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Key NOAA Goals:

Weather-Ready Nation
“A society that is prepared for and responds to weather-related events.”

Climate Adaptation and Mitigation
“An informed society anticipating and responding to climate and its impacts.”

GFDL’s role in NOAA:

- Application-inspired basic research

- Long-lead science, targeting fundamental breakthroughs

- Proving ground for next-gen technologies and methods

- Work with NOAA partners to adapt advanced models to operations

GFDL'’s Mission:
Develop comprehensive, integrated, unified models of the Earth system
and apply them to seamless understanding, predictions, and projections
from hours to decades and from global to regional scales.



Sources of climate predictability

QOcean heat,
salinity and
carbon uptake

Kushnir et al.




Research Focl of the S2D Division

1. Improve scientific understanding of seasonal-to-multidecadal
variability, arising from variations internal to the coupled climate
system, and from interactions with changing radiative forcings.

2. Develop experimental prediction systems and explore
predictability at lead times of seasons to decades, for high-impact
events including hurricanes, severe storms, floods, droughts, heat
waves, and El Nifo.

3. Provide probabilistic predictions and projections of how climate
and extremes will evolve over the next several decades, at global to
regional scales.

GFDL’s newest prediction systems harvest the fruits of decades-long
research efforts toward model development and initialization systems.



Seamless seasonal-to-centennial prediction and projection

Representative phenomena that give rise to variability & predictability in the climate system

Physical Phenomena Variability & predictability timescale

Mid-latitude storms, general circulation Daily to two-week weather forecast

Madden-Julian Oscillation, etc Subseasonal

El Nino/Southern Oscillation (ENSO) Seasonal to interannual
Volcanic aerosol forcing Seasonal to interannual
Decadal-scale ocean-atmosphere Interannual to decadal

variability (AMO, PDO, etc)

Anthropogenic greenhouse gases, Decadal to centennial
aerosols, ozone changes

Weather Act defines “Seasonal forecast” as three months to two years



Desired capability:

Modeling system that can produce large ensembles of initialized predictions and projections
for time scales ranging from one season to multiple decades in advance.

Desired product:

Probabilistic predictions and projections of climate variations and change that have utility for
planning across a range of time and space scales — including seasons to decades.

Examples:
* How will predictable changes in ocean temperature influence tropical storm activity?

* How likely is it that:
* ENSO or the AMO will change phase and alter Atlantic hurricanes and other climate
features?
* the PDO will change phase and impact North American hydroclimate?

* How will anthropogenic climate change alter the probability of extreme events over the US
for the next decade, including rainfall/flooding and heat waves?



Seamless Prediction and Projection System
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Requires good initialization & transient response & long-term climate.
Global + + Coupled + Ensembles + Retrospectives

- Requires large computing resources. HPC is a key bottleneck.



Seasonal-to-Decadal Predictions

Since 2015, GFDL has delivered real-time seasonal forecasts on
time each month to NMME, CPC, NHC, SIPN. It has provided
seasonal forecasts to the IRl and APCC for over a decade.

GFDL contributes decadal predictions to the WMO Annual-to-
Decadal Climate Prediction (ADCP) project, coordinated by UKMO.

Plans:

- Atmosphere: 50km - 25km - 10km refined mesh over N. America
better-resolved stratosphere - stratosphere/troposphere interactions

- Ocean: 100km - 25km (coastal applications)

- ESM capabilities (biogeochemistry, carbon, ecosystems, fisheries)



Seasonal-to-Interannual Variations & Predictability

Driven mainly from the tropics, e.g. ENSO.

Key foci: Temperature, hydroclimate, storms, snowpack, ocean currents, sea ice
— Impact agriculture, water resources, natural disasters, forests, wildfires, fisheries, shipping



Seasonal-to-Interannual Products and Research

Products:
- Models (CM2.1, CM2.5, CM2.6, CM3, CM4, FLOR, HIFLOR, SPEAR)
- Simulation data & publications
- CM2.1/FLOR/HIFLOR forecast systems and ensemble predictions
- Modern-era coupled reanalysis: ECDA using SST, TAO, Argo, XBT, etc.

Research Highlights:
- Processes responsible for ENSO diversity & sensitivities to forcings
- Roles of ocean/atmosphere data assimilation in seasonal predictions
- Role of stratosphere in seasonal predictions
- Impacts of explosive volcanic eruptions on ENSO
- ENSO impacts on tornado outbreaks over the U.S.



Amplitude

Decadal-to-Multidecadal Variations & Predictability
Driven by AMOC, S. Ocean, Arctic/Antarctic sea ice, PDO, ENSO modulation.
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Yang et al. (JC 2013)

Key Foci: surface temperature, hydroclimate, storms, cryosphere & snowpack,
ocean circulation, changes in modes of variability (ENSO, NAO).



Decadal-to-Multidecadal Products and Research

Products:
- Models (CM2.1, CM2.5, FLOR, SPEAR)
- Simulation data & publications
- CM2.1/FLOR forecast systems and ensemble predictions/projections
- Historical reconstruction: ECDA using SST & surface pressure

Research Highlights:
- Role of ocean heat transport variations in AMV
— Impacts on Arctic sea ice, heat waves, monsoon rainfall
- Predictable multidecadal variability of S. Ocean sea ice & temperature
- PDO mechanisms and sensitivities to anthropogenic forcings
- Role of tropical SST in decadal drought over N. America



Seasonal Prediction System



Real-time seasonal prediction at GFDL

Atmosphere | Ocean Ensemble
resolution resolution | members

CM2.1 200 km
FLOR 50 km 1° 24*

* CM2.1 and FLOR: run each month as part of the North American Multi-Model
Ensemble (NMME) since 2015

* Qutput provided to NCEP (National Hurricane Center and Climate Prediction
Center) to inform their seasonal outlooks
* FLOR for hurricanes
* CM2.1 and FLOR for other climate outlooks, including ENSO, precipitation and
temperature

* QOcean reanalysis also provided to NCEP for Multiple Ocean Reanalysis Project

*2 slightly different versions with 12 members each
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GFDL’s contribution to the NMME and
NOAA'’s operational seasonal forecasts
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Demonstrated skill in seasonal snowpack prediction

N RCH SNOWPACK 2012-2015 MARCH SNUWPAGK 2012-2015
~ PREDIGTED.ONJULY 1 EACH YEAR d

Snd water content

below average above average

Source: Climate.gov image adapted from Kapnick et al. (PNAS 2018)



Towards a Seamless System for Prediction and EArth System Research
“SPEAR”

Using latest generation component models to build next generation
seamless prediction system. The building blocks are
AM4/FV3 (atmosphere), MOMG (ocean), SIS2 (sea ice), LM4 (land)

Atmosphere Ocean Status of
Development Reforecasts

SPEAR_LO 100 km Completed In progress
SPEAR_MED 50 km 1° Completed Planned in coming months
SPEAR_HI 25 km 1° In development Very limited set planned due

to computational costs

Current R&D efforts:
* Development of new Initialization systems for seasonal and decadal prediction

* Improving stratospheric resolution

Anticipate that SPEAR-based prediction system will join
the NMME in late 2019 or early 2020



Seasonal Hurricane Outlooks



Motivation for Hurricane Prediction

Developing a dynamical
model that has skill in
predicting intense
hurricanes is central to
NOAA'’s mission and highly
relevant to society.

| 2017 Major Hurricanes |
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Frequency

Seasonal Predictions of Major Hurricane Activity

HiFLOR (Majo‘r Hurrjcane, >64k§)
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Predicted major hurricane frequency in the North
Atlantic from July 1% initial forecast for each year.

2017 anomalous major hurricane activity

* HiFLOR shows skillful prediction for frequency of major hurricanes a few

months in advance.

* The real-time predictions are shared with the experts in National
Hurricane Center and Climate Prediction Center to support their seasonal

hurricane outlook.
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Seamless prediction facilitates attribution of observed events

What caused the active 2017 major hurricane season?

Observed SST Anomaly in 2017
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A. Moderate La Nina?
B. Warmer Tropical Atlantic?
C. Warmer off the coast of North America?




Seamless prediction facilitates attribution of observed events
Prescribed SST Anomaly

Predicted MH Density Anomaly

= M % b - s
| ' I | A Moderate La Nii”a? I

C. Warmer off the coast
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Major hurricanes reduced.

SSTa in the tropical Atlantic was removed.
We find:

a. Moderate La Nina was not responsible

b. Warming off US East Coast was not responsible

c. Tropical Atlantic warming played dominant role
More details in Murakami et al, 2018, Science



Global Data Assimilation



GFDL'’s data assimilation system: Toward a coupled climate reanalysis

(ocean T/S profiles & atmospheric surface pressure)

Data assimilation system:
Combines observations with
coupled climate model to
estimate climate state

International
Surface Pressure
Databank (ISPD)
Compo et al. 2011
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Current data assimilation system:

" An Ensemble Coupled Data
Assimilation (ECDA) system
using GFDL/CM2.1

" SST, Ocean T/S profiles

" Atmosphere T and winds

Stations:1980

Current development and transition towards the new coupled prediction system:
* Coupled model: SPEAR

* MOMG6 Ocean Data Assimilation (Feiyu Lu)

* FV3 Atmosphere Data Assimilation (Xiaosong Yang)




Assimilation and observing system assessment

Real-time ocean assessment
* Real time prediction and
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http://www.gfdl.noaa.gov/ocean-data-assimilation
https://www.cpc.ncep.noaa.gov/products/GODAS/multiora_body.html

Impact of ocean subsurface observations on predicting
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Understanding sources of predictability for first-season prediction:

Roles of atmosphere/land initialization

Winter precip skill Winter T2m skill
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Fcst Ocean/
Ocean Atm/
Obs. | Land
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The atmosphere initial condition plays an . .

. . .. Jia et al. (2017, J. Clim.)
important role in predicting the unusual Yang et al. (2018, Clim. Dyn.)
2015/16 winter precipitation pattern over the

western U.S.
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Selected accomplishments with CM2.1, FLOR, and HIFLOR

*  Simulation, prediction, attribution of hurricanes, including Cat 4/5 (Murakami et al, 2015, J. Climate; 2016, 2017)
»  Attribution of causes of 2017 Major Hurricanes in Atlantic (Murakami et al, 2018, Science)

* Seasonal sea ice prediction (Bushuk et al, 2017, Geophys. Res. Letters; 2017, J Climate)

* Improved seasonal prediction of temperature and precipitation with improved initialization (Jia et al, 2016, J Climate; 2017, J.
Climate )

»  Seasonal prediction of winter storminess (Yang et al, 2015, J. Climate)

*  Western US snow pack (Kapnick et al, 2018, PNAS)
— Skill in predicting western US snowpack 8 months in advance

*  Western US precip, 2015/2016 ENSO (Yang et al, 2018, Climate Dynamics)
— Impact of initialization system on seasonal prediction of precipitation

Interannual to decadal prediction of Atlantic ocean temperature (Yang et al., 2013, J. Climate)

Decadal predictability and prediction of Southern Ocean (Zhang et al, 2017a, J. Climate; 2017b, J. Climate)
Causes of Southern Ocean trends in sea ice (Zhang et al, 2018, Nature Climate Change)

Projection & attribution of Arabian Sea tropical storms in response to anthropogenic forcing (Murakami et al., 2017)
Attribution of anomalous 2015 Pacific hurricane season (Murakami et al., 2017)

Multi-decadal projection of US & Global Hydroclimate (Zhang and Delworth, 2018a, 2018b)

Seasonal to decadal biogeochemical prediction (Park et al., 2018, Climate Dynamics)

See https://www.gfdl.noaa.gov/bibliography/
for searchable database of GFDL papers



https://www.gfdl.noaa.gov/bibliography/

GFDL coupled GCM development

CMIP5:
CMIP3 workhorse & COMZO']' ESM2M Ly, | CMIP6: [,
Sl forecast model, | A:2.9° x2°x 124 ESM2G ESMA4
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FLOR connects many of GFDL’s newest climate models,
and is used extensively for seasonal-to-interannual research and forecasts.



Earth's dominant interannual climate fluctuation:
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Fundamentally coupled phenomenon,
Involving troposphere + top 300m of the tropical Pacific ocean.



ENSO improvements with increasing resolution

Detrended DJF 200hPa height anomaly (m)

stddev of interannual SSTA (°C)
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Projecting decadal scale changes in North American Hydroclimate

Key goal: Probabilistic assessment of decadal changes in weather extremes over North America
* Precipitation extremes and water resources, especially over North America
* Characteristics and impacts of changing tropical and extratropical storms

* Snowpack and western water resources

Projected change in P-E (winter, for decade of 2030s) using large ensembles with FLOR
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There are a number of phenomena with decadal predictive skill from internal variability:
1. Atlantic Ocean surface and subsurface temperature (AMOC, ocean circulation)
2. Pacific Decadal Oscillation (less predictable than North Atlantic)

3. Southern Ocean - potentially predictable on long time scales

(a) Prognostic pot. predictability (yr 1-10)
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TRADEOFFS: Building the best prediction system given available computing resources

Base Case

COMPUTER: 10% of GAEA'
DURATION: 30 reforecast yrs
START MONTHS: 12 per yr
ENSEMBLE MEMBERS: 30

Alternative Reforecast
Characteristics

COMPUTER: 10% of GAEA'
DURATION: 20 reforecast yrs
START MONTHS: 12 per yr
ENSEMBLE MEMBERS: 20

Alternative Computer Resource Options

COMPUTER: 40% of GAEA"  COMPUTER: 40% of GAEA'
DURATION: 30 reforecast yrs DURATION: 30 reforecast yrs
START MONTHS: 12 per yr ~ START MONTHS: 4 per yr
ENSEMBLE MEMBERS: 30 ENSEMBLE MEMBERS: 30

100 km 2.1 0.9 0.5 0.2
50 km 1.4 3.3 1.8 0.6
25 km 47.6 21.2 11.9 4.0

The table above shows how long it would take (in months) to complete a reforecast suite for three resolutions of an atmospheric model (100 km,
50 km, and 25 km) coupled to a 1° ocean model. The different columns make different assumptions about either the characteristics of the
reforecast suite (duration of the reforecast, start months, or ensemble members) or the available computational resources to understand the
viability of reforecast selections. Based on experience, a set of reforecasts that would take 5 or more months is not viable (these boxes are shaded
in red). Such a long process would not allow for the normal iterative process that is necessary in the development of models and prediction
systems. A box shaded in yellow is at the margins of viability.

The “Base Case” assumes 10% of the NOAA GAEA supercomputer system is used for a full suite of reforecasts producing 10,800 model simulation
years.

An “alternative reforecast suite” (20 ensemble members and 20 years of reforecasts) makes a 50 km viable in addition to the 100 km model.
Altering computer resources (rightmost columns) and limiting the number of start months to quarterly improves the viability of higher resolution
models.

NOAA currently allocates 74 million CPU hours per month on the GAEA supercomputer. In this document we refer to 100% of GAEA as 74 million
CPU hours per month.

INOAA currently allocates 74 million CPU hours per month on the GAEA supercomputer. In this document we refer to 100% of GAEA as 74 million
CPU hours per month.
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