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ABSTRACT: Climatemodels often show errors in simulating and predicting tropical cyclone (TC) activity, but the sources

of these errors are not well understood. This study proposes an evaluation framework and analyzes three sets of experiments

conducted using a seasonal prediction model developed at the Geophysical Fluid Dynamics Laboratory (GFDL). These

experiments apply the nudging technique to the model integration and/or initialization to estimate possible improvements

from nearly perfect model conditions. The results suggest that reducing sea surface temperature (SST) errors remains

important for better predicting TC activity at long forecast leads—even in a flux-adjustedmodel with reduced climatological

biases. Other error sources also contribute to biases in simulated TC activity, with notablemanifestations on regional scales.

A novel finding is that the coupling and initialization of the land and atmosphere components can affect seasonal TC

prediction skill. Simulated year-to-year variations in June land conditions over North America show a significant lead

correlation with the North Atlantic large-scale environment and TC activity. Improved land–atmosphere initialization

appears to improve the Atlantic TC predictions initialized in some summer months. For short-lead predictions initialized in

June, the potential skill improvements attributable to land–atmosphere initialization might be comparable to those

achievable with perfect SST predictions. Overall, this study delineates the SST and non-oceanic error sources in predicting

TC activity and highlights avenues for improving predictions. The nudging-based evaluation framework can be applied to

other models and help improve predictions of other weather extremes.

KEYWORDS: Atmosphere-land interaction; Atmosphere-ocean interaction; Tropical cyclones; Climate prediction;

Coupled models; Model evaluation/performance

1. Introduction

The recent development of high-resolution climate models

has led to remarkable success in simulating and predicting

tropical cyclone (TC) activity (e.g., Vitart and Stockdale 2001;

Vitart 2006; Vitart et al. 2007; Camargo and Barnston 2009;

Zhao et al. 2009; Vitart 2009; Chen and Lin 2013; Vecchi et al.

2014; Camp et al. 2015; Manganello et al. 2016, 2019; Murakami

et al. 2016, 2018). However, many current dynamic models still

have notable errors in simulating TC activity, such as biases in

the spatial distribution of simulated TCs (e.g., Vecchi et al. 2014;

Walsh et al. 2016; Camargo and Wing 2016) and occasional

failures of seasonal predictions (e.g., Bell et al. 2014; Vecchi and

Villarini 2014; Zhang et al. 2016).Notably, there is possibly a gap

between the potential skill and the actual skill of TC seasonal

predictions, especially in the coastal regions (Zhang et al. 2019).

A better understanding of model errors and their sources could

help to improve predictions of TC activity and facilitate appli-

cations in the economic and policy sectors.

Model errors in simulating TC activity stem from complex

origins. Early global climate simulations of TC activity con-

tained notable errors, such as a lack of TC-strength storms, and

these errors were mainly attributed to the low horizontal reso-

lution (Walsh et al. 2016; Camargo and Wing 2016). As resolu-

tion increased, atmospheric models forced by observed sea

surface temperature (SST) became skillful in simulating TC

activity (e.g., Zhao et al. 2009;Manganello et al. 2012;Murakami

et al. 2012). However, prescribing the SST forcing disrupts the

atmosphere–ocean coupling, altering the large-scale convection

patterns and the energy budget (Wittenberg andAnderson 1998;

Emanuel 2010; He et al. 2018). Coupled climate models avoid

these problems but tend to show climatological biases and/or

poor simulations of regional TC activity (e.g., Camp et al. 2015;

Manganello et al. 2016; Li and Sriver 2018), which are associated

with systematic biases in simulating the upper ocean and large-

scale atmospheric environment (e.g., Camargo 2013; Kim et al.

2014; Vecchi et al. 2014; Hsu et al. 2019). Analyses of high-

resolution simulations also pointed to the role of parameterized

atmospheric physics in simulations of TC frequency (Zhao et al.

2012) and TC intensity (Murakami et al. 2012; Kim et al. 2018;

Wing et al. 2019). Yet the relative roles of atmosphere/ocean

resolution, convective and cloud parameterizations, and emer-

gent climatological biases in simulations of TC activity remain

poorly understood.

Recent studies also point to the importance of land–

atmosphere process and initialization for TC predictions.

Idealized modeling studies have identified land conditions as a

contributor to summertime variability of the extratropical at-

mosphere on both regional and global scales (Koster et al. 2016;
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Xue et al. 2018; Teng et al. 2019). Land–atmosphere initial con-

ditions affect predictions of the large-scale environment via land–

atmosphere coupling and the seasonal-scale memory induced by

land conditions such as albedo, snow cover, soil water, and soil

temperature (e.g., Delworth andManabe 1988, 1989; Koster et al.

2004; Santanello et al. 2018). That land–atmosphere initial con-

ditions matter for seasonal predictions of the summertime extra-

tropics is also supported by prediction experiments conducted at

the National Centers for Environmental Prediction (NCEP)

(Dirmeyer et al. 2018), the Geophysical Fluid Dynamics Lab-

oratory (GFDL) (Jia et al. 2016), and several European modeling

centers (Ardilouze et al. 2019). Such findings have interesting im-

plications for predictingTCactivity, as a growing body of evidence

suggests that extratropical atmosphere variability modulates

Atlantic TC activity, including storm tracks and genesis fre-

quency (Kossin et al. 2010; Murakami et al. 2016; Zhang et al.

2016, 2017; Li et al. 2018; Zhang and Wang 2019). Murakami

et al. (2016) analyzed retrospective seasonal predictions by a

high-resolutionGFDLmodel (Vecchi et al. 2014) and found that

the coupled model lacked skill in predicting a key mode of the

extratropical atmosphere in the Atlantic basin, possibly due to

the use of a crude initialization procedure for the land and at-

mosphere components (Vecchi et al. 2014; Zhang et al. 2019).

To help understand error sources and explore avenues for

improving predictions of TC activity, this study examines retro-

spective seasonal predictions (‘‘hindcasts’’) from a state-of-the-art

operational model at GFDL and proposes an evaluation frame-

work for coupled climate models. We use a ‘‘nudging’’ technique

to relax model solutions toward specified observations of the cli-

mate system (e.g., the atmosphere or the ocean) while retaining

relatively realistic interactions among model components. This

technique helps to address the following research questions:

1) How do errors in individual model components affect

simulations and predictions of TC activity?

2) How do non-oceanic sources of predictability—such as

land–atmosphere initial conditions—affect simulations and

predictions of TC activity?

3) What error sources should the community prioritize to

improve the seasonal prediction of TC activity?

While the answers to these questions may be model depen-

dent, our approach should aid analyses of other climate models,

especially those used in operational predictions and climate

projections, and inspire improvements of models and under-

standing. The rest of the paper is organized as follows. Section 2

introduces the model experiments, the data, and the method-

ology used in this study. Section 3 investigates errors in the

atmosphere–ocean coupling and the parameterized physics, and

their links to errors in TC predictions. Section 4 explores the

potential impact of land–atmosphere coupling on predictions of

TC activity. Section 5 concludes with a summary and discussion.

2. Data and methodology

a. Seasonal prediction experiments

The Forecast-Oriented Low Ocean Resolution (FLOR)

model used in this study is a variant of the GFDL Climate

Model, version 2.5 (Delworth et al. 2012), with a lower-

resolution ocean component (Vecchi et al. 2014). The hori-

zontal grid spacings are 18 3 18 for the ocean–ice components

(telescoping to 0.338meridional spacing near the equator), and

about 0.58 3 0.58 for the atmosphere–land components. These

resolution choices help the model to simulate weather ex-

tremes (van der Wiel et al. 2016) while making real-time sea-

sonal predictions feasible as part of the North American

Multimodel Ensemble (Kirtman et al. 2014). The model con-

figuration (e.g., parameterized physics) has been documented

by Delworth et al. (2012) and Vecchi et al. (2014), and a de-

tailed description of the land model (LM3) component has

been provided by Milly et al. (2014). The model generates

realistic simulations of tropical climate (Wittenberg et al. 2018;

Ray et al. 2018a,b; Newman et al. 2018). It also skillfully pre-

dicts the El Niño–Southern Oscillation (ENSO), continental

precipitation and temperature (Jia et al. 2015, 2016), mountain

snowpack (Kapnick et al. 2018), the seasonal statistics of ex-

tratropical storms (Yang et al. 2015), and seasonal TC activity

(Vecchi et al. 2014; Murakami et al. 2016, 2018; Liu et al. 2018).

This study focuses on retrospective predictions conducted

with FLOR-FA, a version of FLOR that includes artificial air–

sea ‘‘flux adjustments’’ to help reduce model drift and emergent

biases (Stockdale 1997; Magnusson et al. 2013). The flux ad-

justments apply climatological corrections to the momentum,

turbulent heat fluxes, and freshwater fluxes received by the

ocean component, so that themodel’s climatological wind stress,

SST, and sea surface salinity better resembles the observed cli-

matology. It is true that flux adjustments can distort tropical

atmosphere–ocean interactions (e.g., Neelin and Dijkstra 1995)

and cannot substitute for a long-term commitment to improving

model physics (Shackley et al. 1999). However, flux adjustments

can be a powerful tool for exploring the sources of model biases,

and for understanding the impacts of model biases on simulated

climate variability and extremes (e.g., Spencer et al. 2007;

Manganello and Huang 2009; Ray et al. 2018b). Relative to

FLOR, FLOR-FA shows improved simulations and predictions

of TCactivity (Vecchi et al. 2014; Krishnamurthy et al. 2016) and

the ENSO’s teleconnections to North America (Krishnamurthy

et al. 2015). At the specified model resolution, FLOR-FA de-

livers the most skillful seasonal TC predictions at GFDL.

Three sets of FLOR simulations are used in this study

(Table 1). The first set (‘‘FA-Basic’’) consists of FLOR-FA

hindcast experiments following the flux-adjusted and retro-

spective seasonal predictions described by Vecchi et al. (2014).

A total of 12 different realizations of FLOR-FA are started

with 12 sets of initial conditions and integrated for 12 months

each. The ocean–ice initial conditions are provided by a cou-

pled data assimilation system with an ensemble Kalman filter

(Zhang et al. 2007). The land–atmosphere initial conditions are

acquired offline from a three-member ensemble of SST-forced

simulations, which include land–atmosphere coupling but are

not otherwise constrained by land–atmosphere observations.

For FA-Basic, the initial SST states generally differ much less

than 0.5K across the ensemble members, while the initial near-

surface air temperatures can differ by more than 5K over land

(supplementary information in Zhang et al. 2019). FA-Basic is

designed to test themodel response to accurate three-dimensional
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initialization of the ocean surface and subsurface, in the ab-

sence of atmospheric and land initialization.

The second set of FLOR-FAhindcast experiments (‘‘FA-AL’’)

is identical to FA-Basic, except for the land–atmosphere initial

conditions. As documented by Jia et al. (2016), the land and at-

mosphere initial conditions are acquired by conducting a multi-

decade FLOR simulation that 1) restores the model SST toward

the Hadley Centre Sea Ice and Sea Surface Temperature dataset

(HadISST v1; Rayner et al. 2003) and 2) nudges the surface

pressure and three-dimensional atmospheric variables (winds and

temperature) toward the 6-hourly Modern Era-Retrospective

Analysis for Research and Applications (MERRA) reanalysis

(Rienecker et al. 2011). The nudging of the SST and atmosphere

gradually adjusts the land conditions toward a relatively realistic

state (section 4c), which would otherwise be difficult to acquire

due to a lack of reliable long-term observational records of land

properties. The nudging simulation, which consists of a single

realization for 1979–2014, provides the land–atmosphere initial

conditions for each ensemble member of FA-AL; i.e., for each

prediction all the ensemble members of FA-AL share the same

land–atmosphere initial conditions. Comparing FA-AL to FA-

Basic highlights the potential role of accurate land–atmosphere

initialization in the seasonal predictions.

The third set of FLOR simulations (‘‘ReSST’’) removes the

flux adjustments but restores the SST toward interannually

varying monthly mean observations and restores the sea surface

salinity toward the monthly mean climatology from the World

Ocean Atlas 2005 (Antonov et al. 2006). The nudging e-folding

time is set to either 5 or 10 days for the top 10-m ocean layer, so

that the simulated SST closely follows observations. Compared

to an SST-forced atmosphere-only simulation, the coupled

nudging allows weather systems (e.g., TCs) to interact with the

ocean in a more realistic way. The choice of two nudging time

scales (5 or 10 days), combined with three different choices for

land–atmosphere initial conditions as in FA-Basic, generates a

six-member ensemble initialized on 1 January 1980 that is run

continuously afterward. As in FA-Basic, the land–atmosphere

initial conditions used by the ReSST simulations are uncon-

strained by observations. ReSST is designed to estimate the

upper limit of atmospheric and land prediction skill, given per-

fectly predicted SSTs. Comparing FA-Basic and ReSST with

observations can help to disentangle TC errors arising from the

ocean–ice evolution and other model processes (e.g., parame-

terized atmospheric physics).

The FA-Basic and FA-AL retrospective predictions each

consist of 12 ensemble members that are initialized at 0000UTC

on the first day of each calendar month and then run for

12 months. Unless otherwise specified, our analysis is based on

monthly mean fields from each of the simulations in Table 1 and

focuses on July–November, when the Northern Hemisphere

produces the majority of its TCs (Schreck et al. 2014). We ex-

amine the FA-Basic and FA-AL predictions that are initialized

from January–July of 1981–2014, respectively. The six ReSST

simulations are not initialized predictions, and so we simply

examine those simulations during July–November of 1981–2014.

b. Observational and model data

We acquire the observational data of TC activity (1981–

2014) from the International Best Track Archive for Climate

Stewardship (IBTrACS v03r09), which is organized based on

individual basins (Knapp et al. 2010; Schreck et al. 2014). The

simulated TCs are tracked using an algorithm that detects

warm-core storms that meet certain criteria of duration and

near-surface wind speed, as described by Murakami et al.

(2015) andHarris et al. (2016). In short, the algorithm identifies

closed contours of negative sea level pressure anomalies that

have a warm-core structure. To qualify as a TC, a storm can-

didate must maintain a warm core and sufficiently strong wind

(.16.5m s21) for at least 36 consecutive hours. To analyze the

spatial distributions of TCs in the predictions, during the July–

November TC season we calculate the number of days when

TCs are present within a 58 3 58 grid box in the Northern

Hemisphere. We also characterize basinwide TC activity using

the seasonal TC number and the accumulated cyclone energy

TABLE 1. List of FLOR experiments, each of which spans the 1981–2014 time period.

Expt Nature of simulation

Ocean–ice nudging

and initial conditions

Atmosphere–land initial

conditions

Ensemble

size

Analyzed

simulation years

Flux adjustment

(FA-Basic)

Retrospective seasonal

predictions,

initialized in each of

7 months (January,

. . . , July)

12 initializations from

ensemble data

assimilation, no

nudging

Three initializations from

offline SST-forced

simulations

12 12 3 7 3 34 5 2856

Land–atmosphere

initial conditions

(FA-AL)

Same as FA-Basic Same as FA-Basic One initialization from a

multiyear simulation

with atmosphere nudged

toward MERRA

12 12 3 7 3 34 5 2856

Restore

SST (ReSST)

Multiyear climate

simulation with SST

restoring, initialized

in January 1980

Two simulations with

continuous nudging

of SST toward

HadISST.v1, using

either a 5- or 10-day

restoring time scale

Three initializations in

January 1980 as in

FA-Basic

6 6 3 34 5 204
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(ACE), which is an approximation of the wind energy over the

lifetime of a TC (Bell et al. 2000). FLOR is skillful in predicting

the year-to-year variations of TC number and ACE, but this

model substantially underestimated the climatological values

of these twometrics (Vecchi et al. 2014; Zhang et al. 2019). For

applications, these negative biases are a posteriori and can be

‘‘corrected’’ using statistical methods; but here we focus on the

original model outputs to address the model deficiency directly

and keep the result interpretation straightforward. Interested

readers can find the TC number andACE from selected FLOR

simulations in appendix A (Figs. A1 and A2).

We use the first-generation MERRA reanalysis (Rienecker

et al. 2011) as the nudging target for atmospheric fields when

generating the initial conditions for the FA-AL predictions.

For all the FLOR experiments, the ocean–ice targets for

nudging and evaluation are from the HadISST v1 (Rayner

et al. 2003), and the National Oceanic and Atmospheric

Administration (NOAA) weekly optimum interpolation SST

analysis (OISST v2) (Hurrell et al. 2008). The FLOR simula-

tions and predictions are also evaluated against the MERRA-

Land reanalysis (Reichle et al. 2011) and atmospheric data

from the ERA-Interim reanalysis (Dee et al. 2011). All the

observational and reanalysis products, except for the land data

analyzed in section 4, are averaged on a 2.58 3 2.58 grid for

comparison with FLOR.

c. Resampling analysis of ensemble simulations

Following Zhang et al. (2019), we use a bootstrap resampling

technique to characterize the role of initial condition uncertainty

in the predictions. We denote 12-month prediction segments as

Si,j,k, where i is an ensemble index (1, . . . , 12), j is the initiali-

zationmonth (1, . . . , 7), and k is the initialization year (1981, . . . ,

2014). Since these 12-month segments with different initializa-

tion months and years are approximately independent predic-

tions, we can randomly select i for each year to assemble a 34-yr

model prediction. Repeating this selection N times produces an

N-member ensemble prediction, whichwe use to account for the

role of ensemble size in prediction skill (Manganello et al. 2016;

Mei et al. 2019). Although both the FA-Basic and the FA-AL

ensembles consist of 12members, we setN5 6 tomatch the size

of the ReSST ensemble. For FA-Basic and FA-AL, we repeat

the random selection 1000 times to generate 1000 six-member

34-yr bootstrap ensembles, each of which is analyzed separately.

This bootstrap resampling helps to illustrate the uncertainty

ranges related to the unforced variability in model predictions.

The bootstrap resampling also helps with the test of statis-

tical significance. For example, the difference between two

populations of climatology (or correlation coefficient) can be

estimated using the bootstrapping ensembles; if the distribu-

tion of this difference suggests that a null hypothesis (H0: the

difference is zero) can be rejected within the 2.5th–97.5th

percentile range, the difference is considered to be statistically

significant at the 95% confidence level. This significance test

differs from some variance-based parametric methods, which

are sensitive to assumptions of data statistical distributions and

tends to underestimate the statistical significance of sample

differences (DelSole and Tippett 2014). While alternative tests

are available (Hamill 1999; DelSole and Tippett 2014, 2016),

those tests generally emphasize square errors that can be

dominated by climatological biases, and thus work better with

predictions that have few biases or have been bias-corrected

(appendix B). Given our interest in year-to-year variations of

the original model predictions, we illustrate uncertainty ranges

and conduct significance tests by consistently using the boot-

strap resampling approach. The potential limitations of this

approach are further discussed in appendix B.

3. Impacts of oceanic and non-oceanic errors

a. Climatological biases in TC activity and large-scale

environment

Figure 1 shows the climatological TC days of the observation,

FA-Basic, and ReSST. Compared to the observations the July–

November TC activity predicted by FA-Basic is too high in the

northwest tropical Pacific, especially in the monsoon trough re-

gion near 208N. Meanwhile, weaker but notable negative biases

are present in the northeast tropical Pacific. Although some of

these biases may be associated with SST biases, similar TC biases

are also present in the northwest tropical Pacific in the ReSST

simulation (Fig. 1b), where the SST conditions are nudged toward

observations. In the northwest tropical Pacific, the positive TC

biases in ReSST are even larger than in FA-Basic (Fig. 1c), sug-

gesting that these biases stemmostly from atmospheric processes.

In the northeast tropical Pacific, ReSST’s warmer and more re-

alistic SST increases the TC activity relative to FA-Basic, elimi-

nating the negative biases near 208N but resulting in positive

biases at lower latitudes. Overall, the climatological biases in FA-

Basic involve compensating errors related to oceanic and non-

oceanic factors. The role of SSTbiases is not necessarily dominant

but certainly important.

Figure 2 shows time–longitude Hovmöller plots of the near-
equatorial SST. Partly owing to the flux adjustments (Vecchi

et al. 2014), FA-Basic produces a realistic annual cycle of

equatorial SST in all three ocean basins. However, cold biases

develop in the eastern Pacific shortly after the model is initial-

ized in July. By early September, the cold bias exceeds 1.2K and

becomes comparable to the year-to-year variations of local SST.

The relatively cold equatorial SST affects the atmospheric en-

vironment in nearby tropical regions, reducing TC activity on

the central-Pacific flank of the northwest tropical Pacific (ap-

proximately 58–208N, 1508E–1808) (e.g., Wang and Chan 2002;

Camargo et al. 2007) and northeast tropical Pacific (approxi-

mately 58–208N, 1108–1508W) (e.g., Camargo et al. 2007; Jien

et al. 2015). The differences between FA-Basic and ReSST

(Fig. 1c) are consistent with a suppression of TC activity by the

cold SST biases in FA-Basic. Compared to observations, FA-

Basic also shows a slight westward displacement of the inter-

annual variability of equatorial SST toward the central Pacific

(Figs. 2a,b), which then affects the Pacific and Atlantic TC ac-

tivity (Kim et al. 2009, 2011; Patricola et al. 2018).

Figure 3 shows the climatological biases of the simulated

large-scale environment relative to observations. Perhaps

surprisingly, notable SST biases are present in both FA-Basic

and ReSST. Relatively large SST biases occur where strong

atmosphere–ocean interactions take place, such as in the

equatorial Pacific in FA-Basic (Fig. 3a), and near the
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midlatitude western boundaries of the oceans in both sets of sim-

ulations (Figs. 3a,b). In contrast to the FA-Basic predictions, the

free-running FLOR-FA climate simulation does not show strong

climatological biases along the equator (Fig. 2 of Vecchi et al. 2014;

Fig. 1 of Ray et al. 2018b). Furthermore, the SST biases in ReSST

suggest that some error sources in this model are incompletely

compensated by ReSST’s 5–10 day relaxation of the SST toward

observations. FA-Basic and ReSST show similar precipitation

biases, some of which arise from SST biases. Compared to ReSST,

the tropical Pacific precipitation in FA-Basic shows a subtle west-

ward shift that leads to larger precipitation biases near 1358E. For
500-hPa geopotential height, ReSST reduces the weak negative

biases of FA-Basic in the tropics, but the biases associated with the

midlatitude circulation mostly remain the same. For vertical wind

shear, the impact of the SST biases is most notable in the low-

latitude parts of the eastern Pacific basin but is weak elsewhere.

An analysis of the predictions initialized in the earlier

months reveals climatological biases that are highly similar to

those in Figs. 1–3. For brevity, we omit those results except for

adding a remark on the North Atlantic. Compared to predic-

tions initialized in July (Fig. 3), the tropical North Atlantic in

predictions initialized in earlier months have slightly warmer SST

(;0.5K) and weaker vertical wind shear (;2ms21) (not shown).

These weak differences introduce a positive bias in TC days to the

western part (458–908W)of the tropical NorthAtlantic. Nonetheless,

themagnitudeof thispositivebias is comparable to theeasternPacific

TC bias in Fig. 1, underlining the sensitivity of TC climatology to

environmental biases. Overall, the results suggest that SST biases

contribute to the climatological biases of the tropical large-scale en-

vironment, implying that an improved simulation of SST could po-

tentially contribute to a more realistic simulation of TC climatology.

However, SST errors are not the primary cause of some of FA-

Basic’smost notable biases, such as its excessive precipitation andTC

activity in the northwest tropical Pacific. In other words, these biases

appear to stem from non-oceanic error sources, such as the param-

eterized atmospheric physics. Pinpointing the underlying physical

processes of these model errors will be pursued in future studies.

b. Skill gaps associated with SST errors

This section examines to what extent FA-Basic’s SST pre-

diction errors affect its skill in predicting seasonal TC activity.

Figures 4a–c show the seasonal prediction’s correlations with

FIG. 1. Climatology of observed and the simulated TC days during July–November. (a) FA-

Basic biases, (b) ReSST biases, and (c) their difference (FA-Basic minus ReSST, which indi-

cates the impact of SST biases in FA-Basic). The black contour is the observed TC days; the

contour interval is 0.5 days during a 5-month period. Color shading represents biases in (a) and

(b) or differences of simulations in (c). The FA-Basic prediction examined here is initialized in

July. In (a) and (c), hatching indicates that the differences are below the 95% confidence level

tested using a bootstrapping test (section 2c). Statistical significance was not tested for ReSST

because the inter-year dependence in eachReSST ensemblemakes it improper to resample the

climatology using the method described in section 2c. Gray shading indicates regions where TC

observations are unavailable.
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the observation (‘‘skill’’ hereafter) for twometrics of TC activity, the

basinwide TC number, and accumulated cyclone energy (ACE).

The skill tends to be lower than that in a similar analysis by Zhang

et al. (2019), as here the ensemble size has been reduced from12 to 6

(section 2c). The prediction skill varies among individual basins, TC

metrics, and prediction lead times. For FA-Basic, predictions are

generally more skillful for ACE than TC number, especially in the

Pacific. The high skill of FA-Basic’s short-lead ACE predictions is

consistent with the potential skill indicated by ReSST, which is

represented by long dashed lines in Figs. 4a–c and shows strong

correlations with observations in all the three basins (r2 ’ 0.5). It is

unclearwhether in thePacific theTCnumber is inherently harder to

predict thanACE, as themodel has pronounced biases in thePacific

that likely affect TC genesis (section 3a). Figures 4a–c also suggests

that biases in the SST predictions limit the skill of predicted TC

activity, since the FA-Basic predictions are less skillful than the

ReSST simulations. However, as the prediction lead time shortens,

the skill difference between FA-Basic and ReSST narrows or van-

ishes (e.g., North Atlantic predictions initialized in July), suggesting

that an improved SST prediction might increase TC prediction skill

more at long leads than short leads. But due to chaotic dispersion,

the SSTs are inherently more difficult to predict at long leads, po-

tentially limiting the attainable prediction skill for TC activity.

Figures 4d–f show the root-mean-square error (RMSE) of

FA-Basic. Compared to the correlations in Figs. 4a–c, the

RMSE is not strongly dependent on the initialization month,

especially in the Pacific basin. A notable exception is the North

Atlantic, the RMSE of which increases as the lead time of pre-

dictions decreases. As shown by previous analyses of FA-Basic

(Zhang et al. 2019), the short-lead predictions of the North

Atlantic TC metrics have larger negative biases. The climato-

logical biases can dominate the RMSE if these biases exceed the

magnitude of year-to-year variations. We found this is indeed

the case for the short-lead predictions of the North Atlantic.

Such large negative biases also exist in the Pacific basins, con-

sistent with the fact that the atmospheric resolution and pa-

rameterized physics of FLOR-FA are inadequate to simulate

intense TCs. While this bias–RMSE issue is less severe for the

long-lead predictions of the North Atlantic TCs (Fig. 4d and

Zhang et al. 2019), a comparison between FA-Basic and ReSST

reveals a caveat for interpreting these low RMSE values. With

nearly perfect SST, ReSST produces much larger RMSE values

than FA-Basic. This counterintuitive result suggests that the

small RMSE in the long-lead predictions of the North Atlantic

TCs arises by chance from compensating model errors.

Figure 5 shows the skill of regional July–November TC

predictions initialized in January, April, and June. The predic-

tion skill for FA-Basic increases at the shorter lead times,

drawing closer to the potential skill of ReSST. This skill increase

tends to be greatest over the open ocean, consistent with pre-

vious findings that TC tracks over the open ocean are easier to

predict than those in the coastal regions (e.g., Zhang et al. 2019).

As SST errors have relatively strong impacts on the short-lead

North Atlantic predictions initialized in June (Figs. 4a and 5c),

we show the skill of the prediction initialized in thismonth rather

than July. Figure 5c suggests that SST errors in the June-

initialized prediction still undermines the prediction of TC ac-

tivity in certain regions (e.g., the subtropical east Atlantic and

east Pacific). But interestingly, the more realistic SST in the

ReSST significantly worsens the short-lead predictions of TC

activity near Taiwan, the western coast of Mexico, and the U.S.

East Coast (Fig. 5c). While some skill decrease might arise from

randomness (5% probability) and could change if the ensemble

size or the analysis period increases, we speculate that the skill

decrease in coastal regions may indicate a deficiency in the

model or TC tracking. Overall, these results suggest that the

relatively low skill of FA-Basic in predicting TC days in coastal

regions does not simply arise from SST errors. This suggests that

future improvements in FA-Basic’s seasonal predictions of

landfall activity will require not just an improvement in the

predicted SSTs, but also an improvement in the atmospheric

response to those SSTs.

We further examine the SST prediction errors and their

impacts on the prediction of TC-related environmental

FIG. 2. Hovmöller diagram of climatological SST (K) averaged

over 58S–58N. (a) Observations, (b) FA-Basic initialized in July,

and (c) their difference (FA-Basic minus observations). The ordi-

nate shows the verification month, with JUL (0) indicating July in

the year of initialization, and MAY indicating the May of the fol-

lowing year. SST means and standard deviations are represented

with shading and black contours, respectively. In (c), differences

are tested with bootstrapping (section 2c), and the parts below the

95% confidence level are marked with hatching (SST means) or

thin gray lines (SST standard deviations).
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variables (Fig. 6). While FA-Basic is generally skillful at pre-

dicting tropical SSTs, its predictions of the northwest Pacific

warm pool, the equatorial Atlantic, and the midlatitudes is

much less skillful (r, 0.6; Fig. 6a). Figure 6b suggests that if the

SST could be better predicted (ReSST), that could improve

FA-Basic’s prediction of tropical precipitation, even for the

short-lead predictions initialized in June. But for extratropical

precipitation, the impact of reducing SST errors is mixed and

often not robust. Nonetheless, reducing the SST errors may

benefit the predictions of the large-scale circulation, as sug-

gested by 500-hPa geopotential height (Fig. 6c) and vertical

wind shear (VWS; Fig. 6d). Most of the potential skill gains are

expected in the tropics and subtropics. For example, the po-

tential improvement in the VWS prediction is substantial in

the North Atlantic basin, especially in the main development

region of TCs, the Caribbean, and part of the subtropics.

Significant skill changes also appear in the extratropics (e.g.,

geopotential height near 458N, 508W), possibly associated with

tropical–extratropical teleconnections and the wave–mean

flow feedback in the midlatitudes. If paired with realistic pa-

rameterized atmospheric physics, the potential improvements

of the large-scale environment might benefit the prediction of

TC activity (e.g., lifetime and intensity). When FA-Basic is

initialized at longer leads (figures not shown), the prediction of

the tropical SST and related atmospheric environment is less

skillful (e.g., due to the well-known spring barrier for ENSO

predictions), underlining the importance of understanding and

reducing SST prediction errors (Fig. 4).

Overall, the results in this section suggest that better pre-

dictions of SST could aid seasonal predictions of TC activity,

especially at longer leads. However, better SST predictions

might not substantially improve short-lead predictions, partly

FIG. 3. Climatological (July–November) biases in (left) FA-Basic and (right) ReSST. (a),(b) SST (K); (c),(d)

precipitation (mmday21); (e),(f) 500-hPa geopotential height (m); and (g),(h) vertical wind shear (m s21) between

200 and 850 hPa. Black contours show observations (or reference), and color shading shows the simulation biases.

The FA-Basic hindcasts are initialized in July. The FA-Basic biases marked with hatching are below the 95%

confidence level based on a bootstrapping test (section 2c). This significance test was not conducted for ReSST

because the inter-year dependence in each ReSST ensemble makes it improper to resample the climatology using

the method described in section 2c.
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due to the remarkable SST prediction skill that has already

been achieved. Perhaps more importantly, improved SST

predictions do not seem to guarantee better predictions of TC

activity in coastal regions either. To further improve seasonal

TC predictions, it might be necessary to look beyond SST.

4. Impacts of land–atmosphere initial conditions

While the benefit of an accurate representation of atmo-

spheric initial conditions is easy to anticipate, the potential

impact of land initial conditions has not received much

attention in the context of TC prediction. Nonetheless, recent

idealized modeling studies suggest that the land state of the

United States affects precipitation and extratropical circula-

tion on both local scales (Koster et al. 2014, 2016) and global

scales (Teng et al. 2019). Meanwhile, an increasing number of

studies suggest that the extratropical circulation can affect

Atlantic TC behavior, including the TC tracks (Kossin et al.

2010; Murakami et al. 2016), motion speed (Zhang et al. 2019,

2020), and seasonal counts (Zhang et al. 2016, 2017). It appears

plausible that land–atmosphere coupling over the continental

United States may affect Atlantic TC activity and its seasonal

FIG. 4. Correlations of TC activity metrics (July–November) between observations and FA-Basic predictions ini-

tialized in January, February, . . . , and July, for the (a) NorthAtlantic, (b) northeast Pacific, and (c) northwest Pacific.

(d)–(f) As in (a)–(c), but for root-mean-square error (RMSE). The basin definitions follow the IBTrACS convention

(Fig. 1 in Schreck et al. 2014), and the northeast and northwest Pacific are separated at the date line. The boxplots

denote 2.5th, 25th, 50th, 75th, and 97.5th percentiles of the bootstrap ensembles. Colors indicate results for TCnumber

(TCN; red) or accumulated cyclone energy (ACE, blue). The RMSE of ACE is scaled with a factor of 1/10 for the

convenience of illustration. Black short-dashed lines in (a)–(c) indicate a reference correlation coefficient at the 95%

confidence level based on a two-tailed Student’s t test. Long-dashed horizontal lines (blue and red) show themetrics of

ReSST. The ReSST metrics do not vary with the initialization month because each ensemble member of ReSST is a

continuously integrated climate simulation rather than predictions initialized in each month (Table 1). This model

characteristic also prevents estimating the uncertainty range of the ReSST metrics using the bootstrap reampling

technique described in section 2c. The statistical significance of the differences between ReSST and FA-Basic can be

inferred by comparing the long-dashed horizontal lines and the whiskers of boxplots.

1750 JOURNAL OF CL IMATE VOLUME 34

Brought to you by NOAA-GFDL Library | Unauthenticated | Downloaded 02/11/21 03:36 AM UTC



prediction. We next explore this possibility by analyzing the

reanalysis data and FLOR hindcasts.

a. Potential associations between land conditions and

Atlantic TC activity

Tobetter leverage the previously discussed knowledge of land–

atmosphere coupling and TC activity, the ensuing discussion fo-

cuses on North America and the North Atlantic. The focus is also

motivated by the fact that the land–atmosphere coupling is par-

ticularly strong in North America during boreal summer (Koster

et al. 2004; Santanello et al. 2018). We first characterize year-to-

year variations of U.S. continental land conditions, using an em-

pirical orthogonal function (EOF) analysis. Figure 7 shows the

first two EOFs of land surface temperature (T-EOF) and root-

zone soil moisture (Q-EOF), for the MERRA-land reanalysis

data. For brevity, we only present the analysis for June, a month

that features strong land–atmosphere coupling and corresponds

to the earlyTC season for theNorthernHemisphere oceanbasins.

EOF1 shows a band-like pattern of temperature and moisture

anomalies that extend from thewestern to the eastern coast of the

United States, while EOF2 shows a dipole pattern associated

with a ‘‘cool and wet’’ versus ‘‘warm and dry’’ contrast between

the Pacific coast and the Gulf coast. However, the activity centers

of these EOF modes are not perfectly aligned. For example, the

activity center of T-EOF1 is in the western United States, but the

activity center of Q-EOF1 is east of the Rocky Mountains.

Nonetheless, the soilmoisture content east of theRockies ismuch

higher than that of the arid west (not shown), so the fractional

changes of soil moisture are substantial in the west. All the EOFs

have strong year-to-year variations (Figs. 7c,f). The pattern of

Q-EOF2 appears consistent with amode ofmoisture changes that

contributes to drought development in the Southern Great Plains

(Seager et al. 2019). Interestingly, Q-EOF2 shows a statistically

significant upward trend during 1981–2014, which might be as-

sociated with land use changes or interdecadal climate variability.

Table 2 shows correlations among these North American

land EOFs, an extratropical Atlantic variability index, and the

numberofNorthAtlanticTCs.The temperatureandmoistureEOFs

show a strong positive correlation with each other, suggesting a

coupling leading to either ‘‘warm and dry’’ or ‘‘cool and wet’’ con-

ditions. EOF2 is also anticorrelated with a July–September index of

extratropical variability, namely the number of anticyclonic Rossby

wave breaking (RWB) events over the northwestern Atlantic

(Zhang et al. 2016, 2017). RWB events tend to suppress Atlantic TC

activity (e.g., Zhang et al. 2016, 2017; Li et al. 2018), so the RWB

wave indexRWBw is significantly anticorrelated with TC number in

July–September (r5 20.51 during 1981–2014; also see Zhang et al.

2017). On synoptic time scales, RWB events are associated with

FIG. 5. Correlations between TC days (July–November) in the observation and FLOR

simulations. Contours indicate the local correlation between the July–November TC days

predicted by FA-Basic and those observed, for predictions initialized in (a) January, (b) April,

and (c) June. Shading indicates the potential improvement in correlation skill achievable with a

perfect SST prediction, estimated from the ReSST skill minus the FA-Basic skill. Hatching

indicates correlation skill differences that are below the 95% confidence level based on a

bootstrapping test (section 2c).
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equatorward propagation of extratropical Rossby waves, which

can be traced back to convection east of the Rocky Mountains

(;908W) (Zhang and Wang 2018). Such convection tends to be

less active when land conditions are warm and dry (Findell and

Eltahir 2003a,b; Findell et al. 2011; Koster et al. 2016; Santanello

et al. 2018), and its impacts on the downstream extratropical

circulation have been demonstrated in modeling studies

(Jia et al. 2016; Teng et al. 2019). Consistent with this land–

atmosphere coupling, T-EOF2 and Q-EOF2 are significantly

correlated with the TC number in July–September (r5 0.44 and

0.63, respectively), suggesting that a warm and dry June near the

Gulf coast tends to precede an active North Atlantic TC season.

The variability of the extratropical atmosphere may also be

subject to influences from land conditions of the western United

States (Koster et al. 2016; Teng et al. 2019), despite the local

land–atmosphere coupling being relatively weak (Findell and

Eltahir 2003b; Dirmeyer 2011).

We further examine the association between the land EOFs

and the large-scale circulation characterized by geopotential

height (Fig. 8). As the memory of land conditions is roughly

three months (section 4b), the analysis here focuses on June–

September and does not include later months. Given the strong

FIG. 6. Local correlations (black contours) of large-scale environment variables (averaged

July–November) between observations and the FA-Basic predictions initialized in June for

(a) SST, (b) precipitation, (c) 500-hPa geopotential height, and (d) vertical wind shear between

the 200- and 850-hPa levels. The solid and dashed lines show positive and negative values,

respectively; the correlation contour interval is 0.2, except near the zero line that is omitted.

Color shading indicates the potential improvement in correlation skill achievable with a perfect

SST prediction, estimated from the ReSST skill minus the FA-Basic skill. Hatching indicates

correlation skill differences that are below the 95% confidence level based on a bootstrapping

test (section 2c).
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correlations between the T-EOFs and Q-EOFs (Table 2), the

correlation map for T-EOF1 resembles that for Q-EOF1 at the

same geopotential height, and similarly for T-EOF2 and

Q-EOF2. For brevity, we present and discuss the correlations

between the T–EOFs and 850-hPa geopotential height, and the

correlations between the Q-EOFs and 200-hPa geopotential

height. The 850-hPa geopotential heights are significantly

correlated with T-EOF1 over the western United States and

adjacent regions, and with T-EOF2 across the western hemi-

sphere. This correlation pattern suggests a possible interbasin

connection linking the North Pacific to the North Atlantic,

thoughwithout a clear wave train pattern. Additionally, 200-hPa

FIG. 7. Leading EOFs of June land surface temperature (K) and June root-zone soil moisture content (m3m23;

water volume divided by soil volume) in the MERRA-Land reanalysis. The EOF patterns of temperature and

moisture are denoted as T-EOF and Q-EOF, respectively. (a) T-EOF1, (b) T-EOF2, (d) Q-EOF1, and (e) Q-EOF2.

The EOF patterns are normalized, and the year-to-year variance explained by each EOF is labeled in the top-right

corner of each panel. The associated amplitude time series are also shown for (c) temperature and (f)moisture, and the

means of each time series have been subtracted to better illustrate year-to-year variations. The trend in the Q-EOF2

time series is statistically significant at the 99% confidence level based on a bootstrapping test (section 2c).

TABLE 2. Correlations of land EOFs, extratropical variability, and TC activity. Correlation coefficients in bold exceed the 95% con-

fidence level based on a two-sided t-statistics test. RWBw is an index of Rossbywave breaking over the northwesternAtlantic (Zhang et al.

2017), and TCNum is the number of NorthAtlantic TCs. TheEOFs are derived using June data, whileRWBwand TCNumare calculated

using July–September data.

T-EOF1 (June) T-EOF2 (June) Q-EOF1 (June) Q-EOF2 (June)

T-EOF2 (June) 0.00

Q-EOF1 (June) 0.73 20.01

Q-EOF2 (June) 20.25 0.50 0.00

RWBw (JAS) 0.06 20.57 20.21 20.41

TC Num (JAS) 20.05 0.44 0.20 0.63
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geopotential heights are positively correlatedwithQ-EOF1over

the U.S. Pacific Northwest, consistent with simulated atmo-

spheric responses when dry anomalies are prescribed over the

central United States (Koster et al. 2016; Teng et al. 2019).

Q-EOF1 is also significantly correlated with 200-hPa geo-

potential height in some remote regions. The significant corre-

lations are much more extensive for Q-EOF2, where strong

midlatitude correlations appear over the western United States,

North Atlantic, eastern Europe, and central–northeastern Asia.

This pattern appears similar to the simulated summertime cir-

cumglobal patterns that can be excited by idealized drying of the

central and southern United States (Teng et al. 2019). The corre-

lations weaken when the EOF time series are detrended, but the

overall correlation patterns remain similar, especially for 850-hPa

geopotential height (figure not shown). Overall, the lead–lag

correlations suggest that land–atmosphere coupling may play some

active role in modulating the observed atmospheric variability.

b. Land initialization and land–atmosphere coupling

If land–atmosphere coupling modulates the large-scale en-

vironment, there are at least two necessary conditions to re-

alize any related benefits in dynamical seasonal predictions.

First, the model should be initialized with useful land infor-

mation and retain the information for some additional time.

Second, the model should characterize the land–atmosphere

coupling in a relatively realistic way. Here we will explore

whether these conditions are true in the FLOR hindcasts.

Before introducing the results, we emphasize that the variables

from the MERRA-Land reanalysis and the FLOR model are

not perfectly comparable, partly because of different settings

FIG. 8. Correlations between geopotential height (June–September) and the land EOFs of

Fig. 7. The panels show correlations (a) between T-EOF1 and 850-hPa geopotential height,

(b) between T-EOF2 and 850-hPa geopotential height, (c) between Q-EOF1 and 200-hPa

geopotential height, and (d) between Q-EOF2 and 200-hPa geopotential height. Hatching

indicates correlations below the 95% confidence level based on a two-tailed t-statistics test. The

black dashed line at 458N indicates the southern boundary in Fig. 5 of Teng et al. (2019).
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of their landmodels and data output routines. For example, the

root zone in MERRA-Land is a nominal 1-m layer that can be

shallower in some regions with bedrock; since this layer is

treated differently by the FLOR, its moisture content is ap-

proximated using the liquid soil moisture in the 0–1-m layer.

Nonetheless, we expect the following analysis to reveal quali-

tatively useful information about the FLOR hindcasts.

Figure 9 explores the consistency between MERRA-Land

and the initial conditions for the FLOR hindcasts. For FA-Basic,

the year-to-year variations of land initial conditions are not well

correlated withMERRA-Land. Since the FLOR initial conditions

are generated offline using SST-forced simulations, the poor cor-

relations with the MERRA-Land suggest that the SST does not

completely dictate the land state in the FLOR predictions, con-

sistent with earlier studies (e.g., Dirmeyer et al. 2003; Seager et al.

2019). Therefore, the land conditions can potentially serve as a

source of predictability that is relatively independent of the SST

forcing. In comparison with FA-Basic, the year-to-year variations

of FA-AL’s land initial conditions are much more closely corre-

lated with the MERRA-Land. For example, significant correla-

tions of soil moisture content appear in North America, Europe,

East Asia, and some regions in the Southern Hemisphere. Strong

correlations of land surface temperature also appear in most re-

gions of the Northern Hemisphere (r . 0.6). Additionally, the

mean states of the FA-AL initial conditions also appear realistic,

except that the western United States is substantially warmer than

in MERRA-Land (not shown). Figures 9e and 9f suggest that the

land initial conditions persist in the FA-AL predictions; the e-

folding memory of June-mean land conditions is generally around

threemonths in theNorthernHemisphere. Longermemory of soil

moisture is present in desert regions, possibly arising from persis-

tent dry conditions. The land memory in the FA-Basic hindcasts is

nearly identical, and the memory length also qualitatively consis-

tent with the MERRA-Land data (not shown). The 3-month time

scale suggests that land initial conditions in June may persist to

September, possibly contributing to predictions of early season

Atlantic TC activity.

A comparison of the land–atmosphere coupling in MERRA-

Land and FA-AL is available in Fig. 10. Here we assess the two-

legged coupling index proposed by Dirmeyer (2011), using the

monthly data in July andSeptember to represent the transition from

summer to autumn. The coupling index (CI) is a product of the

standard deviation (s) of a predictor variable (e.g., soil moistureQ)

times the linear regression slope of a predictand variable [e.g., sur-

face latent heat flux (LHF)] with respect to the predictor variable:

CI5s
Q

dLHF

dQ
: (1)

Due to limited data availability, the analysis here focuses on the

impact of soil moisture on surface latent heat flux (‘‘terrestrial

leg’’), and the impact of surface latent heat flux on local precipi-

tation (‘‘atmospheric leg’’).MERRA-Land suggests that the land–

atmosphere coupling in the Northern Hemisphere is generally

stronger in July than September. Some exceptions include the

Pakistan–India border, near-equatorial Africa, and the southern

part of NorthAmerica, where the coupling strength is comparable

in July and September. However, not all the strong coupling in-

dicated by MERRA-Land is similarly represented by FA-AL. A

notable example for the atmospheric leg is in Central Africa,

where the coupling is likely too weak in FA-AL. This issue might

FIG. 9. The initial state andmemory of land conditions in the FA-Basic and FA-AL hindcasts. (a) Correlation between the soil moisture

content of MERRA-Land and FA-Basic at around 0000 UTC 1 Jun. (b) As in (a), but for land surface temperature. (c),(d) As in (a) and

(b), but for FA-AL. (e),(f) Memory of land moisture and surface temperature, defined as the e-folding decay time (month) for the local

autocorrelation function calculated from the monthly mean prediction data. The hatching in (a)–(d) denotes correlations below the 95%

confidence level based on a two-tailed t-statistics test. All the calculations are conducted using data on the same 18 3 18 grid.
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negatively affect FA-AL’s ability to predictAtlantic TCactivity, as

the land conditions in this region are significantly correlated with

Atlantic TC activity (not shown). Additionally, fine-structure dif-

ferences betweenMERRA-Land and FA-AL are evident in some

regions, includingNorthAmerica (e.g., Figs. 10a,b,g,h). Finally, the

land–atmosphere coupling indices of FA-AL and FA-Basic share

nearly identical patterns (not shown), suggesting that the coupling

characterized by the two-legged analysis ismostly a function of the

model physics, not the land initialization.

Overall, the analyses in this section suggest that FA-AL has

relatively realistic land initial conditions and land–atmosphere

coupling over NorthAmerica. FA-AL also skillfully represents

the atmospheric initial conditions (Jia et al. 2016). With these

advantages over FA-Basic, we next examine whether FA-AL

shows improved skill in predicting Atlantic TC activity and the

large-scale environment.

c. Impacts of land–atmosphere initial conditions

As the TC climatology of FA-Basic and FA-AL are highly

similar (not shown), this section focuses on predictions of the

large-scale environment and TC activity. The land memory is

around three months in North America (Figs. 9e,f), so we

mainly discuss June–September predictions initialized in June,

when the land–atmosphere coupling and the land impact on

prediction are relatively strong (e.g., Dirmeyer 2011; Guo et al.

2011). We shall emphasize the predictions for North America

and Atlantic TC activity, along with a brief discussion of skill

changes in other regions.

Figure 11 shows the seasonal skill for predicted TC-related

environmental variables during June–September. Compared

to FA-Basic, the SST predictions by FA-ALworsen in the west

Pacific and tropical west Atlantic but improve in the subtrop-

ical northeast Atlantic. These skill changes are moderate but

FIG. 10. Land–atmosphere coupling in the June-initialized FA-AL predictions as characterized by two-leggedmetrics (Dirmeyer 2011).

(a),(b),(e),(f) The terrestrial leg (‘‘Terra’’) shows the product of the standard deviation of soil moisture content (kgm23) and the local

linear regression of the latent heat flux (Wm22) onto soil moisture content (kgm23). (c),(d),(g),(h) The atmospheric leg (‘‘Atmos’’) shows

the product of the standard deviation of surface latent heat flux (Wm22) and the local linear regression of precipitation (1023 kgm22) onto

surface latent heat flux (Wm22). The two columns show the results for (left) July and (right) September, respectively. Due to the limited

data availability for FA-AL, the calculation usesmonthlymean data fromMERRA-Land in (a), (c), (e), and (g) and FA-AL in (b), (d), (f),

and (h) (June-initialized).
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statistically significant. The changes in precipitation skill are

noisy but mostly improve in FA-AL in and around extra-

tropical land regions. For example, FA-AL shows improved

precipitation skill (Dr. 0.2) in some regions with strong land–

atmosphere coupling, such as the southeastern United States

near 308N, 908W. This increase of precipitation skill over land

and downstream regions is particularly extensive in the first

month after initialization (Fig. 1 in Jia et al. 2016). The skill for

500-hPa geopotential height improves near the southern and

eastern coasts of the United States and in the western Pacific,

though it decreases in parts of the midlatitudes. FA-AL also

shows improved skills for wind shear over the southwestern

United States and North Atlantic. Overall, the improved land–

atmosphere initial conditions in FA-AL (Fig. 9) help to

improve its predictions of the large-scale environment near the

U.S. coasts and the North Atlantic.

Wenext examinewhether FA-AL’s improved prediction of the

large-scale environment also improves its predictions of TC ac-

tivity (Fig. 12). To facilitate comparisonwith FA-Basic (Fig. 4), we

analyze the predictions for the period of July–November and

denote the median values of FA-Basic’s values. When initialized

in June, FA-AL shows better skill than FA-Basic in predicting

year-to-year variations of Atlantic TC number. The skill increase

is;0.10 and is comparable to perfecting the SST.Meanwhile, the

RMSE of TC number and ACE decreases below the values of

FA-Basic and ReSST. The prediction of TC tracks (and thus

landfalls) by the FA-AL also improves, though the improvements

are localized and small in all the basins (not shown). But when

FIG. 11. Correlations of large-scale environment variables (June–September) between obser-

vations and the FA-Basic or FA-AL predictions initialized in June. (a) SST, (b) precipitation,

(c) 500-hPa geopotential height, and (d) vertical wind shear between the 200- and 850-hPa

pressure levels. Black contours show the skill for FA-Basic. Color shading shows the skill dif-

ference, FA-AL minus FA-Basic. Hatching indicates that differences are below the 95% confi-

dence level based on a bootstrapping test (section 2c).
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initialized in January–March, FA-AL shows reduced skill in

predicting Atlantic TC number and ACE relative to FA-Basic.

The skill decrease in the January initialization is;0.20 and is not

well understood, but we speculate that land processes (e.g., snow

accumulation and melting) and simulation drifts play some role.

Overall, the improvements due to FA-AL’s atmosphere and land

initialization are most evident for TC activity in the North

Atlantic, possibly because the basin is free of large biases in ma-

rine precipitation (section 3a) and is downstream of regions with

strong land–atmosphere coupling (section 4b).

To illuminate theTCprediction skill changes in FA-AL, Fig. 13

shows 3-month predictions of 200- and 850-hPa geopotential

height initialized in June and July. In both cases, FA-AL shows

widespread significant improvements relative to FA-Basic. For

the lower troposphere (850hPa), skill improvements appear over

or downstream of North America and East Asia, with substantial

spatial variations. For June initializations, the correlation skill

nearly doubles near the southern and the eastern coasts of the

United States (Fig. 13b). In comparison, July initializations show

little change in skill (Fig. 13c) or even degraded skill near theU.S.

East Coast (Fig. 13d) despite extensive improvements elsewhere.

The fact that FA-AL’s Atlantic TC predictions improve for June

but not July initializations (Fig. 12d) is consistent with the changes

in geopotential height prediction skill (Fig. 13), since the large-

scale circulation near the U.S. East Coast is important for TC

activity (e.g., Kossin et al. 2010;Murakami et al. 2016; Zhang et al.

2016; Zhang andWang 2019). Interestingly, the skill in predicting

850-hPa geopotential height of the northeastern Pacific shows a

more apparent increase in the July-initialized prediction than in

the June-initialized prediction (Figs. 13b,d), consistent with an

improvement of TC number prediction in the July-initialized

prediction (Fig. 12b). While it is not fully clear why the prediction

skill responds to land–atmosphere initialization in such a complex

manner, the limited verification period (1981–2014) and hindcast

ensemble size (12) may contribute to sampling variability of the

diagnosed skill, especially at smaller spatial scales. Additional

FIG. 12. Correlations and root-mean-square error (RMSE) of FA-AL (July–November). The plot settings are

identical to Fig. 4, but with additional markers to facilitate comparisons with FA-Basic. Triangles indicate either an

increase (upward triangles) or decrease (downward triangles) in the metrics of FA-AL relative to FA-Basic. The

triangles are color filled if the metric differences are at the 90% confidence level based on a bootstrapping test

(section 2c). The dots beside boxplots show the median value of the correlation from FA-basic.
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uncertainty could arise from the model initialization of FA-AL,

which uses only a single realization of the land–atmosphere initial

conditions. Nonetheless, the results here suggest that the impact

on TC predictions of land–atmosphere initialization can be com-

parable to that of SST errors (e.g., for the predictions initialized in

June, Figs. 4 and 12).

5. Summary and discussion

This study analyzes three sets of FLOR experiments and

seeks to explore avenues for future improvements in simulat-

ing and predicting TC activity. The results highlight several

existing sources of error:

d SST biases and prediction errors influence the simulation

and prediction of TC activity, even in a flux-adjusted pre-

diction model. The impacts of these SST errors are reduced

at short leads or near coasts.
d Non-oceanic sources (e.g., parameterized atmospheric phys-

ics) strongly contribute to biases in FLOR’s simulated TC

activity. The impacts of these non-oceanic errors have notable

regional variations, and their dependence on SST-related er-

rors can be assessed through SST-restoring experiments.
d Realistic land–atmosphere initialization might affect and po-

tentially improve seasonal predictions of TC activity, depending

on the basin and initialization month. For some short-lead

predictions (e.g., June-initialized predictions for the North

Atlantic), land–atmosphere initialization might improve the

predicted TC numbers as much as perfecting the SST.

Some of these findings may be model dependent. For ex-

ample, in a different model with more severe SST biases, those

FIG. 13. Local correlations between the observations and the FA-Basic or FA-AL predictions,

for (a) 200-hPa geopotential height (June–August) for predictions initialized in June, (b) 850-hPa

geopotential height (June–August) for predictions initialized in June, (c) 200-hPa geopotential

height (July–September) for predictions initialized in July, and (d) 850-hPa geopotential height

(July–September) for predictions initialized in July. Black contours show the correlation skill of

FA-Basic. Color shading shows the skill difference, FA-AL minus FA-Basic. Hatching indicates

that differences are below the 95% confidence level based on a bootstrapping test (section 2c).
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SST biases might be the main driver of that model’s errors in

simulated TC activity. Rather than conducting an exhaustive

survey of various error sources, this study instead aims to il-

lustrate an evaluation framework for identifying intertwined

errors in a coupled model, assisting model development, and

facilitating scientific discoveries. The framework can be ap-

plied to other climate models, toward improving simulations

and predictions of TCs and other extreme weather events. It is

also worth noting that the statistical significance test in this

study has some caveats (appendix B), so the robustness of skill

changes should be interpreted with caution.

This study does not separately attribute the impacts of land

initialization and atmospheric initialization. Jia et al. (2016)

used the same model to conduct predictions for the boreal

summer of 2006. Their study showed that both land and at-

mospheric initialization contributed to improved environ-

mental predictions for the United States and downstream

regions. Unfortunately, such experiments are computationally

expensive to conduct across multiple years.

The representation of the land–atmosphere coupling is not

optimal in the FLOR model. In particular over tropical Africa

and South America, FLOR’s land–atmosphere coupling is

weaker than that suggested by MERRA-Land reanalysis

(Fig. 10). The shortcomings of land–atmosphere coupling are

not unique to the FLOR (Dirmeyer et al. 2018; Ardilouze et al.

2019) and may hinder the identification of land impacts on TC

activity. Another challenge is data availability, since only a

subset of variables was saved when the original hindcast ex-

periments were conducted. More carefully designed model

experiments, perhaps with an updated climate model (e.g.,

Delworth et al. 2020), could further advance understanding of

how land conditions may affect TC activity (Zhou et al. 2019;

Baldwin et al. 2019).

Overall, the findings in this study are consistent with Zhang

et al. (2019), suggesting that a gap exists between the actual and

potential skill of seasonal TC predictions. To improve predic-

tions of TC activity, it will be helpful to continue improving SST

predictions, especially at longer leads. Nonetheless, seasonal TC

predictions may already have reached a stage where further

improvements in skill may need to draw from new sources—-

such as improved atmospheric physics parameterizations, and

land–atmosphere initialization—which will require intensified

collaboration across the research and modeling communities.
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APPENDIX A

Simulations of TC Metrics

To aid evaluation of the simulations, we present scatterplots

of simulated TC number (Fig. A1) and ACE (Fig. A2) against

their observed counterparts. Since the predictions initialized in

January–July have similar characteristics (not shown), the

subplots of FA-Basic and FA-AL show only the predictions

initialized in July for brevity. Figure A1 suggests that the

FLOR simulations underestimate the TC number in the North

Atlantic and the northeastern Pacific. While the TC number in

the Northwestern Pacific is reasonable, the simulated varia-

tions of TC number underestimate the observed contrast be-

tween active and inactive years. Figure A2 suggests FLOR

underestimates ACE in all the basins, especially when the

observed TC activity is high. The underestimation of ACE is

contributed by the aforementioned TC number biases and

FLOR’s inablity to simulate intense TCs. Consistent with Fig. 1

and the related discussion in the main text, the biases of TC

activity in individual basins are overall similar across ReSST,

FA-Basic, and FA-AL. The scatterplots also suggest that the

relationship between the simulated and observed variables is

roughly linear. Consistent with this relationship, the Pearson

correlation used in the main text and the Spearman rank cor-

relation used in Figs. A1 and A2 produce similar results. Many

of these aspects of FLOR have been identified previously (e.g.,

Vecchi et al. 2014; Murakami et al. 2016; Zhang et al. 2019).

Readers interested in other aspects of the model performance

can refer to the references in section 2a.

APPENDIX B

Additional Considerations of Significance Tests

The skill evaluation in this study emphasizes models’ capa-

bility in predicting year-to-year variations. This emphasis was

motivated by two factors: 1) dynamical predictions of TC ac-

tivity have substantial climatological biases; and 2) the year-to-

year variations are much more relevant to the real-world needs

related to seasonal predictions. Without conducting bias cor-

rections, the skill in predicting year-to-year variations is better

characterized by correlation coefficients rather than RMSEs.

When testing the significance level of correlation differences, a

conventional way is to use Fisher’sZ transformation and proceed

with an assumption of the normal distribution. However, DelSole

and Tippett (2014) showed that the predictions from different

models are not independent in the sense that the predictand is the

same observation. This sample dependence undermines the dis-

tribution assumptions used by the parametric-based significance

tests that assume independent samples. In comparison, the boot-

strapping resampling approach in this study directly evaluates the
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distribution of the difference between correlation coefficients.

This approach circumvents Fisher’s Z transformation and the

vulnerable assumption about statistical distributions. Meanwhile,

the bootstrappingmethod accounts for unforced variability/noises

in the dynamical system, which might cause statistically sig-

nificant but physically insignificant differences when an ensemble

prediction does not adequately sample the system’s nonlinear

evolution.

An alternative significance test is the random walk test

employed by DelSole and Tippett (2014). This test uses a score

metric to evaluate predictions for each observation as a single

event. Also referred as the sign test, the random walk test

FIG. A1. TC number in the observations and simulations (ReSST, FA-Basic, and FA-AL). The predictions of both FA-Basic and FA-

AL are initialized in July. The horizontal axis shows the observed values, and the vertical axis shows the simulated values. The red dots

denote the results from individual ensemble members, and the blue dots show the ensemble means. The black line corresponds to the

condition with equal observed and simulated values. (a)–(c) The ReSST subplots include 6 ensemble members, while the subplots of

(d)–(f) FA-Basic and (g)–(i) FA-AL each include 12 ensemble members. The Spearman rank correlation between the ensemble means

and the observation is denoted in the top right of subplots.
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compares predictions in a series of equal-probability Bernoulli

trials and evaluate the statistical significance using a binomial

distribution. This approach differs from the two aforemen-

tioned significance tests as it does not assume or evaluate the

distributions of forecast errors. However, some score metrics

(e.g., squared errors used by DelSole and Tippett (2014)) can

be sensitive to forecast errors and heavily penalize predictions

that have large climatological biases but are otherwise skillful

in predicting variations. In this particular circumstance, such

score metrics are less relevant to evaluating models’ capability

in predicting year-to-year variations.

For the sake of completeness, Fig. B1 shows the statistical

significance determined by the random walk test. The random

walk test produces notably inconsistent results when applied to

the differences between two sets of six-member ensembles

(Fig. B1). We speculate that the underlying issue is model-

related and similar to the CCSM3 results examined by DelSole

and Tippett (2016). Compared to the results from the boot-

strapping (Fig. 12), the random walk test is more generous in

granting high statistical significance. The high-significance re-

sults from these two types of significance tests are not entirely

consistent, either. These issues suggest the statistical significance

FIG. A2. As in Fig. A1, but showing ACE instead of TC number.
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of the skill changes described in the main text is subject to

method-related uncertainties.
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