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Introduction  32 

This document is the supporting information for the main text including: (Text S1) 33 
Additional information about reanalysis data; (Text S2-S3, Figures S1-S5) Discussion about AR 34 
climatology, resolution-dependent bias and bias-correction methods; (Text S4) Deriving the IPO 35 
index in a 23-yr data; (Text S5, Figures S6-S10) The calculation and discussion of predictability; 36 
(Text S7-S9, Figure S10) Detailed information about multiseasonal AR probabilistic forecast.  37 

Text S1. Reanalysis Data  38 
ERA5 reanalysis data generated by the ECMWF reforecast system from 1995-2018 is 39 

used in this study. ERA5 is published within 3 months of real time and is available at:  40 
https://cds.climate.copernicus.eu/#!/search?text=ERA5&type=dataset. To calculate the IVT, we 41 
use the variables at six vertical levels (1000hPa, 925hPa, 850hPa, 700hPa, 500hPa, 250hPa) 42 
available from both ERA5 and SPEAR. Previous studies have demonstrated that the AR 43 
characteristics based on different reanalysis products (e.g., Modern-Era Retrospective analysis for 44 
Research and Applications, MERRA/MERRA-2, and ERA-Interim) are remarkably similar to 45 
each other (Guan and Guan 2015, Guan et al. 2018). Given that ERA5 is a new generation 46 
reanalysis product, benefiting from new data assimilation techniques, dynamical cores and model 47 
physics, data quality is expected to be better in ERA5 than in ERA-Interim.   48 
 49 

Text S2. Resolution-dependent biases 50 
The ERA5 data is generated by the ECMWF global reforecast system with spatial 51 

resolution of 31km; the higher atmospheric resolution than in SPEAR allows the simulation of 52 
strong IVT in more confined regions than in SPEAR. This suggests some events with narrow 53 
plumes but strong IVT might not be well-resolved in SPEAR, a circumstance that is expected 54 
over the regions with the most active AR occurrence (e.g., to the northeast of Hawaii in Fig.1e). 55 
Consistently, the biases in AR climatology over North America appear to depend on model 56 
resolution. At 50 km resolution, mountains are lower and smoother compared to those in ERA5. 57 
Thus, a landfalling AR is able to penetrate farther inland in SPEAR than in nature due to coarser 58 
topography. This likely explains why AR frequency is overestimated over western North America 59 
but underestimated over the adjacent ocean. On the other hand, the Great Plains low-level jet and 60 
associated ARs are less active due to a weaker east-west pressure gradient force and smoother 61 
topography than in nature. All of these biases are more evident in 100km simulations of SPEAR 62 
(Fig. S1), which supports that the biases depend on spatial resolution. 63 
 64 

 65 
Text S3. ACC in 100 km simulations 66 

The ACCs for seasonal AR activity, as in Fig. 2 but for the 100 km forecast simulations, 67 
are shown in Fig. S4. The differences in ACC between the 100 km and 50 km simulations are 68 
shown in Fig. S5. In general, the results of the 100 km simulations are qualitatively similar to 69 
those of the 50 km simulations, but with slightly higher skills, which may result from the higher 70 
signal-to-noise ratio resulting from the coarser model resolution. However, this difference is not 71 
statistically significant according to Fig. S5. The 50 km simulations are characterized by smaller 72 
climatological biases (Fig. S1), which is why the 50 km simulations are preferred for seasonal AR 73 
prediction. 74 
 75 
 76 
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 77 
 78 
Text S4. IPO index 79 

The IPO index is traditionally calculated as the second principal component of low-pass 80 
filtered (6- or 13-year cutoff is usually used) global SST. Because the length of the SPEAR data 81 
record is limited to only 23 years, we use an alternative approach to derive the IPO index in both 82 
ERA5 and SPEAR. We first regressed monthly ERA5 SST anomaly onto the historical IPO 83 
index, which can be acquired from https://psl.noaa.gov/data/timeseries/IPOTPI/. Then, both the 84 
ERA5 and SPEAR monthly SST anomalies are projected onto the ERA5 regression pattern over 85 
the whole Pacific basin to derive the IPO index. The reconstructed index based on ERA5 is 86 
highly correlated with the original IPO time series (ρ>0.93). 87 
 88 
Text S5. Predictability of AR PC1, IPO and ENSO 89 

To define the predictability of AR PC1, IPO, and ENSO, we use the definition given by 90 
Jia et al. (2015)  91 

 92 

𝑃𝑃(𝜏𝜏) = 1 −
𝜎𝜎𝜏𝜏2

𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2  
 
(1) 

 93 
where 𝑃𝑃(𝜏𝜏) is the predictability, 𝜎𝜎𝜏𝜏2 is the forecast variance as a function of lead time τ, and 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2  94 
is the climatological variance.  95 
𝜎𝜎𝜏𝜏2 is further defined as 1

𝑇𝑇𝑇𝑇
[𝑥𝑥(𝜏𝜏, 𝑡𝑡, 𝑒𝑒)−< 𝑥𝑥(𝜏𝜏, 𝑡𝑡, 𝑒𝑒) >]𝑇𝑇[𝑥𝑥(𝜏𝜏, 𝑡𝑡, 𝑒𝑒)−< 𝑥𝑥(𝜏𝜏, 𝑡𝑡, 𝑒𝑒) >]. 𝑥𝑥 is the 96 

variable of interest (i.e., AR PC1, IPO index or NINO3.4), which is a function of forecast lead 97 
time (𝜏𝜏), start time (𝑡𝑡), and ensemble member (𝑒𝑒). The angle brackets denote the average over 98 
ensemble members. 1

𝑇𝑇
 and 1

𝐸𝐸
 indicate the dot product is averaged over all start times and ensemble 99 

members, where 𝑇𝑇 is the total number of start times and 𝐸𝐸 is the ensemble size. 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2  defined as 100 
1
𝑇𝑇𝑇𝑇

 [𝑥𝑥(𝜏𝜏, 𝑡𝑡, 𝑒𝑒)]𝑇𝑇[𝑥𝑥(𝜏𝜏, 𝑡𝑡, 𝑒𝑒)], which is the variance of 𝑥𝑥 averaged over all 𝑡𝑡 and 𝑒𝑒. As 𝜏𝜏 increases, <101 
𝑥𝑥(𝜏𝜏, 𝑡𝑡, 𝑒𝑒) >→ 0, 𝜎𝜎𝜏𝜏2 → 𝜎𝜎𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2 , and 𝑃𝑃(𝜏𝜏) → 0,  indicating a loss of predictability. The results for 102 
AR PC1, IPO, and ENSO are shown in Fig. S8.  103 
 104 
Text S6. Sample Size in Fig. 3 105 

In Fig. 3, lag 0 is defined when the January - March AR PC1 is greater than 1 standard 106 
deviation. This definition can lead to an issue of small sample sizes while there is only four-year 107 
data in the ERA5 composite map. However, it is not case for SPEAR since each ensemble 108 
member is considered as an independent realization when we applied EOF analysis to the SPEAR 109 
data. This argument can justify by inspecting Fig. S8. In Fig. S8, one can find the predictability of 110 
IPO decays to 0.5 for April initialization targeting January to March suggesting the predictable 111 
signal and noise from interval variability have comparable amplitude at this lead time. This also 112 
indicates the ensemble spread is big enough to sample different phases of IPO SST and each 113 
ensemble member can be considered as an independent realization. Thus, the result shown in 114 
figure 3 is still robust even without ERA5.  115 
 116 
 117 
Text S7. Attributes Diagram and Calibration of Probabilistic Forecasts 118 

Fig. 4(a)-(b) in the main text shows the attributes diagram for the SPEAR probabilistic 119 
forecasts targeting January through March. Results are aggregated over all grid points within 120 
120oE-120oW, 20oN-70oN. The probabilities are divided into 11 bins, starting from 0-5%with an 121 
interval of 5%. The three lines represent three forecast categories: above-normal (green), near-122 
normal (black) or below-normal (brown) AR activity, which are defined as the top, middle or 123 
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bottom 1/3 (i.e., terciles) of the seasonal AR anomaly distribution from SPEAR. The attributes 124 
diagram shows the observed AR frequency as a function of forecast probability. The uncalibrated 125 
probabilistic forecasts are calculated as the fraction of ensemble members falling into each of the 126 
three forecast categories. Before calibration (Fig. 4a), we find that the model is overconfident for 127 
all three categories. For example, when SPEAR forecasts a 95% chance of above-normal AR 128 
activity, the above-normal category verifies only 70%of the time. To remove the conditional bias 129 
in the probabilistic forecast, we use a simple linear calibration function based on the probability 130 
anomaly correlation (PAC) following van den Dool et al. (2017): 131 

 132 
 133 

𝑃𝑃𝑃𝑃𝑃𝑃 =
1
𝑁𝑁∑ 𝑝𝑝𝑖𝑖𝑜𝑜𝑖𝑖𝑁𝑁

𝑖𝑖=1

1
𝑁𝑁�∑ 𝑝𝑝𝑖𝑖2𝑁𝑁

𝑖𝑖=1 ∑ 𝑜𝑜𝑖𝑖2𝑁𝑁
𝑖𝑖=1

 
 
(2) 

 
𝑝𝑝𝑖𝑖∗ = 𝑃𝑃𝑃𝑃𝑃𝑃

𝜎𝜎0
𝜎𝜎𝑝𝑝
𝑝𝑝𝑖𝑖 

 
(3) 

 134 
 135 
where 𝑝𝑝𝑖𝑖 is the uncalibrated forecast probability (e.g., the fraction of ensemble members 136 
forecasting above-normal AR activity), 𝑜𝑜𝑖𝑖 is the observed event (0 for non-occurrence or 1 for 137 
occurrence), and 𝑁𝑁 is the total number of forecasts. In Eq. S3, 𝜎𝜎0 is the standard deviation of 𝑜𝑜𝑖𝑖 138 
and 𝜎𝜎𝑝𝑝 is the standard deviation of 𝑝𝑝𝑖𝑖. Eq. S3 is a linear regression function which converts the 𝑝𝑝𝑖𝑖 139 
into the calibrated values, 𝑝𝑝𝑖𝑖∗. We use a leave-one-year-out cross-validation approach to construct 140 
and evaluate the calibration function. Specifically, the evaluation of the verification for a given 141 
year is based on the calibration from the statistics of all other years to ensure independence of the 142 
verification subset. 143 

 144 
Fig. 4(b) in the main text illustrates the calibrated attributes diagram, and Fig. 4(c) is an example 145 
of a calibrated forecast map. In Fig. 4b, we find that the calibrated probabilistic forecasts fall near 146 
the diagonal line of the attributes diagram, indicating that the forecast probability is close to the 147 
observed relative frequency. This result indicates that the calibrated probabilistic forecasts are 148 
reliable. 149 
 150 
Text S8. Heidke skill score 151 

To evaluate the skill of the calibrated probabilistic forecasts, we use the Heidke skill score 152 
(HSS), defined as 153 

 154 

𝐻𝐻𝐻𝐻𝐻𝐻 =
𝐻𝐻 − 𝐸𝐸
𝑇𝑇 − 𝐸𝐸

× 100 (4) 

 155 
where H is the number of correct forecasts (i.e., how many seasons SPEAR successfully forecasts 156 
above-, near-, or below-normal AR activity), 𝑇𝑇 is the total number of forecasts and 𝐸𝐸 is the 157 
expected number of correct forecasts by random chance, which is 𝑇𝑇

3
 in our three-category case. 158 

For the calculation of H, the probabilistic forecast is converted into a deterministic forecast based 159 
on the category with the highest probability. A set of perfect forecasts would receive a HSS of 160 
100, and values above zero can be interpreted as skill relative to a climatological reference 161 
forecast. For example, a score of 50 indicates two times more correct forecasts than incorrect 162 
forecasts. The HSS maps for seasonal AR prediction are shown in Fig. S11. From Fig. S11(a)-(d), 163 
one can find a similar stripe pattern to that of Fig. 2 and of Fig. S4, while the subtropical branch 164 
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is more evident. In addition, the seasonal dependence of high HSS values for January-March 165 
forecasts is also evident in Fig. S11(e)-S11(h), with California and Alaska showing the highest 166 
values. The results shown in Fig. S11 illustrate the potential of leveraging SPEAR for seasonal to 167 
multiseasonal probabilistic forecasts of AR activity. 168 

 169 
 170 
 171 
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 190 
Figure S1. The bias in AR frequency, averaged over all forecast lead times, in the (a) 50-km, (b) 191 
100-km SPEAR reforecasts and (c) the difference between 50-km and 100-km.  192 

 193 
 194 
 195 
  196 



 
 

7 
 

 197 
Figure S2. The monthly climatology of AR frequency from SPEAR (January initialization) and 198 

ERA5 in California (red) and British Columbia (blue). 199 
 200 
 201 
 202 
 203 
  204 
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 205 
Figure S3. The January-March AR frequency anomaly over California from ERA5 and SPEAR. 206 
SPEAR is from October initializations (3 months lead time). 207 
 208 
 209 
 210 
  211 
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 212 
Figure S4.  The same as Fig. 3, except for the 100-km SPEAR forecast simulations. 213 
 214 
 215 
 216 
 217 
 218 
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 219 
Figure S5.  Difference in AR activity ACC between the 50-km SPEAR simulations (Fig. 2) and 220 
the 100-km SPEAR simulations (Fig. S4). Black contours represent the difference is statistically 221 
significant at the 5% level based on a two-tailed t-test.   222 
  223 
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 224 
Figure S6. (a) The variance explained by the leading EOFs of seasonal AR activity in the 50-km 225 
SPEAR simulations (blue) and ERA5 (red).  The error bars show the 95% confidence interval 226 
according to North et al. (1982). (b) and (c) show the AR EOF2 and EOF3 regression maps, 227 
respectively (shading for SPEAR and contour for ERA5). Shading and contours share the same 228 
intervals. 229 
 230 
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 231 
 232 
Figure S7.  The seasonal prediction correlation skills of AR PC1 (blue solid line), the IPO index 233 
(red solid line) and NINO3.4 index (black solid line) for (a) January (b) April (c) July and (d) 234 
October initializations. The NINO3.4 index is defined as the SST anomaly averaged over 5oS-5oN 235 
and 170oW-120oW. The definition of the IPO index is provided in the SI text. The filled dots 236 
indicate the skill significantly higher than 0 at 1%significance level based on t-test with a Fisher-z 237 
transform for AR PC1 (blue), IPO (red) and NINO3.4 (black). The effective degrees of freedom 238 
is defined as 𝑁𝑁 1−𝜌𝜌(1)

1+𝜌𝜌(1)
, where N=23 years and ρ is the lag-1 autocorrelation of a given time series. 239 

The ρ is seasonally stratified. 240 
 241 
 242 
 243 
 244 
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 245 
Figure S8. The predictability, as defined in equation (S2) of AR PC1 (shading), IPO (contour in 246 
a) and ENSO (contour in b). x-axis represents initialization season and y-axis represents forecast 247 
lead (months).  248 
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 249 
Figure S9.  The year-to-year variance of seasonal AR anomalies from ERA5 ((AR day/day)2) for 250 
the (a) Alaska, (b) British Columbia, (c) Washington/Oregon, and (d) California regions, shown 251 
as a function of initialization month (x-axis) and forecast lead (y-axis) for comparison with Fig.3. 252 
The boundaries of each region are outlined on the left side of Fig. 3. 253 
 254 
 255 
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 256 
Figure S10. The fraction of local seasonal AR variance explained by EOF1 (%) during January 257 
through March in ERA5 reanalysis. 258 
 259 
 260 
 261 
 262 
 263 
 264 
 265 
 266 
 267 
 268 
 269 
 270 
 271 
 272 
 273 
 274 
 275 
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 276 
Figure S11. The Heidke Skill Scores of SPEAR calibrated probabilistic forecasts with the target 277 
season of January-March for all initializations. Because the regions with few (or no) AR events 278 
can lead to uninterpretable HSS values (see SI text), we mask those regions in Fig. S9. Black 279 
hatching represents regions where the frequency of AR climatology is less than 2% (AR day/day) 280 
in both SPEAR and ERA5. Blue hatching is the time of initialization. The red contours are the 281 
regions with ACC ≥ 0.5.  282 
 283 
 284 
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