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ABSTRACT: The majority of future projections in the Coupled Model Intercomparison Project (CMIP5) show more

frequent exceedances of the 5mmday21 rainfall threshold in the eastern equatorial Pacific rainfall during El Niño, pre-
viously described in the literature as an increase in ‘‘extreme El Niño events’’; however, these exceedance frequencies vary

widely across models, and in some projections actually decrease. Here we combine single-model large ensemble simulations

with phase 5 of the Coupled Model Intercomparison Project (CMIP5) to diagnose the mechanisms for these differences.

The sensitivity of precipitation to local SST anomalies increases consistently across CMIP-class models, tending to amplify

extreme El Niño occurrence; however, changes to the magnitude of ENSO-related SST variability can drastically influence

the results, indicating that understanding changes to SST variability remains imperative. Future El Niño rainfall intensifies

most in models with 1) larger historical cold SST biases in the central equatorial Pacific, which inhibit future increases in

local convective cloud shading, enabling more local warming; and 2) smaller historical warm SST biases in the far eastern

equatorial Pacific, which enhance future reductions in stratus cloud, enabling more local warming. These competing

mechanisms complicate efforts to determine whether CMIP5 models under- or overestimate the future impacts of climate

change on El Niño rainfall and its global impacts. However, the relation between future projections and historical biases

suggests the possibility of using observable metrics as ‘‘emergent constraints’’ on future extreme El Niño, and a proof of

concept using SSTA variance, precipitation sensitivity to SST, and regional SST trends is presented.
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1. Introduction

El Niño–Southern Oscillation (ENSO) dominates interan-

nual climate variability, with severe impacts on many socio-

economic sectors, aswell as onmarine and terrestrial ecosystems

(Hoegh-Guldberg 1999; Ainsworth et al. 2016; Di Lorenzo and

Mantua 2016). Some of the largest effects are felt during strong

El Niño events, which are characterized by warming in the

eastern equatorial Pacific, reductions in equatorial upwelling,

equatorward migration of the intertropical convergence zone

(ITCZ;Ropelewski andHalpert 1986), and increased convective

precipitation throughout the central and eastern equatorial

Pacific. However, the properties of individual El Niño events

are a function of multiple interacting atmosphere–ocean feed-

back processes (Collins et al. 2010; Capotondi et al. 2015;

Timmermann et al. 2018), many of which will be influenced by

future anthropogenically driven changes in the tropical Pacific

(Collins et al. 2010; DiNezio et al. 2012). As such, constraining

future changes in ENSO remains an outstanding research

challenge.

Climate model projections do not presently agree on either

the magnitude or sign of twenty-first-century changes in the

amplitude of ENSO-driven SST anomalies (Collins et al. 2010;

Vecchi and Wittenberg 2010; Stevenson et al. 2012; Stevenson

2012; Bellenger et al. 2014; Chen et al. 2017). Determining

which projections are most likely to be realistic is difficult, in part

because of systematic biases in the simulation of tropical Pacific

climate. For example, most climate models overestimate the

strength of the equatorial trade winds, leading to overly cold

temperatures in the central/eastern Pacific (Guilyardi et al. 2009b;

Bellenger et al. 2014). This leads to a westward shift in the ENSO

‘‘center of action’’ for atmospheric deep convection, rainfall, and

winds, which has been hypothesized to affect the properties of El

Niño in coupled models (Capotondi et al. 2015; Choi et al. 2015;

Graham et al. 2017). Models also struggle to capture the magni-

tude of relevant feedbacks, including those relating sea surface

temperature (SST) to changes in evaporative cooling and short-

wave heating (Bellenger et al. 2014; Guilyardi et al. 2009a,b),

which mediate future changes in ENSO (Guilyardi et al. 2009a)

and the background climate (Xie et al. 2010; Huang et al. 2015;

Ying and Huang 2016; Chung et al. 2019; Seager et al. 2019).

Since there is little agreement on future changes in ENSO-

driven SST variability, recent work has instead focused on

changes in atmospheric measures of El Niño impacts (Power

et al. 2013; Cai et al. 2014, 2015), which are thought to be more

robust due to the consistency of projected increases in global-

mean temperature and saturation specific humidity (Held and

Soden 2006; Vecchi and Soden 2007). ‘‘Extreme El Niño’’
events, when defined according to precipitation amounts ex-

ceeding certain thresholds in the eastern equatorial Pacific,

becomemore frequent in coupled climate model projections of

the twenty-first century (Cai et al. 2014, 2017). Several mech-

anisms have been proposed for the projected amplification of
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ENSO-related precipitation anomalies, including enhanced

rainfall due to Clausius–Clapeyron effects and an eastward

shift of precipitation anomalies during El Niño (Bonfils et al.

2015; Huang 2016, 2017), nonlinear effects on precipitation

anomalies due to changes in convective initiation (Huang and

Xie 2015; Johnson and Xie 2010; Power et al. 2013), and

changes in the meridional gradient of eastern Pacific SST near

the equator (Cai et al. 2014). However, the relative importance

of these processes varies widely across models (Huang

2017). Likewise, little has been done to address the question

of how either anthropogenically driven or internal (un-

forced natural) variability in ENSO-induced SST patterns

(Wittenberg 2009; Stevenson et al. 2010, 2012; Wittenberg

et al. 2014) may affect near-term projections of precipitation

extremes.

Previous studies have generally focused on the Coupled

Model Intercomparison Project (CMIP) simulations, which

provide consistent external forcing across multiple models to

quantify model structural uncertainty. Since the completion of

phase 5 of CMIP (CMIP5; Taylor et al. 2009), however, there

has been increased recognition of the importance of internal

variability in affecting intermodel comparisons, as well as

model comparisons with observations (Deser et al. 2016;

Stevenson 2012). This has motivated the development of

‘‘large ensembles,’’ sets of many (often 20 or more) simulations

with the same model differing only in their initial conditions

(Deser et al. 2020).

To fully evaluate the roles of both model structural differ-

ences and contributions from internal variability, the ideal

approach would be to examine large ensembles run with each

of the individual CMIP5 models. However, relatively few

modeling centers have generated such ensembles to date, al-

though the number is growing (Deser et al. 2020). Here we use

two representative large ensembles: the CESM1 Large

Ensemble (hereafter CESM LENS; Kay et al. 2015; 33 mem-

bers) and an analogous large ensemble run with the GFDL

ESM2M (hereafter ESM2M LENS; Dunne et al. 2012; Rodgers

et al. 2015; 30 members). Both cover the twentieth century and

the 2006–2100 period under the RCP8.5 climate change sce-

nario, and faithfully reproduce many aspects of twentieth-

century climate (Knutti et al. 2013; Rodgers et al. 2015).

Additionally, the two large ensembles exhibit diametrically op-

posing twenty-first-century ENSO projections, making them

useful ‘‘end members’’ for comparison with CMIP5. The com-

bination of these LENS suites with the CMIP5 (Table 1) then

allows us to characterize for the first time the role of model

biases in generating intermodel differences in extreme El

Niño events.

2. Extreme El Niño definitions

The performance of CMIP5models at simulating ENSO and

its teleconnections has been discussed extensively elsewhere

(Guilyardi et al. 2012; Bellenger et al. 2014; Chen et al. 2017).

Likewise, several studies have focused on the definition of an

extreme El Niño event, particularly with respect to rainfall

(Cai et al. 2014, 2017). Here we present multiple identification

methods for extreme El Niño, and examine strategies for iso-

lating these extreme events across models that differ in their

simulation of mean climate and ENSO behavior.

The choice of a 5mmday21 threshold in absolute precipi-

tation along the equator at the peak of SSTA during El Niño
(hereafter, the ‘‘absolute precipitation method’’) has been

previously used to definewhether an ElNiño is ‘‘extreme’’ (Cai

et al. 2014). The justification for this method has been that

5mmday21 represents the latent heat release necessary for

TABLE 1. Models and ensemble sizes from the CMIP5 experi-

ments used in the present study. A plus sign (1) indicates that a

model is a member of the INCR subsample; a minus sign (2) in-

dicates that a model is a member of DECR, for a given extreme El

Niño identification method. AP 5 anomaly percentile method;

Pmn 5 absolute precipitation method; Panom 5 precipitation

anomaly method.

INCR/DECR

Model No. of members Pmn Panom AP

ACCESS1.0 1 2
ACCESS1.3 1

BCC-CSM1.1 1

BCC-CSM1.1-m 1 2 2
BNU-ESM 1

CanESM2 5 2 2
CCSM4 6 2
CESM1-BGC 1

CESM1-CAM5 3 1 1 1
CESM1-CAM5.1-FV2 1 1 1 1
CESM1-WACCM 3 2 2 2
CMCC-CESM 1 1 1 1
CMCC-CM 1

CMCC-CMS 1 1 1 1
CNRM-CM5 5

CSIRO-Mk3.6.0 10

EC-EARTH 10 1
FGOALS-g2 1 2 2
FIO-ESM 3 2 2
GFDL CM3 1 1
GFDL-ESM2G 1

GFDL-ESM2M 1 2 2 2
GISS-E2-H 5 1
GISS-E2-H-CC 1 1 1
GISS-E2-R 5 2
GISS-E2-R-CC 1

HadGEM2-AO 1 1
HadGEM2-CC 3

HadGEM2-ES 4

INM-CM4 1 2
IPSL-CM5A-LR 4

IPSL-CM5A-MR 1

IPSL-CM5B-LR 1 1
MIROC5 5 1 1 1
MIROC-ESM 1 2
MIROC-ESM-CHEM 1 2
MPI-ESM-LR 3 1
MPI-ESM-MR 1 1
MRI-CGCM3 1 1
MRI-ESM1 1

NorESM1-M 1 2 2 2
NorESM1-ME 1
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triggering the large-scale atmospheric reorganization needed

to generate strong teleconnections to remote locations. We

have evaluated the robustness of this assumption by diagnosing

the upper-level (above 500 hPa) atmospheric vertical motion in

the Niño-3 region over the historical period (1950–2005;

Fig. 1a). Indeed, vertical motion does seem to occur prefer-

entially in CMIP5 models when equatorial precipitation ex-

ceeds roughly 5mmday21 (Fig. 1b), with lower scatter than

exists in the v–SSTA relationship (Fig. 1a). However, changes

in this relationship under global warming appear highly sen-

sitive to the SSTA magnitude; from Fig. 1a it is apparent that

the increase in ascent (decrease in v) at a given SSTA is most

significant for weak El Niño events, while the response to

strong SSTA hardly changes (i.e., it saturates). Additionally,

the ability of a given magnitude of vertical ascent to generate

extreme precipitation increases in the future (see P values as-

sociated with particular v in Fig. 1b).

There are further limitations to the absolute 5mmday21

definition of extreme El Niño when applied in a multimodel

twenty-first-century context. Most notably, the implicit inclu-

sion of mean-state and seasonal-cycle changes in precipitation

in the response to anthropogenic forcing contributes strongly

to changes in the frequency of absolute threshold crossings; mean

precipitation shifts were shown to account for nearly 50% of the

total precipitation change during extreme El Niño by Cai et al.

(2017). This suggests that to explicitly quantify ENSO-related

changes in interannual precipitation variability, a different defini-

tion is required. We therefore examine an additional extreme El

Niño definition based on threshold crossing of DJF-averaged

precipitation anomalies (hereafter, the ‘‘precipitation anomaly’’

method). The threshold for extremeElNiño is set at a 2mmday21

precipitation anomaly, which corresponds to the value, on average,

above which CMIP5-simulated v becomes negative (i.e., up-

ward; Fig. 1c).

We next consider one final definition of extreme El Niño,
which accounts for the substantial differences between the

distributions of precipitation in various regions and models

(hereafter, the ‘‘anomaly percentile method’’). This considers

precipitation anomalies during DJF larger than the 90th per-

centile of the twentieth-century distribution at each spatial grid

point as extreme. Although this definition has less bearing on

large-scale tropical atmospheric reorganization, it is more

relevant to the characterization of local rainfall impacts of El

Niño. In other words, by examining the extremes of the local

precipitation distribution, we can compare events most likely

to be considered ‘‘unusual’’ across locations (and models) with

very different climatological mean states.

The identification of extreme El Niño events in observations is

shown in Fig. 2 for all three definitions. Here, the CPC Merged

Analysis of Precipitation (CMAP/A, which incorporates both rain

gauge and satellite data) and NOAA’s Extended Reconstructed

SST (ERSSTv5) datasets are used. The mean precipitation and

precipitation anomaly thresholds capture events in which there is a

significantmigration of the ITCZonto the equator.Both choices of

threshold result in the 1982/83 and 1997/98 El Niño events being

selected; the 2015/16 El Niño is extreme according to the anomaly

definition, but not the mean definition. In the anomaly percentile

definition, the list of events is similar, but also includes the 1991/92

ElNiño.We note that this analysis only includes events since 1979,

as precipitation datasets over the ocean prior to the start of the

satellite era are known to have large uncertainties.

3. Twenty-first-century changes to extreme El Niño

The next task is to assess how the occurrence frequency of

extreme El Niño changes in the twenty-first century relative to

the twentieth, across multiple event definitions and model

projections. Here we define the 1950–2005 period as the

twentieth century; this is chosen to ensure full temporal cov-

erage across all CMIP5models and large ensembles. The 2006–

2100 period is then considered as the twenty-first century. All

event frequencies have been normalized via dividing the total

number of events by the appropriate epoch length. The results

are shown in Fig. 3, from which it is clear that there is a wide

range of projected changes simulated in CMIP5, in all three

choices of event definition. The majority of models do indeed

project an increase in extreme El Niño frequency; however, a

FIG. 1. Relationship of vertical pressure velocityv with (a) SSTA,

(b) precipitation, and (c) precipitation anomaly during DJF in which

El Niño events peak in the CMIP5 simulations. Here values are

calculated over the Niño-3 region, and forv all pressure levels above

500 hPa are considered. Negative v values indicate ascent. The

twentieth century is defined as 1950–2005, and the twenty-first cen-

tury as 2006–2100, for all models. El Niño events are defined as DJF

periods where Niño-3 SSTA, deseasonalized with a 30-yr centered

moving window, exceeds 0.5s.
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substantial minority of models project a decrease, and the

magnitude of the increase is quite small in others.

Event frequency changes do depend on the event definition.

In some models, the mean Niño-3 precipitation (precipitation

anomaly) during El Niño is less than 5mmday21 (2mmday21)

in either the twentieth or twenty-first centuries, and the change

in event frequencies can therefore not be computed (missing

data in Figs. 3a,b). This is consistent with previous CMIP5

evaluations (Cai et al. 2014), although our calculations use a

slightly different time period for the twentieth and twenty-first

centuries, and therefore do not correspond exactly. The event

frequency changes are generally larger using the absolute

precipitation method relative to the precipitation anomaly

method, consistent with previous assessments of mean-state

contributions to extreme El Niño frequency changes (Cai et al.

2017). In some models, the removal of mean precipitation

can even flip the sign of the frequency change (Fig. 3a vs

Fig. 3b; e.g., CanESM2, BCC-CSM1.1-m, FGOALS-g2, and

FIO-ESM). The anomaly percentile method includes a larger

number of models in both the increasing and decreasing cate-

gories, since all models can be assessed using this metric. The

degree of relative spread between models projecting increases

and decreases in event frequency, however, is comparable to

the other methods. Interestingly, some models project very

similar results regardless of the definition chosen. For instance,

GFDL-ESM2M and NorESM1-M project decreases in all

three definitions, while CESM1-CAM5, CESM1-CAM5.1-

FV2, CMCC-CMS, and MIROC5 always project increases

(Table 1). This suggests that the physical drivers of extreme El

Niño changes in these models are independent of the details of

event definition. The consistency of the CESM1 and ESM2M

projections across extremeElNiño definitions, and their strong
disagreement overall with one another, makes them ideal end

members for further study, and we have thus included the

CESM and ESM2M large ensembles (Kay et al. 2015; Rodgers

et al. 2015) in our analysis as well.

Previous studies of extreme El Niño in CMIP models have

focused on a subsample selected based on their ability to cor-

rectly simulate twentieth-century mean climate. For instance,

precipitation skewness greater than 1 and Niño-3 rainfall

greater than 5mmday21 during at least one boreal winter over

the 1891–2090 period were the criteria imposed by Cai et al.

(2014). We have deliberately not imposed such a subselection

here, to enable a complete assessment of the impact of model

bias on changes in extreme El Niño frequency. However, for

comparison we have flagged those models selected by Cai et al.

(2014) in Fig. 3 (red outlined bars). Notably, in all three event

classifications, models selected by Cai et al. (2014) do not ap-

pear substantially more consistent with one another than the

set of CMIP5models as a whole. This suggests that even among

models that do capture important aspects of the precipitation

climatology correctly, there is still room to understand how

physical changes across models affect the resulting twenty-

first-century projections.

The anomaly percentile method allows changes in locally

extreme events to be computed across the entire Pacific basin

(Fig. 4). Additionally, both wet and dry extremes may be

considered; here an extreme dry El Niño is one with DJF

precipitation below the local 10th percentile. The multimodel

mean structure of extreme El Niño using the anomaly percentile

method is spatially El Niño–like (Figs. 4a–c), as is the pattern of

twenty-first-century changes in event frequency (Fig. 4d). Extreme

dry events aremost commonover SoutheastAsia and theMaritime

Continent in the twentieth century, as well as being fairly frequent

on the edges of the convergence zones. There seems to be little

agreement on changes in extreme dry El Niño in the twenty-first

FIG. 2. Extreme El Niño event definitions in observations (CMAP and ERSSTv5).

(a) Precipitation and precipitation anomaly (mmday21). (b) SSTA (8C). Anomalies are

computed relative to the 1979–2016 climatology. Horizontal lines in (a) indicate the thresholds

for the mean precipitation (5mmday21), precipitation anomaly (2mmday21), and anomaly

percentile (90th percentile) extreme El Niño definitions. Horizontal line in (b) indicates the

SSTA threshold used to define an El Niño event (0.5s). All metrics are DJF averages, com-

puted over the Niño-3 region.
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century, however. Determining the exact causes for the intermodel

disagreement here is beyond the scope of the present study; we

hypothesize that differences in atmospheric sensitivity to SST

anomaly patterns, and the expression of subtropical/midlatitude El

Niño teleconnections, may play a role in setting the patterns of

extreme dry El Niño.
We have created model subsamples based on each extreme

El Niño definition, for later use in comparing mean-state be-

havior across models (section 5). The DECR subset of models

are simply those that project a decrease in the frequency of

extremeElNiño, while the INCRmodels are those that project

the strongest increase. For the absolute precipitation method,

this threshold is a 40% increase; for the precipitation anomaly

method, a 25% increase; and for the anomaly percentile

method, a 15% increase in extreme wet El Niño over the Niño-
3 region. The models which belong to each of these subgroups,

along with their respective numbers of ensemble members in

CMIP5, are summarized in Table 1.

FIG. 3. Changes in proportion of extreme El Niño events over Niño-3, using the (a) absolute precipitation (P),

(b) precipitation anomaly (Panom), and (c) anomaly percentile (AP) definitions. Red outlines indicate models

selected by Cai et al. (2014) as having the capacity to best simulate El Niño rainfall and rainfall skewness. Dashed

horizontal lines indicate thresholds used to select the INCR subsets of models according to all three definitions. In

(a) and (b), fewer models are included since the absolute precipitation or precipitation anomaly for some models

fell below the appropriate threshold for all El Niño events. Models with larger overall precipitation variability will

tend to show smaller changes in (c), since the percentile changes will tend to be smaller.
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4. Mechanisms for changes in precipitation during
El Niño

To understand the reasons for intermodel differences in extreme

El Niño projections, we begin by assessing the relative contribution
fromchanges to twenty-first-century SSTvariability. This is doneby

statisticallymodeling the precipitation anomaly during ElNiño as a
function of SST, building on the probability distribution function

(PDF)-based approach of Watanabe and Wittenberg (2012) and

Watanabe et al. (2012). This method decomposes the twentieth- to

twenty-first-century change in El Niño precipitation anomalies into

components associated with

1) the change in magnitude of El Niño–related SSTA;

2) the change in the sensitivity of precipitation anomalies to a

given SSTA; and

3) nonlinear interactions between 1 and 2 (e.g., changes in the

behavior of convective initiation; Johnson and Xie 2010;

Huang and Xie 2015).

This method has been previously used to diagnose the contribu-

tion of ENSO to mean precipitation (Watanabe and Wittenberg

2012) and to isolate the impact of a changingmean state onENSO

in perturbed-physics ensembles (Watanabe et al. 2012). Here, we

will advance upon previous studies by examining the spatial

structure of each individual source of changes in El Niño–driven
precipitation anomalies. Specifically, rather than modeling re-

gionally averaged absolute precipitation as a function of absolute

temperature, we consider the (spatially varying) relationship be-

tween DJF precipitation anomalies and DJF Niño-3 temperature

anomalies relative to the seasonal climatology:

P0
nino 5

ð
f (T 0)C(T 0)dT 0 . (1)

Here P0
nino is the local composite precipitation anomaly during

DJF of the peak of El Niño events; f(T0) refers to the proba-

bility distribution function of El Niño SST anomalies over

Niño-3, and C(T0) is the composite-mean local El Niño

precipitation anomaly as a function of the Niño-3 SST anom-

aly. Note that C(T0) is constructed by selecting Niño-3 SSTA

values within specified bins, and computing the average pre-

cipitation associated with those time periods. As in the rest of

this analysis, the twentieth century is defined as 1950–2005 and

the twenty-first as 2006–2100.

As in previous work using similar approaches (Watanabe

et al. 2012), we consider precipitation anomaly changes relative

to a reference (in this case, the twentieth-century precipitation

anomalies during El Niño, hereafter P0
nino20). Differences be-

tween the twenty-first- and twentieth-century values of a

quantity are hereafter referred to as D. The change in precip-

itation anomaly DP0
nino is then modeled using the separate

contributions of changes in f(T0), C(T0), and their interactions:

DP0
nino 5

ð
DfC

0
(T 0) dT 0

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Changes toElNiño SSTA

1

ð
f
0
DC(T 0)dT 0

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
Changes toP sensitivity to SSTA

1

ð
DfDC(T 0) dT 0

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Nonlinear interactions

. (2)

The twentieth-century reference PDF f0 and the reference

composite C0(T
0) are computed individually for each CMIP5

model (for all ensemble members, in the case of multiple

simulations from that model), and the change in PDF Df(T0)
and change in compositeDC(T0) computed from the deviations

relative to those references. Multimodel mean contributions

are then computed by averaging the values of each term in (2)

over the CMIP5 simulations and the CESM/ESM2M large

ensembles. It should be noted that all El Niño events are in-

cluded here (i.e., all events where DJF Niño-3 SSTA exceeds

0.5s regardless of rainfall amount), rather than only those

qualifying as extreme according to previous sections.

The PDF method successfully reproduces the overall twenty-

first-century changes in precipitation anomaly during El Niño,
both for individual CMIP5 models and across the CMIP5

FIG. 4. Changes in local extremeEl Niño event fraction using the anomaly percentile definition. (a) Twentieth-century extreme El Niño
fraction in CMIP5. (b) As in (a), but for CESMLENS. (c) As in (a), but for ESM2MLENS. (d) Change in extreme El Niño fraction in the

twenty-first century relative to the twentieth in CMIP5. (e) As in (d), but for CESM LENS. (f) As in (d), but for ESM2M LENS. Colors

indicate changes in the frequency of precipitation anomaly exceeding the 90th percentile of twentieth-century precipitation; contours

indicate changes in the frequency of precipitation anomaly falling below the 10th percentile of twentieth-century precipitation. Dashed

contours indicate negative values.
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archive as a whole (not pictured). Due to projected changes in

the sensitivity of precipitation to Niño-3 SSTA [DC(T0), second
term in Eq. (2)], the CMIP5 multimodel archive shows sub-

stantial increases in precipitation during El Niño along the

equator in the central/eastern Pacific, with reductions to the

north and south (Fig. 5d). This may be interpreted as an increase

in the tendency for warm equatorial SSTAs to drive convective

precipitation events in the future. In the multimodel mean,

SSTA changes have a slight tendency to decrease El Niño pre-

cipitation in the eastern equatorial Pacific (Fig. 5a). However,

the strongest contributor to CMIP5 multimodel mean El Niño
precipitation changes is the nonlinear term (Fig. 5g), which

drives a large precipitation increase in the eastern equato-

rial Pacific.

We now turn to the two large ensembles, and apply the same

analysis. CESMandESM2M form an especially useful contrast

since they are both models with highly consistent extreme El

Niño frequency changes across all definitions, yet their re-

sponses are diametrically opposed to one another (Table 1,

Fig. 3) as are their projected changes in ENSO amplitude

(Fasullo et al. 2018). As in CMIP5, both CESM and ESM2M

show increases in equatorial precipitation during El Niño due

to precipitation sensitivity to SSTA, with reductions off the

equator (Figs. 5e,f). Interestingly, although CESM shows a

substantial increase in SSTA during El Niño (Stevenson et al.

2017), this does not appear to play a major role in driving in-

creased precipitation extremes in this model (Fig. 5b). This

contrasts with the large contribution of changing SSTA to

precipitation in ESM2M, where the reduction in SSTA vari-

ance strongly reduces associated precipitation (Fig. 5c). In both

cases, the nonlinear term is relatively unimportant, with the

exception of a small region in the central/eastern Pacific that

is likely to be near the threshold for convective initiation

(Figs. 5h,i).

The contrast between the CMIP5 and LENS results in terms

of the importance of nonlinear effects may arise from the small

ensemble size of most CMIP5 submissions. With only a few

simulations per model in most cases, deviations from the

‘‘reference’’ distributions of SSTA and precipitation may be

preferentially partitioned into the nonlinear term due to un-

dersampling during construction of those distributions. This

work cannot definitively attribute the reason for this outcome;

regardless, these results highlight the importance of atmo-

spheric sensitivity to SSTA, via the precipitation sensitivity to

SSTA or the nonlinear term, in setting the ENSO precipitation

response to climate change (He et al. 2018).

Figure 6 gives a more detailed breakdown of contributions

from the terms in the PDF method when averaged over the

Niño-3 region; note that here, all terms are computed using

spatial gridpoint values prior to regional averaging. Themajority

of CMIP5 models show a positive but weak contribution from

precipitation sensitivity to SSTA (Fig. 6b); however, there is a

large degree of scatter in this relationship. A stronger relation-

ship is seen with the other two terms (Figs. 6a,c)—strikingly, the

nonlinear contribution is positive in nearly all CMIP5 models

(Fig. 6c), whereas the SSTA contribution is roughly evenly split

FIG. 5. Mechanisms for changes in El Niño precipitation. (a) Change in twenty-first- vs twentieth-century El Niño precipitation due to

changes in ElNiño SSTA inCMIP5, as estimated by the PDFmethod [Eq. (2)]. (b)As in (a), but for CESMLENS. (c)As in (a), but for the

ESM2MLENS. (d) As in (a), but for precipitation changes due to changes in sensitivity of precipitation to SSTA in CMIP5. (e) As in (d),

for CESM LENS. (f) As in (d), but for ESM2M LENS. (g) Changes in precipitation due to nonlinear interactions between SSTA and

precipitation sensitivity to SSTA in CMIP5. (h) As in (g), but for CESM LENS. (i) As in (g), but for the ESM2M LENS. The twentieth

century is defined as 1950–2005, and the twenty-first century as 2006–2100, for all models. El Niño events are defined asDJF periods where

Niño-3 SSTA, deseasonalized with a 30-yr centered moving window, exceeds 0.5s. In both CESM and ESM2M, the twenty-first-century

portion of the simulations follows RCP8.5.
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between positive and negative values (Fig. 6a). We thus con-

clude that any disagreements between projections of extreme El

Niño precipitation in CMIP5 are likely to be driven by this

changing SSTA contribution. This is borne out by the nearly

linear relationship between changes in Niño-3 SSTA variance

and changes in the frequency of extreme wet El Niño over the

Niño-3 region (Figs. 7a–c). These results strongly suggest that

there remains a need to understand intermodel differences in

SSTA projections, even when using precipitation-based metrics

to characterize future changes in ENSO.

5. Links between the mean state and extremes

We next assess the relation between mean climate and ex-

treme El Niño. Models that project the largest future increases

in extreme El Niño frequency (the INCR models) simulate

systematically colder and drier historical conditions in the

central to eastern equatorial Pacific relative to those in which

extreme El Niño frequency decreases (DECR; Figs. 8a,c,e).

The INCR models also systematically have stronger mean

zonal equatorial SST gradients across the Pacific during the

historical period. The twenty-first-century mean-state change

is quite different in the INCRmodels relative toDECRas well;

warming is much stronger in the INCRmodels over the central

to eastern equatorial Pacific, and is accompanied by increases

in mean precipitation (Figs. 8b,d,f). These effects are largest in

the INCRmodels selected using the absolute precipitation

definition (Fig. 8a), but are present when using all three

definitions.

Taken together, the results of Fig. 8 would suggest that El

Niño–like mean-state changes tend to favor increases in ex-

treme El Niño frequency; and that colder conditions in the

FIG. 6. Mechanisms for changes in El Niño precipitation over Niño-3. (a) Changes in El Niño precipitation vs

contributions of SSTA to precipitation changes, computed from the PDF decomposition. (b) As in (a), but for

contributions of the sensitivity of precipitation to SSTA from the PDF decomposition. (c) As in (a), but for con-

tributions of the nonlinear term from the PDF decomposition. CESM and ESM2M CMIP5 simulations are indi-

cated as black-outlined symbols in (b) and (c).
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central and far eastern equatorial Pacific during the historical

period, in turn, favor El Niño–like warming. To determine how

well this conclusion holds across the CMIP5 archive as a whole,

we examine regional changes in two locations chosen to isolate

major SST biases: the far eastern equatorial Pacific (08–108S,
858–1058W), where SST is typically warmer than observed in

most models; and the central equatorial Pacific (2.58S–2.58N,

1608E–1208W), where SST is typically colder than observed

(Fig. 9a). In the eastern Pacific, warming trends are robustly

related to increasing extreme El Niño frequency as measured

by all three event definitions (Figs. 7g–i). Figure 10 then shows

the relationship between twentieth-century bias and twenty-

first-century warming: for the eastern Pacific, twenty-first-

century warming is negatively correlated with SST bias in

that region (Fig. 10b). In the central Pacific, twenty-first-

century warming is also robustly related to increases in

extreme El Niño, although the variance explained by this re-

lationship is lower than for the eastern Pacific (Figs. 7d–f).

Central Pacific SST bias is negatively correlated with twenty-

first-century central Pacific SST warming (Fig. 10a). Colder

historical central and eastern equatorial Pacific SSTs clearly do

favor El Niño–like warming, and in turn, increases in extreme

El Niño frequency.

The next question is to what degree mean-state biases alter

extreme El Niño projections; this requires a consideration of

cloud radiative feedbacks (Ceppi et al. 2017). In the eastern

equatorial Pacific near the South American coast, this leads to

underestimation of the positive cloud–SST feedback. The far

eastern Pacific hosts extensive decks of stratus clouds, associated

with climatological upwelling off the South American coast. In

such stratus-dominated regimes, the relationship between cloud

cover and SST is generally dominated by the positive stratus

cloud–shortwave radiation–SST effect (Ramanathan and Collins

1991; Ying and Huang 2016). A future climatological warming of

this region’s SST would tend to reduce the local climatological

stratus cover, thereby increasing insolation and amplifying the

FIG. 7. Relationship of changes in extreme El Niño fraction with mean and variance changes (twenty-first century2 twentieth century)

in the CMIP5 models. (a) Extreme El Niño fraction vs SSTA variance changes, using the absolute precipitation method. (b) As in (a), but

for the precipitation anomalymethod. (c) As in (a), but for the anomaly percentilemethod. (d) ExtremeEl Niño fraction vs central Pacific
SST changes, using the absolute precipitation method. (e) As in (d), but for the precipitation anomaly method. (f) As in (d), but for the

anomaly percentile method. (g) Extreme El Niño fraction vs eastern Pacific SST changes, using the absolute precipitation method. (h) As

in (g), but for the precipitation anomaly method. (i) As in (g), but for the anomaly percentile method. Here central Pacific SST is the

average over 2.58S–2.58N, 1608E–1208W; eastern Pacific SST the average over 08–108S, 858–1058W.
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climatological warming. This is a positive feedback that tends to

amplify the future warming of climatological SST in the eastern

equatorial Pacific; it will be too strong in models that start with

excessive climatological stratus in the eastern equatorial Pacific,

leading to excessive climatological warming of the surface. In the

central equatorial Pacific, a convective regime dominates; here,

the feedback between shortwave radiation and SST is negative,

since warmer SSTs lead to stronger convection, thicker cloud

cover, and a reduction in surface shortwave heating. A future

climatological warming of this region’s SSTwould tend to increase

the local climatological cumulus cover, thereby decreasing inso-

lation and reducing the climatological warming. This negative

feedback will tend to be too weak in models that start with overly

cold SST and therefore insufficient climatological cumulus in the

central equatorial Pacific; without enough cumulus cover present

to mitigate future warming, climatological SST will increase ex-

cessively. Since both the central and eastern equatorial Pacific are

colder in the INCR models, this will lead to both weaker con-

vective cloud generation and a thicker stratus deck, which have

distinct influences on future projections.

To illustrate the importance of cloud feedbacks to extreme

El Niño in CMIP5, we follow the methods of Ying and Huang

(2016) to examine model behavior in the historical period. The

‘‘cloud shortwave feedback index’’ (CSFI) is computedby regressing

twentieth-century (1981–2000) surface shortwave anomalies onto

local SSTA, after first removing the tropical Pacific regional mean

(208S–208N, 1208E–908W). When this is done, the CMIP5 multi-

model mean clearly shows the stratus- and cumulus-dominated re-

gimes described above (Fig. 11a). In the INCR model subset, the

negative CSFI values in the central Pacific are substantially weaker,

as illustrated by the positive anomalies in Figs. 11b–d; these weaker

negative feedbacks then increase local climatological warming

(Figs. 8b,d,f). In the eastern Pacific, the INCR models clearly

exhibit a more positive cloud–SST feedback, consistent with their

smaller overall SST biases in this region; this favors the stronger

twenty-first-century climatological easternPacificwarmingobserved

in these models.

Biases in the negative cloud–SST feedback in the central

equatorial Pacific have previously been cited as causing inter-

model spread in SST warming patterns in CMIP5 (Ying and

Huang 2016; Zheng et al. 2016), but were hypothesized to favor

La Niña–like mean changes. This was ascribed to overly strong

central Pacific heating, driving a convergent wind response

which cooled eastern Pacific SSTs via enhanced evaporation.

Previous studies therefore concluded that correcting cloud–

SST biases should result in a more El Niño–like mean state

change. Our results, in contrast, show that INCR models tend

to have weaker negative cloud–SST feedback biases and an El

Niño–like warming and eastward shift in equatorial convec-

tion, suggesting that common model biases may lead to an

FIG. 8. Relationships between mean responses and changes to extreme El Niño frequency in CMIP5. (a) Difference in twentieth-

century mean SST and precipitation between the INCR and DECR model subsets, selected using the absolute precipitation method.

(b) Difference in the twenty-first-century 2 twentieth-century change in mean SST and precipitation between the INCR and DECR

model subsets, selected using the absolute precipitation method. (c) As in (a), but for model subsets selected using the precipitation

anomalymethod. (d) As in (b), but for model subsets selected using the precipitation anomalymethod. (e) As in (a), but for model subsets

selected using the anomaly percentile method. (f) As in (b), but for model subsets selected using the anomaly percentile method. Colors

indicate changes inmean SST; contours indicate changes inmean precipitation in the twenty-first century relative to the twentieth.Dashed

lines indicate negative values. Stippling indicates differences are statistically significant at 90% using a rank-sum test on ensemble means:

triangles show significant SST differences and circles show precipitation differences. Boxes in (a), (c), and (e) indicate the eastern and

central Pacific regions used in Figs. 7 and 10.
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overestimate of future El Niño–driven precipitation extremes.

However, the effect of eastern Pacific SST biases may act as a

compensatory mechanism; correcting these biases would lead

to colder conditions, which Fig. 10 shows is associated with a

stronger twenty-first-century local warming in the region. This

enhanced warming, in turn, favors an amplification of future

extreme El Niño (Fig. 7). Model biases in the eastern Pacific, in

other words, may lead to an underestimate of extreme El Niño;
these two potential mechanisms are summarized schematically

in Fig. 12.

We note that the model groupings here were constructed

differently than in the Ying and Huang study; INCR models

are chosen based on their relative increase in extreme El Niño,

rather than the extent of historical SST biases. Our method

tends to select for INCR models with larger twenty-first-

century SSTA variance increases (Figs. 6 and 7), and with

less twentieth-century rainfall in Niño-3 (Fig. 8); in the former

case, SSTA variance amplifies rainfall variance, and in the

latter, a smaller starting rainfall amount favors a larger relative

increase in extremes. However, our results nonetheless point

to a delicate balance between local cloud feedback effects and

the remote wind response documented by Ying and Huang

(2016). In particular, the zonal position of the biases in

shortwave–SST feedbacks may be crucial to the overall influ-

ence on SST pattern change; if a model has a very strong stratus

regime in the eastern equatorial Pacific (as in INCR), the local

cloud–SST feedback will dominate the response to climate

change, creating a more El Niño–like SST warming pattern.

However, if a model has a less stratus-dominated eastern

equatorial Pacific and insufficient convection in the central

equatorial Pacific, the SST warming will be enhanced in the

central Pacific relative to the east, thereby enhancing the zonal

equatorial SST gradient, easterly winds, evaporation, upwell-

ing, and cooling in the eastern equatorial Pacific. In such cases,

this same feedback can lead to the previously identified cou-

pled wind response (favoring a more La Niña–like warming

pattern). The details of the wind response will depend sensi-

tively on the location and magnitude of the SST warming;

however, our results suggest that there may be multiple ‘‘re-

gimes’’ occupied by CMIP5 models, which respond differently

based on their dominant cloud and convective characteristics.

6. Emergent constraints

These results suggest that twentieth-century simulated cli-

mate may serve as a source of predictive power, by providing

‘‘emergent constraints’’ on the projected range of twenty-first-

century changes to extreme El Niño. Interestingly, despite the

strong association between ENSO amplitude changes and ex-

treme El Niño frequency shifts over the full twenty-first cen-

tury, the change to ENSO amplitude over the more recent

FIG. 10. Relation of twenty-first- minus twentieth-century mean SST changes with twentieth-century SST biases: (a) central Pacific (2.58S–
2.58N, 1608E–1208W) and (b) eastern Pacific (08–108S, 858–1058W).

FIG. 9. Biases in SST relative to observations (ERSSTv5):

(a) CMIP5 ensemble, (b) CESM LENS, and (c) ESM2M LENS.

Differences are calculated over the 1950–2005 period. Boxes in-

dicate eastern and central Pacific regions used in Figs. 7 and 10.
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period does not appear to exhibit predictive power (not pic-

tured). This is most likely due to the known large natural

modulations in ENSO amplitude over 20-yr periods, as were

used for the computations; natural ENSO variability has been

previously noted to be substantial on time scales up to several

centuries (Wittenberg 2009; Stevenson et al. 2010; Stevenson

2012). Rather, the most effective emergent constraint metrics

seem to be the change in the mean equatorial Pacific zonal SST

gradient (›T/›x) and the change in precipitation sensitivity to

SST (›P/›T). These metrics are inspired by the terms in the

PDF decomposition of section 4, and are thus clearly strongly

related to changes in extreme El Niño frequency (Figs. 5,

6, and 7).

For an emergent constraint to be effective, it must have

predictive power for the variable of interest (here, the change

in extreme El Niño frequency), and the independent variables

must be observable quantities that can be applied as bench-

marks for climate model simulations. The time period of

greatest interest for our independent variables is therefore the

satellite era (1979–2019). The form of the emergent constraint

relation is

D
dep

f 5b
0
1b

1
D
ind

›T

›x
1b

2
D

ind

›P

›T
, (3)

where f indicates the occurrence frequency of extremeElNiño,
and D values indicate the change in either independent (ind) or

dependent (dep) variables over a specified time period. The

time periods used for dependent and independent variables

need not be identical; indeed, for a true emergent constraint,

the independent variables should hold predictive power over

time periods longer than those over which they are measured.

As an initial test of the method, we first examine predictions

made using differences between the full (postsatellite era)

historical period and twenty-first century within the CMIP5

ensemble: both Dind and Ddep are set to (2021–2100) 2 (1979–

2020). In general, extreme El Niño changes identified using the

absolute precipitation method show less skill; none of the re-

gressions are statistically significant (Figs. 13a–c). This likely

relates to the inherent complexities associated with predicting

mean precipitation, where changes to simulated specific hu-

midity and the seasonal cycle may be confounding factors.

However, the regression relationship is highly significant for

both the precipitation anomaly and anomaly percentile methods

(Figs. 13d,g), explaining up to 50%of the variance in extreme El

Niño frequency change. We conclude that this choice of pre-

dictor variable set is reasonable to use for derivation of an ob-

servational emergent constraint.

We next examine changes over the satellite era, setting Dind

and Ddep to (1979–90) 2 (1991–2019) (note that observational

data extend only to early 2019). The choice of 1990 as a center

point for dividing the observational record is made in order to

avoid impacts from the early 2000s global-warming hiatus.

Once again, significant skill is seen for the two anomaly

methods (Figs. 13e,h), albeit explaining less variance than was

the case for the full twenty-first century since the chosen ep-

ochs are shorter. Now it is possible to include observationally

derived metrics (red vertical lines in Fig. 13); when the re-

gression relationship is applied to observational estimates of

›T/›x and ›P/›T, observations predict much smaller changes in

extreme El Niño frequency than the CMIP5 models simulate.

This is consistent with the hypothesis of section 5, indicating

that correcting biases in CMIP5models may tend to reduce the

previously cited (Cai et al. 2014) increase in extreme El Niño
occurrence.

Finally, we consider the case whereDind and Ddep differ; here

Dind is kept at (1979–90) 2 (1991–2019) to approximate the

observational era, whereas Ddep is extended to (1991–2070) 2
(1979–90) to form a true emergent constraint. Once again,

predictive skill remains in the anomaly methods (Figs. 13f,i),

and the observationally derived estimate lies within the spread

of the CMIP5 model predictions. This first step toward con-

straining extreme El Niño projections indicates that it may be

possible to use observational constraints to narrow the spread

in CMIP5 projections.

7. Discussion and conclusions

This work represents a new, systematic analysis of changes

to El Niño–driven precipitation and associated changes to

FIG. 11. (a) Cloud shortwave feedback index (CSFI; defined in

main text; Wm22 K21), CMIP5 multimodel mean. (b) CSFI dif-

ferenced between the model subsets (INCR2DECR) as selected

based on the absolute precipitation method. (b) Cloud fraction

regressed on SSTA, differenced between INCR and DECRmodel

subsets as selected based on the absolute precipitation method.

(c) As in (a), but for model subsets selected based on the precipi-

tation anomaly method. (d) As in (b), but for model subsets se-

lected based on the precipitation anomaly method. (e) As in (a),

but for model subsets selected based on the anomaly percentile

method. (f) As in (b), but for model subsets selected based on the

anomaly percentile method. All analyses cover the 1981–2000 pe-

riod, following Ying and Huang (2016). Boxes indicate the eastern

and central Pacific regions used in Figs. 7 and 10.
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‘‘extreme El Niño’’ frequency across the entire suite of CMIP5

simulations. When changes to extreme El Niño are examined

on a case-by-case basis, we find that there is a wide range in

projections of twenty-first-century event frequency. Notably,

this is true even if one considers only models previously as-

sessed as capable of realistically simulating deep convection

(Cai et al. 2014), and holds across multiple different defini-

tions of extreme El Niño. The majority of models do indeed

simulate increases to extreme El Niño frequency, but a sub-

stantial minority do not. Additionally, among models that do

simulate an increase, the magnitude of that increase varies

dramatically. This points to the need to better understand

drivers of intermodel differences, to narrow the spread in

future projections.

Using a new application of a PDF-based decomposition

method (Watanabe andWittenberg 2012), we have shown that

changes to El Niño–driven precipitation are affected by several
factors. The previously identified tendency for precipitation to

become more sensitive to SSTA in a warming climate (Power

et al. 2013; Bonfils et al. 2015) contributes substantially, cre-

ating an increase in equatorial precipitation during El Niño.
However, changes in the SSTA variance also contribute

strongly to precipitation responses, and our results show that

SSTA changes dominate intermodel diversity in El Niño–
driven precipitation projections. As SSTA variance projec-

tions continue to vary widely in current-generation models

(Stevenson 2012; Bellenger et al. 2014; Fasullo et al. 2018), our

work indicates that constraining the response of interannual

SSTA variance to future climate change should remain a

priority.

Our work also demonstrates the power of combining CMIP-

style model intercomparisons with large single-model ensem-

bles. The CESM and ESM2M large ensembles were run using

the CMIP5 configuration of each model (Kay et al. 2015;

Rodgers et al. 2015) and havediametrically opposed responses

of ENSO variability and extreme El Niño changes, allowing

them to function as ‘‘end members’’ for the full CMIP5 analysis.

The contribution of SSTA variance to El Niño precipitation

differs between the ensembles, tending to slightly amplify

anomalies in CESM and strongly damp them in ESM2M. The

sensitivity of extremeEl Niño frequency tomean-state change is

also different between the ensembles; in CESM, the zonal SST

gradient response to climate change is tightly coupled with the

frequency of extreme El Niño occurrence, whereas this depen-

dence is much weaker in ESM2M. Notably, in both models the

zonal SST gradient appears to have a larger influence than the

previously cited effect of the meridional SST gradient (Cai et al.

2014). We hypothesize that the ITCZ migration mechanism

proposed by Cai et al. (2014), while operative in some models,

has a smaller controlling influence on emergent extremeElNiño
frequency changes than zonally asymmetric feedbacks along the

equator.

FIG. 12. Schematic relating mean-state biases to cloud feedbacks and changes in extreme El Niño occurrences. (a) Twentieth-century

central Pacific bias: Weakened cumulus formation creates an insufficiently negative cloud–SST feedback; farther east; stratus enhancement

leads to an overly strong positive cloud–SST feedback. (b) Twenty-first-century atmospheric changes due to central Pacific bias: both the

reduced cumulus and enhanced stratus biases create positive feedback anomalies, which enhance warming in the cold tongue region. The

convergent wind response leads to coastal cooling in the eastern Pacific. The dry twentieth-century bias favors a stronger relative precipitation

increase, leading to larger percentage changes in extreme wet El Niño occurrence. (c) Twentieth-century eastern Pacific bias: weakened

stratus cover creates an overly weak positive feedback. (d) Twenty-first-century atmospheric changes due to eastern Pacific bias: the reduced

stratus creates a negative feedback anomaly, which reduces warming near the South American coast and suppresses precipitation.
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The connection between the zonal SST gradient and ex-

treme El Niño is expressed in part through the action of cloud

shortwave feedbacks. Models that simulate larger increases in

extreme El Niño frequency tend to have colder and drier

twentieth-century climates, with overall larger zonal SST gra-

dients. This enhances biases toward overly strong stratus cov-

erage in the far eastern equatorial Pacific and weak cumulus

coverage nearer the date line. Both of these effects reduce the

negative surface shortwave feedback, facilitating stronger rel-

ative warming in the eastern part of the basin. In model subsets

selected according to their precipitation responses, this effect

seems to dominate over previously identified remote wind re-

sponses, which would counteract warming in the east Pacific

(Ying and Huang 2016).

We note that there may be other influences affecting mean-

state responses to climate change, not all of which could be

addressed in the present study. Of particular interest is the

potential for off-equatorial warming to create remote re-

sponses in the tropics, owing to a weakening of the Hadley

circulation and oceanic subtropical cells with associated

changes in equatorial SST (Stuecker et al. 2020). This

mechanism may indeed affect the sensitivity of the cold tongue

to future warming, through modification of the equatorial

thermocline and associated SST anomalies communicated with

the surface via vertical advection. However, even in a case

where subtropical processes play a significant role, equatorial

processes are expected to be fundamental in setting the re-

gional behavior of SST pattern formation (Xie et al. 2010; Ying

and Huang 2016).

We have demonstrated a first proof of concept of the use of

precipitation and temperature-based metrics as emergent con-

straints on changes to extreme El Niño frequency. Changes in the
amplitude of Niño-3 SSTA variability, the sensitivity of precipi-

tation to SST, and the zonal SST gradient over the modern ob-

servational era (1980–2020) are used as predictors for overall

twenty-first-century changes to extreme El Niño frequency,

and the relationship is statistically significant for the two

anomaly-based methods. The variance explained for the ab-

solute precipitation method is much lower, likely a conse-

quence of confounding factors complicating the prediction of

mean-state increases. When observational data are used to

estimate the predicted value of ‘‘true’’ future extreme El

FIG. 13. Prediction of change in extremeEl Niño fraction using observablemetrics over themodern era: the zonal equatorial gradient of

SST (DdT/dx), and the sensitivity of precipitation to SSTA (DdP/dT; regression of precipitation on SSTA over Niño-3). (a) Prediction of

changes to extreme El Niño identified using the mean precipitation method, for both independent and dependent variable differences

computed between 2021–2100 and 1979–2020. (b) As in (a), but for independent and dependent variables differenced between 2001–19

and 1979–2000. (c) As in (a), but for independent variables differenced between 2001–2019 and 1979–2000, and dependent variables

differenced between 2001–2070 and 1979–2000. (d)–(f) As in (a)–(c), but for extreme El Niño events identified using the precipitation

anomaly method. (g)–(i) As in (a)–(c), but for extreme El Niño events identified using the anomaly percentile method. Black solid lines

indicate best-fit regressions; bold indicates a statistically significant relationship. Vertical red dashed lines indicate the predicted value

generated using observational data.
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Niño changes, the values lie near the median of the range

simulated by CMIP5. This may indicate that CMIP5 models

reliably capture the potential spread in extreme El Niño
frequency; however, the presence of multiple confounding

mechanisms related to cloud shortwave feedbacks presents a

cautionary note and motivates future process-based investi-

gations of twenty-first-century ENSO behavior.
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