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9.1. HISTORY OF ENSO SIMULATION 
IN COMPLEX MODELS

From their initial development at the end of the 1960s, 
early coupled general circulation models (GCMs) 

remained relatively crude up to the 1990s, with coarse res­
olution, limited physical parameterizations, and strongly 
biased air‐sea surface fluxes. Model drift from the 
observed mean state was often substantial, and their use 
for investigating climate variability such as ENSO was 
very limited. The Tropical Ocean–Global Atmosphere 
(TOGA) program was a milestone that allowed substan­
tial progress in ENSO understanding and modeling, in 
particular via improved parameterizations; see also 
chapter  1. This program led to  the first comprehensive 
review of ENSO in a special edition  of Journal of 
Geophysical Research: Oceans (https://agupubs.
onlinelibrary.wiley.com/doi/toc/10.1002/(ISSN)2169‐ 
9291.TOGA1 and Delecluse et  al., 1998). Within a 
few years, improved model resolution and physics led to 
the natural occurrence of ENSO in coupled GCMs. 
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Studies of coupled models began to reveal biases that had 
been concealed in the ocean‐only or atmosphere‐only 
simulations used up to then. A community of scientists, 
working at the interface between the ocean and the 
atmosphere, steadily grew and now forms the core of 
ENSO expertise in the tropics.

A series of coupled model intercomparison projects 
(CMIPs) have shown steady progress in simulating ENSO 
and related global variability using state‐of‐the‐art cou­
pled GCMs (AchutaRao & Sperber, 2006; van 
Oldenborgh et  al., 2005; Guilyardi 2006; Capotondi 
et al., 2006; Wittenberg et al., 2006; Bellenger et al., 2014; 
C. Chen et al., 2017). Improvements in model formula­
tion and resolution have led to better representation of 
many key features of ENSO; see 4th and 5th assessment 
reports of the Intergovernmental Panel on Climate 
Change (IPCC AR4 and AR5) and the Special Report on 
the Ocean and Cryosphere in a Changing Climate. In con­
trast to the 1990s, progress in the past two decades has 
been gradual. A number of studies nevertheless have 
pointed to key factors essential to a realistic simulation of 
ENSO in a coupled GCM, in particular, properly repre­
senting deep convection and clouds in the atmospheric 
component (which depends to a large extent on the atmo­
spheric horizontal grid resolution), and properly repre­
senting equatorial wave dynamics, upwelling, and vertical 
mixing in the oceanic component (a strong function of 
oceanic grid resolution, especially in the meridional and 
vertical directions near the equator). The CMIP5 models 
showed progress relative to their CMIP3 counterparts, as 
all CMIP5 models displayed some kind of ENSO‐like 
behavior. However, the best CMIP5 models were only 
marginally better than the best CMIP3 models. CMIP5 
also included models with increased nonlinear behavior, 
stemming mostly from better‐resolved atmospheric 
processes, such as convective thresholds or the ability to 
simulate intraseasonal variability like the Madden‐Julian 
Oscillation (MJO) and westerly wind bursts (WWBs, also 
known as westerly wind events or WWEs). Yet as detailed 
in section 9.4, systematic errors still persist, decades after 
their first identification.

In the early 2000s, once models were able to simulate 
ENSO properties (e.g. amplitude and frequency) closer to 
observed, model evaluation began to include process‐
based metrics to ensure that the right properties were 
simulated for the right reasons and not via error 
compensation (Guilyardi et al., 2004, Kim & Jin, 2011). 
Besides providing invaluable feedbacks to model devel­
opers, multimodel intercomparisons continue to help 
bridge the gap between theoretical understanding of El 
Niño and its representation in coupled GCMs (CGCMs) 
(Fedorov et  al., 2003; Held 2005; Kim & Jin, 2011). 
Hence, thanks to this improved theoretical understanding 
of ENSO, more mature diagnostic tools are now available 

to help unravel the underlying ENSO mechanisms. ENSO 
model evaluation has grown into a very active area of 
research, and exciting steps lie ahead.

9.2. BENEFITS OF A HIERARCHY OF MODELS

A hierarchy of models of increasing complexity has 
made it possible to simulate, experiment with, and under­
stand the dynamics of ENSO. This hierarchy includes (i) 
simple oscillators, which describe the cyclic nature and 
essential parameters of the phenomenon; (ii) intermediate 
models, which describe the fluid dynamics and thermo­
dynamics of the equatorial ocean and atmosphere with 
some simplifications; and (iii) GCMs, which describe 
global climate with as much resolution and comprehen­
siveness as possible on the world’s most powerful super­
computers. Each type of model serves different goals and 
has its own advantages and requirements. The simplest 
models can capture novel theoretical concepts, highlight 
specific mechanisms, are valuable teaching tools, and 
have served as sources of insight into ENSO sensitivities 
and sources of predictability. The simple models are 
easily understood, tractable, and versatile, at the cost of 
being mostly qualitative, limited in focus, and sometimes 
difficult to relate directly to observations. In contrast, 
general circulation models are much more detailed as 
they attempt to account for the full complexity of the cli­
mate system; however, due to their complexity, such 
models are expensive to maintain and improve and more 
difficult to diagnose and understand.

There are also important advantages in working simul­
taneously with models of different levels of complexity. 
Simple models can often be used to interpret GCMs and 
understand their biases via process‐based metrics (e.g. An 
& Jin, 2004; Jin et al., 2006; Brown et al., 2011; K.‐Y. Choi 
et  al., 2013, 2015; Graham et  al., 2015; Vijayeta & 
Dommenget, 2018). For example, the Bjerknes stability 
index, a process‐based metric derived from the recharge 
oscillator paradigm, has allowed the identification of 
errors in the GCMs (Kim & Jin, 2011), with some caveats 
(Graham et al., 2014). Conversely, the full characteriza­
tion of ENSO’s behavior gained from GCMs can inform 
the development of simpler conceptual models. For in­
stance, many studies adopt a hybrid approach where 
GCM outputs infer the parameters or characteristics of a 
simpler model that is then analyzed more extensively due 
to its lower computational cost. Finally, the above hier­
archy is flexible to some extent, because models some­
times couple components of vastly different complexity 
(e.g. an ocean GCM to a statistical atmosphere, etc.). 
Comprehensive coupled GCMs have been described in 
many places (Flato et al., 2013; Guilyardi et al., 2009), so 
we focus in this section on the simpler range of the model 
hierarchy.
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9.2.1. Harmonic Oscillator Models

The simplest ENSO models are harmonic oscillators 
constructed from ordinary differential equations that 
capture the oscillatory nature of ENSO with periods of 2 
to 7 years. Several harmonic oscillator models have been 
proposed. They all share a similar mathematical form but 
differ greatly in the variables and processes described, 
as well as in the approximations made to represent the 
oceanic and atmospheric dynamics (e.g. Picaut et  al., 
1997; Clarke et al., 2007). One example is the recharge/
discharge oscillator model (Jin, 1997), which in its sim­
plest form (Burgers et al., 2005) is expressed as

	

dT
dt

aT b H

dH
dt

c H dT ,
	 (9.1)

where T is a spatial average of sea surface temperature 
anomalies (SSTAs), H is a spatial average of thermocline 
depth anomalies, and a, b, c, d are fixed parameters. Another 
example is the delayed oscillator (Suarez & Schopf, 1988; 
Battisti & Hirst, 1989), which reads in its simplest form

	
dT
dt

f T gT t ,	 (9.2)

where τ is a fixed delay and f, g are fixed parameters (see 
chapter 6 for further details).

These models typically include a fast positive feedback 
that results in the growth of El Niño SSTAs, as well as a 
delayed negative feedback responsible for reversing the 
phase of the oscillation. While the positive feedback in most 
models is a representation of the Bjerknes feedback, the 
nature of the negative feedback may vary from model to 
model. For instance, the delayed oscillator above empha­
sizes the delayed propagation and reflection of oceanic 
equatorial waves, while the recharge/discharge model 
emphasizes the meridional transport of equatorial heat 
content. While all of those processes seem to be at work in 
the real world, none of them is sufficient to provide a 
complete picture of ENSO mechanisms (Wang & Picaut, 
2004). Furthermore, many of these conceptual models have 
struggled to capture the full behavior of ENSO seen in 
observations or coupled GCMs (Graham et al., 2014, 2015).

Despite those drawbacks, harmonic oscillators have 
proven to be an invaluable testbed for theoretical con­
cepts of more advanced features of ENSO dynamics. In 
fact, basic modifications of the equations above produce 
more realistic ENSO evolution. For example, the addition 
of fundamental nonlinearities mimics the observed burst­
ing nature of ENSO, its asymmetry between El Niño and 
La Niña, and distinct strong and moderate regimes of 

evolution (e.g. Timmerman & Jin, 2003; Guckenheimer 
et al., 2017; Takahashi et al., 2018). Similar features may 
also be obtained through the addition of stochastic noise, 
which parameterizes fast atmospheric wind bursts and 
their dependence on sea surface temperatures (SSTs; Jin 
et  al., 2007; Levine & Jin, 2010, Bianucci et  al., 2018). 
Other modifications lead to seasonal synchronization of 
ENSO (e.g. Stein et  al., 2014). Although these descrip­
tions remain limited in scope, they provide intuitive illus­
trations of fundamental aspects of ENSO, involving its 
causes, evolution, and predictability. They also depict to a 
reasonable extent the dynamical regimes found in more 
complex models, thanks to the inherent low‐order nature 
of ENSO (Karamperidou et al., 2014).

9.2.2. Linear Inverse Modeling

Besides simple models developed to represent key dynam­
ical ENSO feedbacks, there are “empirical dynamical” 
models that estimate the model operators directly from the 
data. Linear inverse models (LIMs) have been extensively 
used to understand and predict ENSO (Penland & 
Sardeshmukh, 1995). In the LIM framework, the tropical 
Pacific is described in terms of an anomaly state vector x, 
which is constructed from anomalies of the key system var­
iables. The evolution of x is then modeled in terms of linear, 
damped, stochastically perturbed dynamics (Penland & 
Sardeshmukh, 1995; Newman et al., 2011) of the form

	 dx x SrL dt dt , 	 (9.3)

where the linear operator L encapsulates the predictable 
dynamics of the system, the matrix S represents spatially 
coherent stochastic forcing patterns, and r is a vector of 
random numbers drawn from a normal distribution with 
zero mean and unit standard deviation. The operators L 
and S can be estimated directly from the covariance 
matrices of x.

The leading eigenvectors of the L operator, known as 
empirical normal modes, are nonorthogonal and damped, 
with some of them having an oscillatory component. 
Thus, ENSO can be effectively described as a damped 
oscillatory phenomenon, governed by (predominantly) 
linear dynamics, and energized by atmospheric stochastic 
forcing. This is a very different paradigm than those pro­
posed in many seminal ENSO studies (Philander et al., 
1984; Zebiak & Cane, 1987; Schopf & Suarez, 1988, 1990; 
Neelin & Jin, 1993, among others), which viewed ENSO 
growth as the result of a dynamical instability (involving 
unstable mode(s) and no need for stochastic forcing). In 
addition, if  ENSO can be described by a subset of the 
empirical normal modes which evolve over time, the 
implication is that ENSO cannot be merely identified 
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with its mature state but should be viewed, instead, as an 
evolving phenomenon that grows from some initial 
condition (the ENSO precursors) to a mature stage, fol­
lowed by a decay phase. Apart from providing insights 
into the nature of ENSO, the empirical dynamical model 
(9.3) can be integrated in time for several millennia and 
provide very long synthetic time series of the key system 
variables. These time series encapsulate the statistics of 
the system and can be used to assess the statistical signif­
icance of observed (or modeled) ENSO changes 
(Capotondi & Sardeshmukh, 2017). To reduce the number 
of degrees of freedom, only a limited number of variables 
are usually included in the LIM state vector. Although 
the covariance matrices used to compute the dynamical 
operator L incorporate the dynamical feedbacks of the 
system, dynamical processes are not explicitly represented 
in the LIM approach, somewhat limiting the interpret­
ability of the LIM results in terms of conventional diag­
nostic methods.

9.2.3. Models of Intermediate Complexity

Next in the hierarchy of ENSO models are Earth 
models of intermediate complexity (EMICs). EMICs use 
heavily parameterized processes to explicitly depict the 
spatial and temporal evolution of the climate system 
(Claussen et al., 2002), though with much less detail than 
full three‐dimensional GCMs.

The ocean‐atmosphere dynamics and SST thermody­
namics in EMICs have substantial simplifications, though 
they retain the processes deemed essential for the ENSO 
(Zebiak & Cane, 1987; Battisti & Hirst, 1989). Typically, 
EMICs are two‐dimensional (2D) models where the flow 
depends on longitude, latitude, and time while the vertical 
structure is fixed in the ocean and atmosphere. This 2D rep­
resentation of the flow (two spatial dimensions in addition 
to time) has the advantage of being simpler to deal with 
than the usual 3D representation. EMICs are formulated 
as anomaly models, that is, they describe departures from 
prescribed basic state conditions (e.g. the annual mean and 
seasonal cycle). They commonly adopt the shallow water 
approximation for the ocean component, which assumes 
an active upper layer separated from the resting deep ocean 
by a well stratified thermocline (which is equivalent to 
retaining only the first vertical baroclinic mode). The 
atmosphere may also be described by shallow water 
dynamics for a single vertical layer, treated as a fast adjust­
ing component compared to the ocean, and admitting 
steady state solutions (e.g. Gill, 1980). Heating from deep 
convection is parameterized according to empirical rela­
tionships (Kleeman, 1993), or the atmosphere can be 
entirely derived from statistical relationships between sur­
face wind stress and the ocean state (Latif & Villwock, 
1990; Barnett et  al., 1993; Syu et  al., 1995; Wittenberg, 

2002; Vecchi et al., 2006). Finally, a thermodynamic budget 
for SST in the ocean mixed‐layer is systematically included.

While EMICs usually consist of the above main ingre­
dients (e.g., Zebiak & Cane, 1987; Neelin et  al., 1998), 
their complexity ranges widely from simple models to 
GCMs. One of the simplest class of EMICs are zonal 
strip models, i.e. 1D models whose evolution depends 
only on longitude and time thanks to a meridional trun­
cation, where the flow is either confined to an equatorial 
strip or Galerkin‐projected on the first meridional para­
bolic cylinder functions (e.g., Jin & Neelin, 1993; An & 
Jin, 2001; Jin, 2001; Thual et al., 2016). These zonal strip 
models explicitly account for the propagation and reflec­
tion of equatorial ocean waves and therefore capture 
both the recharge/discharge and delayed oscillator mech­
anisms of ocean adjustment described by the harmonic 
oscillators in section 9.2.1. Of much higher complexity, 
closer to CGCMs, are hybrid coupled models. These typ­
ically consists of a simplified dynamical or statistical 
atmosphere coupled to an ocean GCM that includes 
important details of the 3D vertical structure, as well as 
small‐scale and nonlinear processes (e.g., Neelin, 1990; 
Barnett et al., 1993; Syu et al., 1995; Wittenberg, 2002). 
Another (less common) type of hybrid coupled model 
instead couples a simplified ocean model to an atmo­
spheric GCM (e.g., Kirtman & Zebiak, 1997; Yu et al., 
2015). Some EMICs even include biogeochemical 
processes that can feed back on ENSO (e.g. Marzeion 
et al., 2005; R. Zhang et al., 2019).

EMICs have been very popular in the past, achieving for 
example the first successful forecast of the 1986/87 El 
Niño (Zebiak & Cane, 1987). Despite today’s more wide­
spread use of CGCMs, EMICs still remain widely used for 
targeted applications; this is mostly due to EMICs’ consid­
erably lower computational cost, and because EMICs 
facilitate understanding and control of the simulated 
ENSO processes. EMICs may be tools of choice, e.g., 
for  sensitivity or large ensemble experiments, as well as 
for very long simulations where their design helps avoid 
the long‐lasting problem of climate drifts found in most 
CGCMs. Following their extensive use in pioneering 
studies on ENSO predictability (e.g. Kleeman & 
Power, 1994; D. Chen et al., 1995) and seasonal prediction 
(Barnett et al., 1993; D. Chen et al., 2004; R.‐H. Zhang 
et al., 2003), EMICs also remain routinely used for opera­
tional forecasts. Their skill in forecasting ENSO is overall 
similar to that of other models including GCMs, with the 
exception of a few advanced prediction systems (Barnston 
et  al., 2012). Finally, EMICs have contributed to the 
understanding of ENSO dynamics, including, among 
others, the nature of ENSO’s coupled instabilities (Jin & 
Neelin, 1993), the role of mixed‐layer thermodynamical 
feedbacks (An & Jin, 2001), and ENSO interactions with 
the basic state (An & Wang, 2000; Fedorov & Philander, 
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2001; Wittenberg, 2002) or the seasonal cycle (Tziperman 
et  al., 1994). Although most EMICs do not explicitly 
resolve fast and small‐scale atmospheric variability such 
as wind bursts, some of them include ad‐hoc representa­
tions or stochastic parameterizations that illuminate the 
impacts of atmospheric noise on ENSO characteristics, 
dynamics, and predictability (e.g. Moore & Kleeman 1999; 
Eisenman et al., 2005; Gebbie et al., 2007; Zavala‐Garay 
et al., 2008; Thual et al., 2016).

9.3. USING MODELS FOR ENSO UNDERSTANDING

Climate models are therefore essential tools for under­
standing ENSO mechanisms and exploring the future, 
either via seasonal/decadal forecasting or climate 
projections (chapters 10 and 13). Because so few events 
are well observed, models also help to reconstruct past 
variability and explore the influence of external forcing 
(chapters 5, 11–13). Early on, the variety of ENSO behav­
iors exhibited by coupled models provided evidence that 
more than one mechanism was active in the generation 
and evolution of ENSO events (chapters 6 and 7). Much 
research has since been devoted to describing the mecha­
nisms involved and, more recently, to understanding their 
relative balance, as well as the time variations of this 
balance. Models were also instrumental in showing that 
interannual variability is linked to the mean/decadal 
structure of the equatorial Pacific (chapter 8), and this 
opened up the exploration of the factors that affect the 
mean state, such as external forcing, vs. the impact of 
internal variability at multiple timescales (from intrasea­
sonal to multidecadal).

Much of this new knowledge on ENSO was obtained 
from sensitivity simulations in which part of the coupled 
ocean‐atmosphere system was either simplified or omitted, 
such as atmosphere‐only GCM (AGCM), ocean‐only 
GCM (OGCM), and partially coupled or nudged models. 
Coordinated sensitivity simulations (e.g. MIPs; Eyring et al., 
2016, and https://explore.es‐doc.org/) are now a common 
way to explore the robustness of the mechanisms found. 
Experience indeed shows that drawing conclusions on dom­
inant ENSO mechanisms from just one or two models is not 
sufficient. Several model studies also have shown that 200 to 
300 years of data are needed to robustly assess significant 
changes in ENSO properties, at least in GCMs (Wittenberg, 
2009; Stevenson et al., 2010; Collins et al., 2019; Magnan 
et al., 2019), but also most likely in observations.

9.3.1. Process Understanding

Reviewing studies that used coupled models to under­
stand ENSO processes would be both lengthy and a 
duplication of many parts of this monograph. Here we 
review how GCMs help to understand ENSO, provide a 

few examples, and discuss their advantages and 
limitations.

Systematic errors in ENSO properties, documented in 
successive CMIP generations (Delecluse et al., 1998; van 
Oldenborgh et al., 2005; Capotondi et al., 2006; Guilyardi, 
2006; AchutaRao and Sperber 2006; Bellenger et al., 2014; 
C. Chen et al., 2017), have been traced back to a number 
of mechanisms, helping to identify their key role. For 
example, earlier CMIP generations (Delecluse et al., 1998) 
with coarse ocean grids confirmed the importance of 
ocean equatorial waves for ENSO dynamics. More 
recently, CMIP3 and CMIP5 highlighted the importance 
of correctly representing atmospheric deep convection, 
trade wind strength, and cloud feedbacks (Lloyd et  al., 
2012, Bellenger et al., 2014, Dommenget & Yu, 2016). As 
some of these errors have gradually been reduced in more 
recent versions of the models, remaining biases have also 
traced to other processes (e.g., atmospheric intraseasonal 
variability or oceanic vertical mixing, see section  9.5), 
which helps identify them as secondary processes for 
ENSO. However, error compensation between large biases 
may inhibit the understanding of major processes in the 
real system (Guilyardi et al., 2004; Bellenger et al., 2014; 
Figure 9.1). These can only be seen once these major biases 
disappear. For example, the impact of ocean resolution on 
ENSO properties (beyond that of resolving equatorial 
waves, which was achieved at the end of the TOGA period) 
could only be shown once the atmosphere resolution was 
high enough (Roberts et al., 2009, Haarsma et al., 2016).

Early theoretical models and EMICs of ENSO were 
devised as “anomaly models.” At the same time, early 
coupled GCMs had to resort to flux corrections to avoid 
large mean state drift. This combination of factors hid 
for many years the fact that ENSO interacts with both 
the mean state and annual cycle. Systematic analyses of 
CMIP3, the first generation of models that (mostly) did 
not use flux correction, showed that ENSO properties 
and errors could be linked to mean state errors (e.g., 
Wittenberg, 2002; Guilyardi, 2006; Taschetto et al., 2014; 
Graham et al., 2017). For example, several studies showed 
an inverse relationship between the strength of the annual 
cycle in the east Pacific and the amplitude of ENSO 
(Guilyardi, 2006; Fedorov & Philander, 2000). Recent 
theoretical work has also explored this issue and the 
mechanisms involved, and it is now an active field of 
research (cf. chapter 8), largely relying on models. As an 
example, the nonlinear interaction between ENSO and 
the annual cycle is able to generate timescales arising 
from combinations of the annual and ENSO frequencies 
and provides a source of irregularity (Stuecker et  al., 
2013, 2017; Ren et  al., 2016). This can help trace back 
errors in ENSO properties to errors in the annual cycle, a 
notoriously difficult feature to model correctly in 
CGCMs, especially in the east Pacific where the double 
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Intertropical Convergence Zone (ITCZ) systematic error 
is often associated with the spurious semiannual cycle.

The diversity of  ENSO representations in the first 
generation of  models without flux corrections (CMIP3) 
was unexpected. A debate was begun over the reasons 
why, and soon two families of  arguments emerged: (i) 
either this diversity was spurious and due to model 
errors, or (ii) the simple balance of  processes proposed 
by ENSO theories was actually more complex. The 
debate was resolved by recognizing that both views were 
partly correct. An example of  the above discussion is 
the debate about the role of  the atmosphere in setting 

ENSO properties, which started in the late 1990s. Studies 
using a mix of  various AGCMs and OGCMs showed 
that the AGCM had a dominant role in setting ENSO 
properties (and errors) in GCMs (Guilyardi et al., 2004). 
This was unexpected as ENSO, due to its slow timescale, 
was then mostly viewed as primarily involving oceanic 
processes (Neelin et al., 1998). Atmospheric processes in 
ENSO theories were then (and in some sense still are) 
represented by a mostly steady‐state response to surface 
heating (Gill, 1980), forming the atmospheric branch of 
the Bjerknes feedback, and a local and linear Newtonian 
damping associated with surface fluxes. Detailed analysis 
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of model simulations, as well as better observations of 
the tropical atmosphere, have since helped revisit the 
role of  the atmosphere in ENSO. Heat flux feedbacks, 
linked with clouds, convection, and boundary‐layer 
physics, were shown to play a central role in ENSO 
(Guilyardi et al., 2009), and together with the Bjerknes 
feedback exhibit marked nonlinearities, like those asso­
ciated with the convective threshold (Lloyd et al., 2012; 
Bellenger et al., 2014; Takahashi & Dewitte, 2016).

Models also offer a unique framework to make closed 
budget computations, unlike observations, which have 
insufficient sampling both in space and in time. This 
helps clarify the relative balance of mechanisms in the 
ocean during ENSO (Vialard et  al., 2001; Ray et  al., 
2018b) or develop integral energetics approaches (Brown 
& Fedorov, 2010; Brown et al., 2011).

Since the 1997–1998 large El Niño event, the role of 
atmospheric intraseasonal variability (ISV), namely 
WWBs, has been investigated in increasing detail. Again, 
due to limited observations, models have been choice 
tools to investigate this new field (see review by Lengaigne 
et al., 2004). Beyond exploring mechanisms, models can 
be used to increase the sampling and explore the ENSO/
ISV relationship more robustly than in the limited obser­
vational record (Puy et  al., 2017; Chiodi & Harrison, 
2017; Larson & Kirtman, 2015). Another benefit is the 
ability to decouple the respective roles of  the ocean and 
the atmosphere to infer causality in an otherwise strongly 
coupled and highly variable system (van Oldenborgh, 
2000; Vecchi et  al., 2006; Gebbie et  al., 2007; Hu & 
Fedorov, 2016; Puy et al., 2017). For instance, the same 
WWB can be applied at regular time intervals to an 
interannually varying simulation (Puy et  al., 2017; 
Figure 9.2) to assess the role of  the ISV forcing on ENSO 
development and strength. One remaining limitation to 
this day is of  course the model’s ability to generate both 
correct ENSO behavior and correct ISV variability char­
acteristics, which remains a challenge (Hung et al., 2013; 
Ahn et al., 2017).

To explore the predictive power of the subsurface heat 
recharge in the ocean, Larson and Kirtman (2015) used 
an approach in which any interannual precursors were 
coherently removed in the tropical Pacific, thereby iso­
lating the role of high frequency noise (WWBs) in ENSO 
predictability. They showed that, without prior heat 
recharge, the occurrence of WWBs in March could pre­
condition the Pacific towards an El Niño event later in 
the year, whereas the other months were less sensitive. 
Using a multimodel approach, in which a selection of 
CMIP5 models that correctly simulate ENSO properties 
is made, Planton et al. (2018) found an El Niño/La Niña 
asymmetry in the predictive power of the heat recharge, 
with discharge being a more reliable predictor of La Niña 
occurrence and amplitude than recharge is for El Niño. 

In a related study, Neske & McGregor (2018) used a 
forced OGCM to distinguish the slow, dynamically driven 
recharge (e.g. Izumo et al., 2018) from the instantaneous, 
ISV‐driven recharge and showed that the relative impor­
tance of the two sources depended on the ENSO state.

ENSO events display a broad spectrum of spatial struc­
tures, ranging from very strong events with the largest 
SSTA in the eastern Pacific (EP events) to weaker events 
that peak in the central Pacific (CP events). This diversity 
of spatial patterns has received considerable attention in 
recent decades (Capotondi et al., 2015b, and references 
therein; see also chapter 4) due to the increased occur­
rence of CP events after the year 2000, and to the recog­
nition that atmospheric teleconnections are sensitive to 
the location of SST anomalies in the equatorial Pacific. 
Event‐to‐event differences also include time evolution, 
direction of propagation, event asymmetries, etc.: a range 
of aspects that has recently been termed “ENSO 
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Figure 9.2  A set of experiment where the same WWB (a.k.a. 
WWE) is applied at different seasons and interannual condi-
tions. An intraseasonally filtered forcing and an idealized 
WWB are used. This strategy allows a clear separation of 
causes and effects of the impact of WWB on ENSO and, in 
particular, the description of the role of the stochastic part of 
WWBs, i.e. the component of the WWBs not responding to the 
background conditions. Shading is SST with the dashed line 
representing the 28.5C isotherm, i.e. the eastern edge of the 
warm pool (see Puy et al., 2016).
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complexity” by Timmerman et al. (2018). Due to model 
biases such as the equatorial cold tongue (ECT) bias, 
many models have difficulty in simulating a diversity of 
spatial patterns, as discussed in chapter 4. However, some 
models do exhibit some degree of realism in simulating 
ENSO diversity, including the continuum between CP 
and EP cases. These models have been invaluable for 
gaining insight into the nature and leading dynamical 
feedbacks of different types of El Niño events, with a 
much higher degree of statistical significance than can be 
achieved using the shorter observational record (Kug 
et al., 2010, Capotondi, 2013).

Multicentury preindustrial climate model simulations 
have also shown the possibility of a low‐frequency modu­
lation of ENSO diversity, with decadal epochs dominated 
by either EP or CP event types that can occur even in the 
absence of any external forcing (Kug et al., 2010; J. Choi 
et al., 2011; J. Choi et al., 2012; Wittenberg et al., 2014). 
The possibility of these intrinsic decadal variations, which 
as yet would be difficult to determine from short observa­
tional records in the presence of past natural and anthro­
pogenic radiative forcings, suggests caution in interpreting 
recent changes in ENSO character (e.g. the larger number 
of CP events during the first decade of the 21st century) 
as trends associated with global warming (Yeh et  al., 
2009; Newman et al., 2018). While global warming can be 
expected to influence ENSO diversity, the nature of this 
influence is still unclear (e.g., Cai et al., 2018; chapter 13). 
A better understanding of the reliability of model 
projections will be critical to clarify this point.

Sensitivity experiments can help make progress on 
questions even less constrained by observations, a limita­
tion made even more acute because of ENSO diversity. 
For example, the specific role of ENSO in tropical Pacific 
decadal variability is explored in simulations in which 
either the tropics or the midlatitudes are constrained, to 
either climatology or to a fixed interannual cycle for all 
surface coupling fields or just a subset (Liu & Di Lorenzo, 
2018). The role of other basins can also be explored using 
partially coupled simulations to disentangle what is 
driving ENSO from what is driven by ENSO (Kajtar 
et  al., 2017, Terray et  al., 2015). The inherent limit of 
these studies is the lack of reliable observations for the 
many decades needed to validate the model behavior and 
ensure the robustness of the relationships exhibited.

9.3.2. Response to External Forcing

Changes in ENSO behavior induced by external forc­
ing (e.g. solar, volcanic, greenhouse gases) can arise from 
changes in the mean state or from impacts on specific 
ENSO feedbacks (Collins et  al., 2010; Vecchi & 
Wittenberg, 2010; Flato et al., 2013). Again, because of 
the lack of data in the past, models are key to explore 

these relationships (see chapters 5, 12, and 13). As 
described above and in other parts of this monograph, 
the mean state and decadal‐to‐multidecadal variability 
strongly influence ENSO behavior. One can use external 
forcing to distinguish what is the mean climate (e.g., no 
variations of external forcing, even if  only theoretical) 
and what is slow variability (e.g., driven by changes in 
external forcing). In a multicentury preindustrial simula­
tion (or any simulation in which external forcing is kept 
constant), and in the absence of serious model drift, the 
mean can indeed be viewed as fixed, and any other varia­
tion can be interpreted as internal variability (e.g. 
Wittenberg, 2009; Wittenberg et al., 2014). Distinguishing 
the mean from the variability gets more complicated 
when the external forcing varies with time (e.g. volcanic 
eruptions and greenhouse gases), due to the multicentury 
statistics or large ensembles needed to assess robust 
changes (Stevenson et al., 2010; Predybaylo et al., 2017). 
Alternative definitions of the mean can help to disen­
tangle the associated intricacy. For example, Khodri et al. 
(2017) have shown that using the relative SSTA, i.e. the 
SSTA computed by removing the tropical Pacific spatial 
mean, could clarify the impact of volcanic eruptions on 
ENSO by focusing on the gradients, helping to reconcile 
previous studies (Figure 9.3).

Here again, the multimodel coordinated approach (or 
the use of large ensembles) helps by increasing the signal 
to noise ratio, making it easier to robustly attribute changes 
in ENSO to changes in external forcing (Figure 9.3). This 
is not systematic, as small ensembles with large model 
errors can lead to unclear responses (Zheng et al., 2008).

Coordinated simulations as defined in CMIP (Eyring 
et  al., 2016) explore different external forcing conditions 
such as paleo (paleoclimate MIP: PMIP; Kageyama et al., 
2016), historical change and the impact of different forc­
ings (detection and attribution MIP: DAMIP; Gillett et al., 
2016) or future projections (scenarioMIP; O’Neill et  al., 
2016). Common protocols are defined and forcing fields are 
provided to modeling groups for solar, volcanic, greenhouse 
gas, and land surface use (see https://explore.es‐doc.org/). 
The way models conform to protocols varies and is now 
carefully documented, as this may affect the interpretation 
of results and/or differences among model responses.

How well internal variability is simulated directly 
impacts the ability of models to respond correctly to 
external forcings. For example, if  the simulated variability 
is stronger than observed, the forced signal may take 
longer to emerge from the corresponding “noise” of 
internal variability. Conversely, a model with too little var­
iability can appear as either too sensitive to external forc­
ing or not sensitive enough if the mechanisms that drive 
the response are the same as those that drive variability. 
The research community is therefore working to assess the 
fitness for purpose of models to study the ENSO response 
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to changing climate (Flato et al., 2013, and section 9.4). 
Previous studies have shown that the atmospheric response 
to ENSO is not a good analog of the atmospheric response 
to future climate warming, e.g. ENSO sensitivity is not a 
proxy of climate sensitivity (Bony et  al., 1997), even 
though some of the same mechanisms play a part (e.g. 
changes in atmosphere deep convection and clouds). A 
recent study that explored the links between internal vari­
ability in CMIP models and their response to external 
forcings showed that models in which clouds more strongly 
amplify ENSO‐induced surface temperature changes also 
tend to be the models that are more sensitive to external 
forcings (Lutsko & Takahashi, 2018).

9.4. EVALUATING ENSO IN MODELS

In this section we review how ENSO is evaluated in 
coupled GCMs. We then discuss some common model 
biases and their suspected sources.

9.4.1. Diagnosing Model Biases

As described in the preceding chapters and Timmermann 
et al. (2018), ENSO involves complex interactions across 
a vast range of space and time scales. This poses major 
challenges for simulating ENSO and for diagnosing the 
sources of bias in ENSO simulations. The theoretical 
foundations in chapters 6–8 provide a framework for 
understanding ENSO and have motivated diagnostics 
that are now used to evaluate and intercompare ENSO 
simulations.

Although ENSO is mainly a seasonal‐to‐interannual 
phenomenon driven by air‐sea interactions in the tropical 
Pacific, it also interacts with the extra tropics and other 
ocean basins (chapters 11, 14, and 15) and involves time­

scales ranging from subdiurnal (atmospheric convection, 
the diurnal cycle, and mixed layer processes) to decadal to 
centennial (chapters 5 and 8). ENSO further depends on 
small‐scale processes (e.g. convection and cloud physics 
in the atmosphere, and eddy‐induced mixing in the ocean) 
that require short time steps and fine model grids, as well 
as careful parameterizations of subgrid scale processes. 
Capturing this wide range of scales can require multicen­
tury simulations with powerful supercomputers, saving 
high‐frequency and high‐resolution diagnostics that 
result in enormous model datasets. The challenge is mak­
ing sense of that mountain of data and drawing conclu­
sions about the model’s reliability for forecasts and 
projections.

ENSO’s diverse scales and interactions also pose chal­
lenges for the observing system, by requiring a 
combination of dense high‐frequency global coverage 
and continuous monitoring over many decades (chapters 
3 and 5). At present, the existing observational records 
and reanalysis products remain imperfect targets for 
model development due to short records, instrumental 
errors, evolving observing methods and networks, and 
misrepresentation by reanalyses of the variables, regimes, 
and scales actually observed. As models continue to 
improve, reconciling the remaining biases and disparities 
among observational products becomes even more impor­
tant. Further progress will require longer, more detailed, 
more reliable, and more representative observations and 
reanalyses, along with new field studies to underpin 
improved model parameterizations.

Intrinsic modulation of ENSO on interdecadal time­
scales (chapter 8) implies that multicentury records and/
or large ensembles are needed to evaluate and intercom­
pare ENSO simulations and to assess changes in ENSO 
arising from external forcings. Indeed, the instrumental 
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record may not yet be long enough to fully constrain 
ENSO simulations, especially for the amplitude, spec­
trum, and diversity of ENSO (e.g. Wittenberg, 2009; 
Wittenberg et al., 2014; Newman et al., 2018). Thus, com­
plementary methods to evaluate ENSO simulations have 
recently included paleo constraints (chapter 5) as well as 
process‐based diagnostics and statistical emulators 
(Newman et al., 2011, 2018; C. Chen et al., 2017; Ding 
et al., 2018) that can be used to infer long‐term ENSO 
behavior from relatively short observational records.

Comparing multiple models can establish which biases 
are widespread among models and which biases are idio­
syncratic. Intercomparisons can also identify particular 
resolutions, parameterizations, or climatological biases 
as likely sources of ENSO biases. An example is shown in 
Figure 9.4, which illustrates the diversity of Pacific ECT 
intensities and ENSO amplitudes simulated by the 
CMIP5 models, in the context of intrinsically generated 
variability and radiatively forced changes. For the time‐
mean SST, most of the CMIP5 models simulate colder 
ECTs than observed over the historical period (vertical 
black line), and all show a warming of the ECT in the 
21st century (blue triangles) that far exceeds the range 
expected from intrinsic variability alone (horizontal gray 
bars). There is no clear relation among the CMIP5 
models between the strength of the 20th‐century ECT 
SST bias and the magnitude of future ECT warming. For 
the ENSO SSTA amplitude, the models show a wide 
range of simulated amplitudes, with some stronger and 
others weaker than observed over the 20th century. 
Moving to the 21st century, most models show a weak­
ening of ENSO in the 21st century, but the models that 
show strengthening of ENSO tend to do so more signifi­
cantly relative to their preindustrial control runs. There is 
no clear relation between the simulated 20th‐century 
ENSO amplitude and the projected amplification or 
attenuation of ENSO in the 21st century. The diverse set 
of models also provides an ensemble of opportunities to 
investigate how ENSO biases and sensitivities depend on 
ENSO feedbacks or the background climate state, 
providing “emergent constraints,” as discussed in 
section 9.4.3.

An essential first step in evaluating ENSO is to 
understand the climatological context in which it 
evolves  –  namely the background time‐mean state and 
seasonal cycle, as these play a key role in many ENSO 
mechanisms. In examining the tropical Pacific diagnos­
tics, particular attention must be paid to (i) east‐west and 
north‐south SST contrasts, (ii) the meridional asymmetry 
of SST and rainfall, (iii) the surface zonal wind stress (τx) 
over the equatorial waveguide, (iv) the meridional wind 
stress (τy) in the southeast Pacific, and (v) the off‐
equatorial wind stress curl. Below the ocean surface, key 
climatological diagnostics include (i) the isothermal layer 

depth, which helps determine the sensitivity of SST to 
surface heat fluxes; (ii) the equatorial thermocline depth, 
slope, intensity, and sharpness; (iii) the equatorial under­
current and South Equatorial Current; and (iv) the 
equatorial upwelling, as well as (v) the components of the 
surface mixed layer heat budget near the equator.

Numerous diagnostics are used to assess the structure, 
evolution, mechanisms, and impacts of  ENSO. For 
spatial structure, monthly means are used to create maps 
of  amplitude (standard deviation), nonlinearity (e.g. 
skewness), and various responses/feedbacks (e.g. based 
on correlations, regressions, or composites either using 
an ENSO index like Niño‐3 SSTA, or using local SSTA). 
Composites can be used to highlight nonlinear features 
and can also be easily conditioned on the seasonal cycle. 
Lag‐regressions or lag‐composites onto ENSO indices 
are useful for identifying seasonal modulation and zonal/
meridional propagation, which is often seen for 
equatorial SSTA and τx. To characterize the temporal 
variability of  ENSO (e.g. period, interdecadal amplitude/
frequency modulation, duration, and interevent spac­
ing), various diagnostics are used, including lag‐autocor­
relations, spectra, and wavelet analyses of  ENSO indices. 
The simplified statistical and dynamical methods 
described in section 9.2 can also serve as powerful diag­
nostics, by fitting them to observations and coupled 
models and then comparing the fitted parameters. This 
can highlight key differences in feedback mechanisms, 
stochastic forcings, growth rates, predictability, long‐
term modulation, and sensitivities to parameter and 
forcing changes (e.g. Kim & Jin, 2011; Atwood et  al., 
2017; Capotondi et al., 2018).

In addition to the diagnostics outlined above, 
numerous approaches have been used to isolate and 
understand the sources of  model biases. One approach 
is to limit the potential sources of  bias by isolating 
particular model components and driving them with 
observations, such as the classical atmosphere‐only MIP 
(AMIP) and ocean‐only MIP (OMIP) simulations 
(a.k.a. “forced simulations”). Besides helping to identify 
the sources of  model biases, isolating a model compo­
nent enables direct event‐by‐event comparisons with 
observations and allows smaller ensembles, since the 
imposed synchronization eliminates most of  the basin‐
scale intrinsically generated variability. In the past, mod­
eling centers often developed model components in 
isolation, only coupling them near the end of  the 
development cycle. However, experience showed that 
this was often unsuccessful, leading to large drifts in the 
coupled configuration. Now many centers couple early 
and often in the development cycle, which helps to main­
tain a focus on the parts of  the simulation essential for 
successful coupling over the tropical Pacific region, 
namely, the surface fluxes simulated by the atmosphere 



HISTORY AND PROGRESS OF ENSO MODELING  211

and the surface mixed layer and SST simulated by the 
ocean. The AMIP and OMIP frameworks remain very 
helpful tools, however, for isolating biases identified in 
coupled models.

Another strategy is to only partially enable the cou­
pling, by nudging or overriding one of  the variables 
involved in the exchange. For example, the simulated 
SST can be nudged (restored) with a short time scale (e.g. 
5 days) toward observed time‐varying SSTs, to test the 
performance of  the atmosphere and ocean simulations 
in the presence of  both high‐frequency (diurnal) cou­
pling and close‐to‐observed SST variability 
(Kamenkovich & Sarachik, 2004; Zhu & Kumar, 2018; 
Vecchi et  al., 2019). Ocean biases that develop in the 
nudged context but not in the OMIP context can indi­
cate a problem, for example, with the simulation of  the 
wind stress by the atmosphere component. The nudging 
term also provides a valuable diagnostic, indicating the 
degree of  correction required to keep the SST close to 
those observed in different locations and dynamical con­
ditions. This approach can also be applied regionally, to 
further isolate the sources of  model bias (Large & 
Danabasoglu, 2006; Small et al., 2015; Song & Zhang, 
2016; McGregor et al., 2018).

Another valuable technique is to compute a clima­
tology of the nudging term and wind stress biases from 
the nudged run described above. A new coupled run can 
then be performed in which the nudging is turned off, but 
now the seasonally varying (but interannually constant) 
nudging climatology is prescribed. This technique and its 
variants, known as “flux adjustment” or “flux correction,” 
help to maintain the climatology of the coupled model 
close to observations, without restricting the development 
of anomalies relative to that climatology. This framework 
can help diagnose how biases in simulated ENSO 
dynamics are related to a model’s climatological biases 
(Magnusson et  al., 2013a; Ray et  al., 2018b). Several 
studies have shown that flux adjustment can improve a 
model’s simulated tropical Pacific climatology, seasonal 
cycle, ENSO, and seasonal forecast skill (Manganello & 
Huang, 2009; Kröger & Kucharski, 2011; Magnusson 
et al., 2013a, 2013b), although results especially for fore­
cast skill appear to be model dependent (Spencer et al., 
2007; Pan et al., 2011).

The ability of a model to reconstruct and forecast 
either real‐world ENSO events or its own events can be 
used to assess the degree of ENSO’s long‐term memory 
and predictability (Wittenberg et al., 2014; Karamperidou 
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et al., 2014; Ding et al., 2018, 2019). Ding et al. (2018) 
found that some models are now realistic enough that 
their unforced control runs contain close “model‐ana­
logs” of real‐world conditions, and the evolution of those 
analog trajectories can actually provide useful ensemble 
forecasts of the real world, with skill approaching that of 
state‐of‐the‐art assimilation and forecast systems. The 
ability of a model’s analogs to reconstruct and forecast 
real‐world ENSO conditions is thus a potentially pow­
erful diagnostic of model performance, assessing both 
the shape of the model’s attractor and the evolution of its 
trajectories on that attractor.

Data assimilation can assist in diagnosing model biases, 
through the analysis of the increments needed to adjust 
the model solution toward observations. A systematic 
increment structure can help to localize persistent dynam­
ical biases in the model. The performance of model fore­
casts of the real world, initialized via data assimilation, 
can also provide valuable information about model 
biases. If  the assimilated state lies far from the model 
attractor, this can induce an “initialization shock,” which 
rings through the model’s climate system and reduces 
forecast skill. Once the model is released from data assim­
ilation and run in forecast mode, the location and time 
scale of bias development can help to isolate biases in 
particular processes (Vannière et al., 2014). For example, 
a bias that appears within a single day would have to 
involve local biases in clouds, surface heat fluxes, or 
mixed layer dynamics but would rule out remotely forced 
internal waves in the ocean. Using this approach, it has 
been shown that a single bias (e.g. the ECT error described 
below) can have model‐dependent sources (Vannière 
et al., 2013).

9.4.2. Key Model Biases

A number of common ENSO biases have been identi­
fied in CGCM simulations, some persisting since earlier 
model intercomparisons (Guilyardi, 2006, Guilyardi 
et  al., 2009, 2012a, 2012b; Bellenger et  al., 2014, 
Capotondi et al., 2015a; Santoso et al., 2019). Here we 
discuss those biases and how they are related to biases in 
the simulated background climatology.

9.4.2.1. Biases in the Background Climatology
Common biases in the CGCM‐simulated background 

climatology include
1. An overly strong ECT that extends too far west, 

associated with a cold SST bias in the equatorial Pacific.
2. A warm SST bias near the coast of South America.
3. An equatorial Pacific dry bias, associated with the 

excessive ECT.
4. An excessive “double” ITCZ south of the equator in 

the east Pacific (J. Lin, 2007).

5. A southern Pacific convergence zone (SPCZ) that is 
too zonally oriented.

6. An overly intense hydrologic cycle over the tropical 
Pacific, with excessive evaporation and rainfall (de Szoeke 
& Xie, 2008; Wittenberg et al., 2018).

7. Biases in the cloud regimes over the eastern and 
central Pacific (Lloyd et  al., 2009, Sun et  al., 2009, 
Bellenger et al., 2014).

8. Equatorial τx that is too strong or too weak, which 
then affects equatorial upwelling and the zonal tilt of the 
equatorial thermocline.

9. Overly cyclonic wind stress off‐equator, associated 
with a too‐rapid poleward intensification of τx. This can 
lead to excessive Ekman suction and poleward Sverdrup 
transport off‐equator, shoaling the equatorial thermo­
cline and contributing to an ECT cold bias (Wittenberg 
et al., 2018).

10. Biases in the equatorial thermocline depth, inten­
sity, sharpness, and zonal slope.

These biases can be masked by other deficiencies in the 
model via error compensation (Guilyardi et al., 2004, 2009; 
Wittenberg et al., 2018; Ray et al., 2018a, 2018b; Vijayeta 
& Dommenget, 2018). For example, many processes can 
influence the structure and maintenance of the ECT, 
including vertical mixing in the upper ocean off‐equator 
(Anderson et al., 2009), subtropical cloud albedos (Burls 
et  al., 2014), excessive equatorial zonal wind stress 
(Vannière et al., 2013), temperature biases subducted in the 
subtropics (Thomas & Fedorov, 2017), errors in the sub­
tropical wind stress that controls the strength and structure 
of the shallow meridional overturning subtropical‐tropical 
cells and equatorial upwelling (McPhaden & Zhang, 2002; 
Capotondi et  al., 2005), and SST biases in the tropical 
Indian and Atlantic oceans (Kajtar et al., 2017). This diver­
sity of possible mechanisms is a key reason that it remains 
a challenge to correctly simulate the ECT in GCMs.

Climatological biases can affect ENSO feedbacks and 
sensitivities by displacing climatological features, and 
their associated ENSO variability, away from their 
observed locations. Background biases also affect the 
intensities and spatiotemporal phases of the leading 
terms in the mixed layer heat budget, namely, the heat 
flux damping, thermocline feedback, zonal advective 
feedback, and Ekman feedback, which then induce biases 
in ENSO properties (An & Wang 2000; Wittenberg 2002; 
Kim & Jin, 2011; Graham et al., 2017).

9.4.2.2. Biases in ENSO
As described in recent reviews (Guilyardi, 2006; 

Guilyardi et  al., 2009, 2012a, 2012b; Bellenger et  al., 
2014; Capotondi et  al., 2015a; Santoso et  al., 2019), 
common ENSO biases in CGCMs include

1. Amplitude errors, which can also affect the skew­
ness, diversity, and interdecadal modulation of ENSO 
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and the ability of ENSO to affect the multidecadal‐mean 
climate.

2. Errors in spectrum, including the dominant ENSO 
period and irregularity. In many models the ENSO spec­
trum is too sharply peaked, and the ENSO period is too 
regular and biennial.

3. Too little synchronization of ENSO to the annual 
cycle, or a synchronization of ENSO to the wrong season. 
This can result from problems simulating the climatolog­
ical seasonal cycle of the ITCZs (Wittenberg et al., 2006; 
Abellán et al., 2017), the SST‐cloud and thermocline‐SST 
feedbacks of ENSO (Rashid & Hirst, 2016), and the sea­
sonally mediated impacts of ENSO on remote regions 
(Lee et al., 2016, 2018; W. Zhang et al., 2016).

4. Errors in the level of interdecadal modulation of 
ENSO behavior.

5. SSTA patterns that are displaced too far west, dis­
connected from the South American coast, too symmetric 
about the equator, and show too little interevent diversity 
in peak longitude (Capotondi et al., 2015a; chapter 4, this 
volume).

6. Atmospheric response patterns of rainfall and tele­
connections that are displaced too far west.

7. Too little skewness of ECT SSTAs toward warm 
events (An et al., 2005; Dommenget et al., 2013; T. Zhang 
& Sun 2014; C. Chen et al., 2017), and too little skewness 
of central equatorial Pacific τx toward westerly anomalies 
(K.‐Y. Choi et al., 2013).

8. Equatorial τx anomalies that are too weak, too far 
west, and too narrow in the meridional direction 
(Guilyardi, 2006). This can affect ENSO amplitude via a 
reduced zonal wind feedback (Figure 9.1) and can accel­
erate the oceanic adjustment to wind anomalies and 
shorten the ENSO period (Capotondi et al., 2006)

9. Too little damping of SSTAs by surface heat fluxes, 
often due to a weak cloud shading response associated 
with biases in cloud regimes, and other mean state biases 
(Lloyd et al., 2012, Bellenger et al., 2014, Dommenget & 
Yu, 2016).

10. Insufficient cross‐timescale linkage between ENSO, 
its intraseasonal precursors, and Pacific decadal modes 
(Di Lorenzo et al., 2015; Newman et al., 2016; Wang & 
Miao, 2018; Liguori & Di Lorenzo, 2018; R. Lin et al., 
2018). These errors appear to be linked in part to the 
magnitude of the climatological ECT cold SST bias (Lyu 
et al., 2015).

Many of these errors in ENSO simulations can be 
linked to biases in the background climatology. 
Atmospheric convection and rainfall patterns over the 
tropical Pacific are sensitive to the relative temperature 
difference between the local SST and the tropical‐mean 
SST, especially over the warm pool (He et  al., 2018). 
Thus, models with excessively cold ECTs and a westward‐
displaced warm pool tend to have westward‐displaced 

ENSO patterns (e.g. Wittenberg et al., 2006; Ham & Kug, 
2015). This is often associated with a modified distribu­
tion of convective and subsidence regimes, leading to 
deficient atmosphere feedbacks in the east and central 
Pacific (Lloyd et  al., 2012, Bellenger et  al., 2014) and 
overamplified or overdamped ENSO events. Such biases 
in the background state can even lead to unrealistic dou­
ble‐peaked El Niños (Graham et  al., 2017), due to the 
zonal‐advective feedbacks at the warm pool’s eastern 
edge being displaced too far west of the thermocline feed­
backs occurring further east. Westward displacement of 
ENSO’s SSTAs can also weaken the interevent diversity 
of SSTA patterns, as it becomes more difficult to generate 
SSTAs in the eastern ECT that induce a τx response with 
sufficient zonal fetch to produce strong thermocline feed­
backs (Ham & Kug, 2012; Kug et  al., 2012). Improper 
balances between zonal and thermocline feedbacks can 
also affect the zonal propagation direction of SSTAs 
(Ham & Kug, 2015; C. Chen et al., 2017). A model with a 
poleward‐displaced ITCZ and SPCZ can also show 
reduced nonlinearity of the equatorial τx response to 
SSTAs, which then affects ENSO’s warm‐cold asymme­
tries of amplitude, duration, and transition (K.‐Y. Choi 
et al., 2013, 2015).

As described above for biases in the background state, 
biases in ENSO can mask each other. For example, a 
model with both a weak equatorial τx response (which 
tends to weaken ENSO) and weak surface heat flux damp­
ing (which tends to strengthen ENSO) can exhibit a rea­
sonable ENSO amplitude for the wrong reasons (Guilyardi 
et al., 2009; Vijayeta & Dommenget, 2018). Similarly, a 
model with a climatological cold SST bias in the ECT 
may still be able to produce realistic atmospheric responses 
during the El Niño phase, if  it also has excessive warm 
SSTAs to flatten the zonal and meridional SST gradients 
across the tropical Pacific, thereby favoring atmospheric 
convection in the central and eastern equatorial Pacific.

Errors in ENSO amplitude can also affect the multi­
decadal‐mean climate, via nonlinearity and temporal blur­
ring of the seasonal‐to‐interannual motions of features 
like the ITCZs, warm pool edge, and thermocline 
(Watanabe & Wittenberg, 2012; Watanabe et  al., 2012; 
Ogata et al., 2013; J. Choi et al., 2013; Atwood et al., 2017).

9.4.2.3. ENSO Response to External Forcings
As described in chapter 13, GCMs produce diverse and 

nonmonotonic projected responses of ENSO to future 
changes in radiative forcings (Vecchi & Wittenberg, 2010; 
Collins et al., 2010; C. Chen et al., 2017, Rashid et al., 
2016). Depending on the model, the future amplitude of 
ENSO SSTAs can increase, decrease, or show no 
significant change, with no clear link to the magnitude of 
the time‐mean ECT SST bias in the historical simulation 
(C. Chen et al., 2017).
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Uncertainties in ENSO’s future SSTA amplitude arise 
from competing changes in ENSO’s intense air‐sea feed­
backs, which amplify the sensitivity of ENSO (and its 
future response) to biases in the models (Collins et  al., 
2010; DiNezio et al., 2012). Studies have shown that the 
sensitivity of the background state and ENSO SSTAs to 
future anthropogenic forcings depends strongly on the 
present‐day simulated spatial structure of key climate 
regimes, including the regions of intense convection, 
cloudiness, and evaporation (Xie et al., 2010), the inten­
sity of the ECT (Huang & Ying, 2015), the strength of 
convective cloud shading response to SSTAs (Ying & 
Huang, 2016a), the intensity of equatorial Pacific 
upwelling (Ying & Huang, 2016b), and the future 
warming of the tropical Indian and Atlantic oceans 
relative to the tropical Pacific (Luo et al., 2012; Wieners 
et al., 2017). Model biases in these climatological features 
can therefore lead to biases in the sensitivity of ENSO to 
future change, reducing confidence in future projections.

There is also substantial intrinsic modulation of ENSO 
that is unrelated to external forcings (Wittenberg, 2009, 
2015; Stevenson et  al., 2010), which can mask forcing‐
induced changes in short observational records. For 
example, Newman et al. (2018) examined 30‐member his­
torical ensembles from the NCAR‐CESM‐LE and 
GFDL‐FLOR‐FA CGCMs, and found that while both 
ensembles simulated a slight trend toward stronger ENSO 
SSTAs over the past century, those trends were of the 
same magnitude as the intrinsic modulation of ENSO 
among realizations with the length of the observational 
record. This suggests that the forced component of 
change, even if  it were as large in reality as in the models, 
would be difficult to detect in the single century–long 
realization yet available from the historical observations. 
Consistent with this, Newman et al. (2018) found that the 
observed trend in ENSO SSTA amplitude (the strength 
of which differed depending on the historical SST recon­
struction used) did not exceed the range expected for a 
null hypothesis of stationary ENSO dynamics, estimated 
using a stochastically forced linear inverse model tuned to 
the historical observations.

It has also been suggested that models may systemati­
cally underestimate intrinsic decadal variations in the 
tropical Pacific (Kociuba & Power, 2015), for instance, 
due to reduced SSTA persistence and/or reduced inter­
basin connections associated with model SST biases in 
the tropical Atlantic (McGregor et  al., 2018). Reduced 
decadal variability might then affect the models’ ability to 
capture a realistic range of intrinsic ENSO modulation.

Despite the uncertainties mentioned above, there are 
aspects of future ENSO change that are relatively robust 
among the model projections (chapter 13), including a 
tendency for ENSO rainfall variations over the tropical 
Pacific to increase and shift eastward and equatorward 

as the tropical atmosphere moistens, especially during El 
Niño (Power et al., 2013, 2017; Cai et al., 2014; Huang & 
Chen, 2017), and a tendency for more eastward pro­
pagation of ENSO equatorial SSTAs in the future 
(C.  Chen et  al., 2017). However, intermodel consensus 
does not necessarily mean that the projections are correct, 
as many models have similar climate biases that could 
affect their sensitivities to future change. In particular, 
there is concern that the inability of most models to 
capture the recent observed decadal strengthening of the 
Walker circulation (Power et al., 2017) may indicate that 
they either underestimate the intrinsic decadal variability 
or overestimate the externally forced warming of the 
eastern equatorial Pacific, thereby reducing the east‐west 
SST gradient.

9.4.3. Emergent Constraints for Future Changes 
in ENSO

A potentially powerful approach to deal with the above 
uncertainties is to examine how model projections depend 
on model biases. If  robust relationships can be found, 
then it may be possible to extrapolate the expected sensi­
tivities of the real world from the diverse model results, 
providing “emergent constraints” for the real‐world 
response (e.g. Heinze et al., 2019).

An example is shown in Figure 9.5 adapted from Ham 
& Kug (2015), which indicates that among the CMIP5 
models there is a relationship between the ECT intensity 
and the longitudinal location of the ENSO anomaly pat­
terns. Models with weaker/better ECTs tend to show an 
ENSO response closer to observed, with patterns of rain­
fall, wind stress, and SSTAs that shift farther eastward and 
equatorward during El Niño. By extending such relation­
ships to include the observations, estimates can be made 
regarding the real‐world sensitivities, essentially leveraging 
the intermodel diversity to provide emergent constraints 
for the sensitivities based on a large set of models.

A second example is that among the CMIP3 models 
that produced a reasonably realistic ENSO, models with 
meridionally broader τx responses during ENSO also 
tended to exhibit more eastward SSTA propagation and a 
stronger projected amplification of ENSO SSTAs in the 
future (Merryfield, 2006). Nearly all models underesti­
mate the meridional width of the τx response (Capotondi 
et al., 2006), which suggests that the future amplification 
of ENSO in the real world might be even stronger than 
suggested by the models (Vecchi & Wittenberg, 2010).

A third example of an emergent constraint relates to 
future changes in the climatological equatorial Pacific 
zonal and meridional SST gradients, which as described 
above are key controls on the atmospheric response to 
ECT SSTAs during ENSO events. Huang & Ying (2015) 
found that CMIP5 models with weaker and more realistic 
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climatological ECTs also tended to project more future 
weakening of the climatological SST gradients, suggest­
ing that the future climatology might be more El Niño–
like than most models suggest, and more conducive to 
enhanced eastward and equatorward shifts of atmo­
spheric convection during future El Niño events. Ying & 
Huang (2016a, 2016b) found that this relationship 
stemmed from both atmospheric and oceanic sources: 
(i) models with stronger and more realistic damping of 
SSTAs (due to cloud shading) tended to inhibit future 
SST warming in the western equatorial Pacific; and 
(ii) models with weaker and more realistic upwelling in 
the eastern equatorial Pacific tended to enhance SST 
warming in the east, as this reduced the inhibition of 
warming associated with anthropogenically enhanced 
thermal stratification of the tropical Pacific upper ocean.

Further candidates for emergent constraints appear in 
the CMIP5 analysis of C. Chen et al. (2017), who found 
robust relationships between the El Niño/La Niña SSTA 

asymmetries in historical simulations and the projected 
future changes in those asymmetries.

It remains an open question whether emergent con­
straints diagnosed from a limited set of biased climate 
models offer a reliable way to infer future sensitivities of 
the real world. Key questions are whether the existing 
models are a sufficiently diverse, independent, and repre­
sentative sample of the relationships between biases and 
sensitivities, or whether deficiencies that are common to 
all of the models (e.g. limited resolution in the ocean and 
atmosphere) may reduce the utility of these emergent 
constraints.

9.4.4. Prospects for Improving ENSO Simulations

ENSO simulations are affected by an inability of 
CGCMs to fully capture several important processes 
involving small scales that are difficult to represent ade­
quately with present atmosphere/ocean resolutions.
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Figure 9.5  Links between ENSO anomaly patterns and the background climatology among the CMIP5 models. 
For each model, various anomaly fields are regressed onto SSTAs averaged over the Niño‐3.4 region 
(170°W–120°W, 5°S–5°N). Contours in the left column indicate these multimodel mean anomaly regressions (i.e. 
ENSO responses) for (a) rainfall (mm day−1 K−1), (b) 850 hPa zonal wind (m s−1 K−1), and (c) SST (K K−1). The leading 
intermodel principal component of ENSO precipitation anomalies, P1, is then used to stratify the models. Shading 
in the left column shows the intermodel regressions of ENSO anomaly patterns onto P1 for each variable. Right 
column shows intermodel correlations of climatological mean fields with P1 for (d) rainfall, (e) 850 hPa zonal 
wind, and (f) SST. Thus, a CMIP5 model with a more eastward‐shifted equatorial Pacific rainfall response during 
El Niño (east‐west dipole pattern in (a)) also tends to have a more eastward‐shifted (b) zonal wind response and 
(c) SST response, along with (d) more eastward‐ and equatorward‐shifted tropical Pacific mean rainfall, (e) weaker 
mean easterly trade winds along the equator, and (f) warmer SST in the equatorial Pacific cold tongue. Adapted 
from Figures 2, 4, and 5 of Ham and Kug (2015).
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WWBs. As described in more detail in this chapter and 
others, westerly wind bursts (WWBs, also known as west­
erly wind events or WWEs) are a key stochastic forcing 
for ENSO. At the onset of El Niño, WWBs tend to 
strengthen and expand eastward as the warm pool 
expands eastward, thus representing a broadband 
multiplicative stochastic forcing for ENSO (Vecchi et al., 
2006; Gebbie et  al., 2007; Zavala‐Garay et  al., 2008; 
Levine et al., 2016; Puy et al., 2016; Levine & Jin, 2017; 
Thual et al., 2016; Capotondi et al., 2018). WWBs con­
tribute to ENSO’s seasonality, its asymmetry between El 
Niño and La Niña, and its diversity from event to event 
(Lengaigne et  al., 2004; Levine et  al., 2016; Hayashi & 
Watanabe, 2017). Unfortunately, many CGCMs have dif­
ficulty reproducing the observed properties of the WWBs 
as well as the MJO (Ahn et al., 2017; Feng & Lian, 2018), 
which provides the large‐scale context for WWBs to occur 
(Puy et al., 2017).

Barrier layers. In the warm pool region, heavy rain can 
cap the sea surface with a shallow lens of fresh water, 
leading to increased density stratification and formation 
of a “barrier layer” beneath the mixed layer that inhibits 
deep mixing. As momentum from the wind stress is 
deposited into a thinner surface layer, the barrier layer 
can enhance the response of the surface currents during 
WWBs, leading to greater eastward acceleration of the 
surface currents and stronger zonal advective–induced 
warming of the central Pacific at the onset of El Niño 
(Maes et al., 2005; Maes & Belamari, 2011; Zhu et al., 
2014). Unfortunately, most AGCMs lack sufficient 
horizontal resolution to simulate the strong WWBs and 
strong rain events, and most OGCMs lack the upper‐
ocean vertical resolution to properly represent barrier 
layers and their associated strong surface currents. Thus, 
CGCMs might not fully capture the impacts of barrier 
layers on the WWB‐induced multiplicative stochastic 
forcing of ENSO.

TIWs. In the real world, vigorous tropical instability 
waves (TIWs) stir water across the northern and southern 
flanks of the ECT. This stirs warm water equatorward at 
the surface, enhances ocean heat uptake from the 
atmosphere off‐equator, and induces strong transient 
shears that enhance mixing at the base of the mixed layer 
within the ECT (Jochum et  al., 2005; Jochum & 
Murtugudde, 2006; Menkes et  al., 2006; Holmes et  al., 
2014; Holmes & Thomas, 2015). Together, these effects 
can act to thermally stratify the ECT and reduce vertical 
mixing near the surface (Ray et al., 2018a, 2018b), poten­
tially affecting ENSO indirectly by altering the Ekman 
and thermocline feedbacks. TIWs can also influence 
ENSO more directly. TIWs affect ENSO asymmetries, 
since they are more active during La Niña than El Niño 
(Nagura et al., 2008; Imada & Kimoto, 2012; R.‐H. Zhang, 
2016), and TIWs also cause fluctuations in surface wind 

stress over the ECT, which may constitute an additional 
stochastic forcing for ENSO (Jochum et al., 2007). Most 
CGCMs fail to fully represent TIWs and their effects on 
the ECT heat budget, due to coarse OGCM resolution 
and poor simulation of wind stress curls and associated 
upper‐ocean zonal jets for the tropical Pacific, which 
weaken the subsurface shears and TIW generation 
(Marchesiello et  al., 2011; Graham, 2014; Wittenberg 
et al., 2018).

Numerous studies have demonstrated improved simu­
lations of the tropical Pacific climatology and ENSO as a 
result of improved model resolution in the atmosphere 
and ocean components (Roberts et al., 2009). Wittenberg 
et  al. (2018) found that refining the atmospheric 
horizontal grid from 200 km to 25 km improved the 
simulated tropical Pacific climatological upper‐ocean 
currents and temperatures, due to reduced biases in 
simulated rainfall and wind stress cyclonicity off‐equator. 
This greatly improved the simulation of ENSO and its 
impacts (Delworth et  al., 2012; Vecchi et  al., 2013; Jia 
et al., 2015; Krishnamurthy et al., 2015, 2016; W. Zhang 
et  al., 2016; Murakami et  al., 2015; Yang et  al., 2015). 
Refining the oceanic horizontal grid from 100 km to 10 
km also leads to greatly improved simulation of the 
Pacific TIWs and their equatorward heat transport 
(Marchesiello et al., 2011; Griffies et al., 2015). There is 
also hope that refined vertical grids could help, e.g. by 
improving the atmospheric representation of tropical 
Pacific boundary layer moisture and cloudiness (espe­
cially near the coast of South America), and by improving 
the oceanic representation of upper‐ocean barrier layers, 
shears, and vertical mixing. Sufficient temporal resolu­
tion is important as well: studies have shown that 
resolving the diurnal cycle of solar radiation is important 
for the simulated time‐mean ocean mixed layer and sur­
face fluxes (Stockdale et  al., 1998; Bernie et  al., 2008; 
Weihs & Bourassa, 2014).

As enhanced atmospheric resolutions gradually reduce 
the need for convective parameterization, many model 
biases (e.g. the double ITCZ) that are sensitive to those 
parameterizations may diminish. At present though, the 
resources required for seasonal forecasts and centennial 
projections currently limit atmospheric grids to about 
50  km, well short of the 2–3 km needed to explicitly 
resolve deep convection. Atmospheric and coupled model 
simulations of the tropical Pacific continue to show strong 
sensitivity to parameterizations of atmospheric convection 
and clouds. This frequently leads to compromises during 
model development, since the combination of parameters 
that produces a realistic climatology or realistic ENSO 
may be very different from the combination that yields 
realistic MJO variability and tropical cyclone statistics.

A key aspect of atmospheric convection that has been 
shown to affect ENSO simulations is the representation 
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of convective momentum transport (CMT), namely, the 
vertical transport of horizontal momentum that results 
from subgrid scale vertical motions advecting on the 
strong vertical shears associated with the Pacific Walker 
circulation. During El Niño, an eastward and equator­
ward shift of tropical Pacific deep convection leads to 
increased CMT over the equatorial central Pacific, bring­
ing upper‐level westerly momentum down toward the 
surface boundary layer where it can amplify and meridi­
onally broaden the existing westerly wind anomalies. This 
amplifies the Bjerknes feedback and slows the poleward 
discharge of equatorial ocean heat content, which in turn 
amplifies ENSO and lengthens its period (Wittenberg, 
2002; Wittenberg et  al., 2006; Capotondi et  al., 2006; 
Kim et al., 2008; Neale et al., 2008).

In ocean models, several parameterizations affect the sim­
ulation of tropical Pacific climate and ENSO. Parameterized 
vertical mixing affects the intensity and depth of the 
equatorial thermocline and undercurrent, as well as ENSO’s 
subsurface feedbacks (Meehl et  al., 2001; Wilson, 2000; 
Canuto et  al., 2004; Noh et  al., 2005; Ray et  al., 2018a, 
2018b). The parameterization of lateral viscosity affects the 
intensity of the equatorial undercurrent and its associated 
shears, which in turn affect the intensity of Pacific TIWs 
and their equatorward heat transport (Stockdale et  al., 
1998; Griffies et  al., 2005; Wittenberg et  al., 2018). The 
parameterization of solar penetration through the water 
column, which depends on both the ocean turbidity and the 
optical model used for radiative transfer through the ocean, 
can also strongly affect the ECT and ENSO, by modifying 
the structure of the equatorial thermocline, via both local 
and nonlocal effects (Murtugudde et  al., 2002; Anderson 
et al., 2007, 2009; Lengaigne et al., 2007).

9.5. CHALLENGES AND OPPORTUNITIES

The ability of CGCMs to simulate ENSO continues to 
improve, offering exciting opportunities for research, 
forecasting, understanding past variations, and project­
ing the future behavior of ENSO and its global impacts. 
Many GCMs have also now evolved into more compre­
hensive Earth system models that simulate atmospheric 
chemistry, ocean biogeochemistry, land vegetation, dust, 
fire, and the carbon cycle, enabling pioneering new 
research and applications related to ENSO’s impacts on 
air quality, ecosystems, agriculture, and fisheries. Other 
GCMs have pushed toward higher resolution in the 
atmosphere and ocean, enabling seamless simulations of 
weather and climate with applications to ENSO’s impacts 
on tropical cyclones, severe weather, coastal communities, 
and regional extremes.

The research and modeling communities also continue 
to become better organized. CMIPs are enabling ground­
breaking research by the academic community, by 

coordinating multimodel experiments that support 
periodic assessments by the Intergovernmental Panel on 
Climate Change (IPCC). The quality and diversity of 
observational and reanalysis constraints for models are 
improving and are now being provided in formats that are 
convenient for modelers to use, e.g. via the Obs4MIPs 
project (Ferraro et al., 2015). Freely available diagnostic 
frameworks are enabling more rapid assessment of simu­
lations, and efforts are well underway to support those 
activities and the broader climate community by providing 
comprehensive sets of ENSO diagnostics and metrics for 
models (Guilyardi et al., 2016).

There are many ways that models could be better lever­
aged to yield insight into ENSO’s mechanisms, sensitiv­
ities, and predictability. Key foci are (i) the atmosphere 
response to SSTAs, (ii) surface wind stress and heat flux 
feedbacks over the tropical Pacific, (iii) the upwelling and 
vertical mixing near the equator, and (iv) the upper‐ocean 
heat budgets for both the background climatology and 
ENSO. Long control runs and large ensembles can be 
used to illuminate ENSO’s diversity and interdecadal 
modulation, and perturbed‐physics ensembles can be used 
to systematically probe the sensitivity of ENSO to model 
parameters. EMICs and statistical emulators can be used 
as diagnostics of models, enabling more robust intercom­
parisons and evaluations against short observational 
records. Seasonal forecasts could be used to better under­
stand the seeds and amplifiers of model biases and initial­
ization shocks. Model analogs could be employed to 
assess the fundamental predictability of ENSO to provide 
a baseline of skill against which to evaluate initialized 
forecasts. Emergent constraints can provide insight into 
the relationship between model biases and model sensitiv­
ities and possibly leverage the intermodel diversity to yield 
more reliable projections of future ENSO behavior.

Further improvement of ENSO simulations will rely 
on several factors. First, modeling advances must be sup­
ported by improved observational constraints. These 
should include more reliable, representative, and diverse 
observations from moorings, satellites, ships, and drifters, 
as well as maintenance of the long‐term climate records 
needed to assess simulated decadal variability and sensi­
tivities to external forcings. Improving observational con­
straints for ENSO simulations and forecasts is a major 
thrust of the Tropical Pacific Observing System 2020 
(TPOS2020) project (Cravatte et al., 2016; Kessler et al., 
2019). Also essential are statistical and GCM‐based 
reanalyses that reconcile the diverse observations, fill 
gaps between them, and impute variables that are not 
directly observed; such reanalyses are essential for evalu­
ating the detailed processes (e.g. heat budgets) and multi­
decadal behavior of ENSO in the models. Efforts to 
rescue and digitize historical observations, such as the 
Global Oceanographic Data Archaeology and Rescue 
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Project (GODAR), are also essential to support these 
reanalyses. Paleo constraints should not be overlooked, 
as they provide a unique perspective on the longer‐term 
variability of ENSO. As proxy records become ever more 
numerous, consistent, and better understood, they can 
support multiproxy reanalyses extending deep into the 
past and may even be able to improve understanding of 
the early part of the instrumental era via merged reanaly­
ses involving both proxy and instrumental observations 
(e.g., Emile‐Geay et al., 2013, Freund et al., 2019).

Second, it will be essential to maintain and advance a 
robust hierarchy of models, including simple conceptual 
models, EMICs, ocean‐only and atmosphere‐only 
simulations, statistical and empirical models, and com­
prehensive CGCMs (free, nudged, flux‐adjusted, or 
partially‐coupled). Quality documentation and software 
archiving (e.g. via github) are also essential to make 
EMICs and simple models easily available to the 
community. Investments in intellectual, software infra­
structure, and computing resources are needed to support 
improved model resolution, more realistic processes and 
parameterizations, larger ensembles to characterize 
extremes, and more diverse and creative sets of experi­
ments with the GCMs, as well as improved foundations 
in ENSO theory for the simpler models.

Based on past experience, the return on these invest­
ments, from improved predictions and projections that 
benefit global economies and societies to better 
fundamental understanding of Earth’s climate variations, 
is likely to be exceptional.
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