1a,b), indicating the model represents the observations
well. The model demonstrates warm biases over the central
United States and Canada and cold biases over high latitudes
in simulating the 90th percentile of Tmax. The summer warm
biases over the central United States are common in many cli-
mate models and the cause of the biases are not fully under-
stood (Lin et al. 2017; Cheruy et al. 2014). Since the
thresholds in the observations and model are calculated sepa-
rately, these model biases do not affect the TX90p.

b. Pointwise correlation skill of North American TX90p
and its relationship with the skill of JJA mean air
temperature

The pointwise correlation skill of the JJA TX90p over
North America at lead 0, 3, 6, and 9 months is shown in Fig. 2.
We choose Spearman’s rank correlation to measure the skill
of TX90p because it is more appropriate for count data. The
TX90p shows significant correlation skill over most areas of
the United States at lead 0 months (i.e., initialized on 1 June).
The correlation skill decreases at longer leads. Some areas
over the United States show significant skill even at the
9-month lead (initialized on 1 September of the previous
year). These results suggest that TX90p values in many areas
of North America, particularly over the United States, are
skillfully predictable in the SPEAR forecast system.

It is natural to ask the question if the skill in predicting
the TX90p is related to the skill in predicting the summer
mean air temperature. We show in Fig. 3 the pointwise cor-
relation skill of JJA mean 2-m air temperature over North
America. Overall, it shows higher skill in JJA mean temper-
ature at all leads than that of TX90p (Fig. 2). Their skill
structures are similar over the western and central United
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FIG. 3. Pointwise anomaly correlation of JJA mean 2-m air temperature over North America between the observa-
tions and the ensemble-mean hindcasts at (a) lead 0 (initialized on 1 Jun), (b) lead 3 (initialized on 1 Mar), (c) lead 6
(initialized on 1 Dec of the previous year), and (d) lead 9 (initialized on 1 Sep of the previous year) months. Stippling
indicates correlations are locally significant at 5% significance level based on a one-tailed Student’s t test. The correla-
tion patterns are field significant with a false discovery rate of 5% for all leads (Benjamini and Hochberg 1995).
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States. In fact, the TX90p in both the observations and
model hindcasts is significantly correlated with the mean tem-
perature nearly everywhere over North America (Fig. 4),
which agrees with the findings in earlier studies (Johnson et al.
2018; Hamilton et al. 2012). The strong relationship between
TX90p and mean temperature suggests that skillful prediction

of mean temperature contributes to the skill in predicting the
TX90p.

c. Predictable components of North American TX90p

With the point-to-point skill of TX90p demonstrated above,
we now identify the dominant modes of North American
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FIG. 5. The (a),(d),(g) spatial patterns (in percentage of days in JJA season), (b),(e),(h) time series, and (c),(f),(i) rank correlation skill
of three predictable components of TX90p over North American land areas. The hindcasted time series shown in (b), (e), and (h) are the
ensemble mean of lead 0-month forecasts. The horizontal lines in (c), (f) and (i) indicate the 5% significance level based on a one-tailed
Student’s t test.

FIG. 4. Pointwise anomaly correlation between the TX90p and JJA mean 2-m air temperature over North America
in (a) the observations and (b) model hindcasts (initialized on 1 Jun). Insignificant areas at 5% level based on the
Student’s t test are in white.

J OURNAL OF CL IMATE VOLUME 354336

Brought to you by NOAA-GFDL Library | Unauthenticated | Downloaded 06/10/22 07:06 PM UTC



summertime TX90p, which helps identify the sources of the
prediction skill. We apply the APT analysis to decompose
the model hindcasted TX90p into components based on their
predictability. Figure 5 shows the spatial structures of three
components, their time series, and correlation skill. These
three components are statistically significant at 5% level
according to the Monte Carlo test. They explain 14%, 5%,
and 6% of the total variance, respectively. The associated
time series in the observations for each component is com-
puted by projecting the ERA5 onto the component. The pre-
diction skill of the components at each lead time is measured
by the Spearman’s rank correlation between the observational
and the ensemble-mean time series at each lead time in the
hindcasts. We find significant prediction skill in the three com-
ponents. The rest of the components do not show significant
skill on seasonal time scales. Thus, we only discuss these three
predictable components in this study.

The spatial pattern of the first predictable component shows
positive amplitudes over all of North America (Fig. 5a). The
associated time series of the first component shows a warming
trend in both the hindcasts and the observations, indicating its
relationship with the warming climate (Fig. 5b). This trend
component is highly predictable with significant correlation
skill at all leads from 0 to 9 months (Fig. 5c). Its high predictive
skill is not surprising because trends tend to be highly predict-
able. The spatial pattern of the second component shows the
largest positive magnitudes over the central United States.
(Fig. 5d). Its time series shows low-frequency variability
(Fig. 5e). Figure 5f reveals that this component is predictable
with significant skill 9 months in advance. The third compo-
nent displays a southeast–northwest dipole structure over
North America (Fig. 5g). Its time series varies primarily on
interannual time scales (Fig. 5h). The third component is skill-
fully predictable up to 4 months (Fig. 5i).

d. Predictability source of the North American
summertime heat extremes: Radiative forcing

As showed above, the first predictable component demon-
strates a warming signal. We further explore the predictability
source of the first component. Using the signal-to-noise maxi-
mizing EOF technique (Ting et al. 2009; Chang et al. 2000;
Venzke et al. 1999), we estimate the externally forced pattern
of JJA TX90p over North American land area in SPEAR his-
torical simulations. The signal-to-noise maximizing EOF
method extracts the forced pattern by maximizing the ratio of
signal variance to the noise variance in the ensemble model
simulations, where the signal variance is defined as the vari-
ance of ensemble mean and the noise variance is estimated as
the variance of the deviations of each ensemble member from
the ensemble mean. This method applies a spatial prewhiten-
ing transformation that removes spatial coherence in the
atmospheric noise contained in the ensemble mean. As a
result, the noise contamination in the ensemble mean is
reduced. This method isolates the forced pattern better than a
simple ensemble average.

It can be seen from Fig. 6 that the externally forced pattern
of TX90p shows similarities to the first predictable component

(Fig. 5a) with a pattern correlation of 0.59. The pattern corre-
lation is statistically significant at 5% level according to the
bootstrapping metric under the null hypothesis that the first
predictable component is uncorrelated with the externally
forced pattern. To test the null hypothesis, we randomly
resample the TX90p in time and across ensemble members in
the historical simulations and then apply the signal-to-noise
maximizing EOF to the resampled data. The resulting pattern
is then correlated with the pattern of the first predictable com-
ponent (Fig. 5a). This procedure is repeated 1000 times to
produce an ordered sequence of pattern correlations. The 5%
significance level is selected as the 95th percentile of the cor-
relations. In addition to the significant pattern correlation, the
time series of the forced pattern (bottom of Fig. 6) is also
highly correlated with the time series of the first predictable
component. These results suggest that this component is likely
the response to the changes in external radiative forcing.

e. Predictability source of the North American
summertime heat extremes: Sea surface temperature

To understand the source of the predictive skill of the sec-
ond and the third predictable components, we first correlate
the components with a potential large-scale driver}SST. We

FIG. 6. (top) Externally forced pattern of JJA TX90p anomalies
(in percentage of days in JJA season) estimated from the 15-member
historical simulations of SPEAR during 1992–2019 using the signal-
to-noise maximizing EOF analysis. (bottom) The time series of the
externally forced pattern (red) and the time series of the first predict-
able component in the observations and model hindcasts. The time
series of the first predictable component are identical to those in
Fig. 5b, which are included here for ease of comparison.
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focus on SST because on seasonal and longer time scales,
anomalous atmospheric conditions are often linked to SST
anomalies (McKinnon et al. 2016; Johnson et al. 2018;
Kamae et al. 2014; Trenberth and Fasullo 2012). For exam-
ple, studies have found ENSO is associated with climate
extremes (Goddard and Gershunov 2020; Jia et al. 2016;
Hamilton et al. 2012). Due to the long memory of the ocean,
skillful prediction of oceanic variables can provide skill in
predicting atmospheric extremes.

Figure 7 shows the correlation maps of the global SSTs in
the March–May (MAM) and JJA seasons with the time series
of the second predictable component of JJA TX90p. The
SSTs are linearly detrended to remove the influence of linear
trend. The MAM correlation map of SST is calculated by cor-
relating the time series of the second predictable component
of JJA TX90p with the SST in MAM at each grid point. Simi-
larly, the correlation map in the JJA season is calculated by
correlating the time series of the second predictable compo-
nent of JJA TX90p with the SST in JJA at each grid point.
Each time step in the time series of the predictable compo-
nent or the SST represents a season of a year, and the spacing
to the next time step is 1 year. As the temporal autocorrela-
tions of the time series of the second component and the
detrended SST are small, the time steps are thus assumed to
be independent. The degrees of freedom are N 2 2, where N
indicates the number of years.

The SSTs over the Pacific are reminiscent of a negative
phase of the PDO (Mantua et al. 1997; Mantua and Hare
2002) in both seasons in the observations as well as in model

hindcasts. The model also well represents the associated tele-
connection pattern in 500-hPa geopotential height (figure not
shown). The observed time series of the second predictable
component is correlated with the observed PDO index in
MAM (R 5 20.42) and JJA (R 5 20.38) seasons, which
means the PDO explains about 15% of the variance of the
second component. The PDO has been described by some as
a long-lived El Niño–like pattern of Pacific climate variability,
varying on decadal time scales (Zhang et al. 1997; Mantua
and Hare 2002) and interactions between the tropical Pacific
and extratropical Pacific (Newman et al. 2016). The PDO may
also be related to dynamical air–sea interactions in the extra-
tropics (Zhang and Delworth 2015). It has widespread
impacts on global climate. Unlike ENSO, which has primary
impacts in the tropics and secondary impacts in the extra-
tropics, the climatic fingerprints of the PDO are most visible
in the extratropics, especially the North Pacific–North Ameri-
can sector, but secondary signatures exist in the tropics (Man-
tua and Hare 2002). Studies have shown that the PDO affects
Pacific marine ecosystems (Mantua and Hare 2002), western
U.S. extreme precipitation (DeFlorio et al. 2013), and
droughts in the U.S. Great Plains (Hu and Huang 2009).

To further demonstrate the connection between the PDO
and North American heat extremes, we display the observed
correlations between the JJA PDO index and North Ameri-
can TX90p in Fig. 8a. The PDO is significantly correlated with
the TX90p over the central United States, where the second
component shows largest loadings (cf. Figs. 8a and 5d). As
can be seen from the observed regression map of 500-hPa

a) MAM, Obs

b) JJA, Obs

c) MAM, Model

d) JJA, Model
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FIG. 7. The correlation coefficients between global SST anomalies in (top) MAM and (bottom) JJA seasons and
the time series of the second predictable component of JJA TX90p in the (a),(b) observations and (c),(d) model hind-
casts. The model-hindcasted correlation map for each season is initialized on the first day of the season. Stippling indi-
cates correlations are significant at 10% level based on the Student’s t test.
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geopotential height anomalies with the negative PDO index
in JJA season (Fig. 8b), the negative phase of the PDO is
associated with a wave train–like pattern over the North
Pacific and North America. Anomalous low pressures are
shown over the subpolar Pacific (around 608N), Alaska, and
the northeast of North America. Anomalous high pressures
are located over the North Pacific (around 408N) as well as
the central United States. The high pressure system over the
central United States provides clear and dry conditions that
increase the radiative heating of the surface and reduce pre-
cipitation, hence favoring the development of heat extremes.
Note that the PDO-related wave train–like pattern in summer
is weaker than that in winter (not shown), and does not
extend as far poleward as in winter.

In fact, the SPEAR model is able to skillfully predict the
PDO index months in advance. Figure 9 is the correlation skill
of the PDO index in SPEAR as a function of initial month
and target season. It shows the PDO index is predictable with
significant skill in the SPEAR seasonal forecast system for all
initial months and leads from 0 to 9 months, except for the
lead 8- and 9-month forecasts initialized in July. The skillful
prediction of the PDO serves as the source of the prediction
skill of central U.S. summertime heat extremes.

In addition to the Pacific basin, the North Atlantic also
demonstrates correlations with the second component of
TX90p in both the observations and model hindcasts (Fig. 7).
The SST structures over the North Atlantic are reminiscent of
the AMO pattern. The observed AMO index is significantly
correlated with the time series of the second component with

a simultaneous correlation of 0.43, meaning the AMO-like
SSTs also contribute to the predictability of central U.S. sum-
mertime heat extremes. The impacts of AMO on North
American summer climate and extreme events have been
documented in numerous earlier studies (Johnson et al. 2018;
Curtis 2008; Zhang et al. 2018; Ruprich-Robert et al. 2018).

We now show in Fig. 10 the correlation maps of global
SSTs in MAM and JJA seasons with the time series of the
third predictable component of JJA TX90p. The SSTs in the
tropical Pacific show a central Pacific La Niña pattern in all
cases, except for the MAM season in the model. This suggests
that the third component of TX90p with a southeast–northwest
dipole structure is ENSO-related. The observed Niño-4 index is
significantly correlated with the observed time series of the third
component with R 5 20.62 in JJA and R 5 20.37 in MAM.
These results are consistent with earlier findings that ENSO can
influence the frequency of temperature extremes (Goddard and
Gershunov 2020; Pepler et al. 2015; Jia et al. 2016; Hamilton
et al. 2012).

f. Predictability source of the North American
summertime heat extremes: Soil moisture

As found in earlier studies, both the large-scale drivers
(such as SSTs) and local-to-regional feedback contribute to
the development of extremes (Sillmann et al. 2017). Another
possible predictability source of heat extremes arises from the
local land–atmosphere feedback. Many studies have revealed
that soil moisture is an important predictor of summer tem-
perature extremes (Zhang et al. 2018, 2019; Fischer et al.
2007). The low soil moisture levels in spring and early summer
lead to reduced evaporation, preventing cloud formation,
which allows more insolation to further warm and dry out the
land surface (Hanlon et al. 2013; Fischer et al. 2007; Seneviratne
et al. 2006). Here, we correlated the second and the third
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FIG. 9. Anomaly correlation skill of the PDO index in the
SPEAR seasonal forecast system as a function of initial month and
target season. Stippling indicates the correlations are statistically
significant at 5% level based on the Student’s t test.
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FIG. 8. (a) The observed correlation between the negative PDO
index in JJA and TX90p and (b) the observed regression map of
500-hPa geopotential height anomalies (in m) with the negative
PDO index in JJA. Stippling indicates correlations/regressions are
locally significant at 10% level. The correlation pattern in (a)
[regression pattern in (b)] is field significant with a false discovery
rate of 10% (20%); see Benjamini and Hochberg 1995.
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predictable components of North American summer TX90p
with North American soil moisture.

Figure 11 shows the correlation maps of North American
soil moisture in MAM and JJA seasons with the time series
of the second (C2) and the third (C3) predictable compo-
nents of TX90p. The correlation patterns in the hindcasts
bear strong similarities with those in the observations,
meaning the relationship between North American summer
heat extremes and the soil moisture is well captured in the
model. For the correlations between the soil moisture and
the second component (Figs. 11a–d), the largest negative
correlations are shown over the central United States in
both seasons. The highest negative correlations over the
central United States correspond well to the largest loadings
over the central United States as seen in the spatial pattern
of the second component of TX90p (Fig. 5d), implying the
local atmosphere–land feedback may also serve as a predict-
ability source of the central U.S. summer heat extremes. In
other words, there is a high frequency of central U.S. heat
extremes when the local land conditions are dry. The dry
land conditions in spring and summer seasons favor the
occurrence of summer heat extremes.

The local soil moisture is also related to the third predict-
able component of TX90p. As shown from the correlation
maps of North American soil moisture with the time series of
the third predictable component of TX90p (Figs. 11e–h), both
the observations and model hindcasts reveal negative correla-
tions in the southeast and positive correlations in the U.S.
Northwest, corresponding well with the spatial structure of
the third component of TX90p (Fig. 5g). The land conditions
persisting from the spring season contribute to the prediction
skill of summer heat extremes.

g. Reconstructing TX90p predictions based on three
predictable components

Having identified three predictable components of North
American summertime TX90p and demonstrated prediction
skill of these components, it is compelling to reconstruct pre-
dictions based upon the three skillful components. The
hypothesis is that the reconstructed predictions have higher
skill than the raw predictions directly from the model because
the unskillful components are filtered out. Similarly, Scaife
et al. (2014) has demonstrated the prediction skill of North
American and European winter surface climate using only
the forecast North Atlantic Oscillation (NAO) is higher than
the skill directly from model forecast.

Figure 12 shows the rank correlations averaged over lead
times from 0 to 9 months in model raw predictions, recon-
structed predictions, and their difference. The reconstructed
predictions show higher skill than the raw predictions over
Alaska and parts of the central and southeastern United
States (Fig. 12c), although both show positive correlations
over most of the western United States. To examine the skill
improvements from another perspective, we plot the percent-
age of North American land area with significant correlation
skill (at the 5% level) as a function of lead time in raw model
predictions and reconstructed predictions (Fig. 12d). The
reconstructed predictions using only the three predictable
components have higher skill than the raw predictions at all
leads except for the lead 0 months. The improvements in skill
are more prominent at long leads than short leads. This is
because at short leads, the skill primarily comes from model
initialization. With the increase in lead time, model initializa-
tion has less impact on the predictions and the unpredictable

a) MAM, Obs

b) JJA, Obs

c) MAM, Model

d) JJA, Model
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FIG. 10. As in Fig. 7, but for the third predictable component.
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FIG. 11. The correlation maps of North American soil moisture in MAM and JJA seasons with the time
series of the (a)–(d) second and (e)–(h) third predictable component of JJA TX90p in the (left) observa-
tions and (right) model hindcasts. The model-hindcasted soil moisture at each season is initialized on the
first day of the season. Stippling indicates correlations are locally significant at 10% level based on the Stu-
dent’s t test. The correlation patterns are field significant with a false discovery rate of 10% (20%) in JJA
(MAM) in both the observations and model hindcasts; see Benjamini and Hochberg (1995).
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noise increases, and so filtering unpredictable components
considerably improves skill. The above results suggest that
making predictions with the three components advances pre-
diction skill of North American summertime heat extremes.

4. Summary and discussion

We show in this study that the frequency of summertime
daily maximum 2-m air temperature exceeding the 90th per-
centile of the climatological distribution (TX90p) over North
America is skillfully predictable on seasonal time scales in the
newly developed GFDL SPEAR seasonal forecast system.
On grid point scale, the North American summer TX90p
shows significant correlation skill over many areas of the
United States at leads of 0–9 months. The TX90p demon-
strates a good relationship with summer mean 2-m air temper-
ature, meaning skillful prediction of mean temperature
contributes to the skill in predicting the TX90p. To capture
the large-scale structure of TX90p and explore the sources of
the predictability of North American summer heat extremes,
we further identify the large-scale predictable components of
North American TX90p using a statistical optimization
technique (APT) and explore their sources of the predictabil-
ity. Three components of North American summer TX90p
are found to be skillfully predictable on seasonal time scales.
The first one is a trend component, the second component is
a PDO-/AMO-like component, and another component is

related to the central Pacific El Niño. The first component
shows a continent-wide increase in the frequency of summer
heat extremes and is likely a response to external radiative
forcing. This trend component is skillfully predictable at least
9 months in advance. The second predictable component
shows a central U.S. pattern that is predictable with significant
correlation skill of 9 months. The central U.S. summer TX90p
is correlated with the PDO and AMO indices as well as the
central U.S. soil moisture. The third component with a south-
east–northwest dipole structure is associated with the central
Pacific El Niño. This ENSO-related component is skillfully
predicted up to 4 months. This study suggests that the radiative
forcing, PDO-/AMO-like SSTs, ENSO, and local atmosphere–
land feedback all contribute to the skillful seasonal prediction
of the frequency of North American summertime heat
extremes. Conducting predictions using the three skillful com-
ponents (i.e., filtering out unpredictable noise) advances sea-
sonal prediction skill of North American heat extremes.

This study uses a moderate threshold to define hot days,
allowing sufficient samples for verification. One can choose a
more extreme threshold, and the associated TX90p skill may
vary. Studies suggested slightly lower skill in predicting tem-
perature extremes when choosing more extreme thresholds
(Hamilton et al. 2012). The seasonal prediction skill of the
North American summer TX90p is diagnosed in the GFDL
SPEAR seasonal forecast model, which has demonstrated
skill in predicting many aspects of the climate system. The

FIG. 12. The rank correlation skill of TX90p from (a) raw predictions directly from SPEAR and (b) reconstructed
predictions from the three predictable components shown in Fig. 5, (c) the correlation skill from reconstructed predic-
tions minus the correlation skill from raw predictions, and (d) the percentage of North American land area with signif-
icant rank correlation skill at 5% significance level based on a one-tailed Student’s t test in model raw predictions
(blue) and reconstructed predictions (red) as a function of lead time. The correlations in (a)–(c) are averaged over
lead times from 0 to 9 months.
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actual prediction skill of TX90p might be different in other
forecast models. The SST patterns related to the second pre-
dictable component show features that are reminiscent of the
PDO/AMO patterns that vary primarily on decadal scale.
However, due to the limited data size (1992–2019) in this
study, caution should be given when interpreting the results
that are related to PDO/AMO. Further investigations on the
robustness of the results could be done with additional experi-
ments. This study focuses on the prediction of the North
American summertime heat extremes. The detailed mecha-
nisms linking SSTs and soil moisture to heat extremes need to
be further explored in future works.
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