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Abstract Retrospective tropical Indo‐Pacific forecasts for 1961–2015 are made using 28 models from the
fifth phase of the Coupled Model Intercomparison Project (CMIP5) plus four models from the North
American Multi‐Model Ensemble (NMME), using a model‐analog technique. Forecast ensembles are
extracted from preexisting model simulations, by finding those states that initially best match an observed
anomaly and tracking their subsequent evolution, requiring no additional model integrations. Model‐analog
forecasts from the 10 “best” CMIP5 models have skill for sea surface temperature and precipitation
comparable to that of both the NMME model‐analog forecast ensemble and (since 1982) traditional
assimilation‐initialized NMME hindcasts. The El Niño–Southern Oscillation (ENSO) forecast skill has no
trend over the 55‐year period, and its decadal variations appear largely random, although the skill does
improve during epochs of increased ENSO activity. Including the CMIP5‐projected effects of external
radiative forcings improves the tropical sea surface temperature skill of the model‐analog forecasts but not
within the ENSO region.

Plain Language Summary Seasonal forecasts are made by starting a climate model from an
initial estimate of the latest global three‐dimensional ocean, atmosphere, and land conditions and then
using supercomputers to run the model's equations forward in time. These extensive calculations are only
feasible at a few national operational centers and large research institutions. However, many similar models
are also used for long simulations of the Earth's preindustrial climate, which are made freely available for
climate change studies. We investigated whether seasonal forecasts might be drawn from the information
already existing within these simulations, instead of by making new model computations. Within each
simulation, we determine the best matches, or “model‐analogs,” to current observed tropical Indo‐Pacific
ocean surface conditions. How these analogs evolve over the next several months within each long
simulation is then its seasonal forecast. We find that this much less expensive model‐analog technique is as
skillful as the more traditional forecasting method. We then employed it to make forecasts during
1961–2015, using 28 existing climate simulations, significantly expanding previous forecast efforts. This
study suggests that with little additional effort, sufficiently realistic and long existing climate model
simulations can provide the basis for skillful seasonal forecasts. That is, anyone can be a climate forecaster.

1. Introduction

Seasonal forecast skill of El Niño–Southern Oscillation (ENSO) has varied substantially over the last few
decades (Barnston et al., 2012). Relatively low skill existed for much of the early 2000s, leading some
researchers to suggest that the inherent predictability of ENSO itself had decreased, possibly due to a fun-
damentally different tropical mean state (Barnston et al., 2012; Zhao et al., 2016) partly driven by anthro-
pogenic climate change (Yeh et al., 2009) that perhaps even altered the nature of ENSO itself (Lee &
McPhaden, 2010). Other studies, however, suggested that such changes in base state and predictability
might be a residual, rather than cause, of randomly clustered ENSO events arising due to the unpredict-
able variations of weather noise forcing of oceanic ENSO precursors (Flügel et al., 2004; Karamperidou
et al., 2014; Kumar et al., 2015; Lee et al., 2016; Newman & Sardeshmukh, 2017; Newman et al., 2011;
Ogata et al., 2013; Vecchi et al., 2006; Watanabe et al., 2012; Watanabe & Wittenberg, 2012;
Wittenberg, 2009; Wittenberg et al., 2014). The examination of this question requires a lengthy record
of retrospective forecasts, or “hindcasts,” of ENSO from earlier periods. Unfortunately, hindcast data sets
made by coupled general circulation models (CGCMs) are generally available only after about 1982 (e.g.,
Barnston et al., 2012; Kirtman et al., 2014) apart from just a few models (Huang et al., 2017; Weisheimer
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et al., 2009), so it is not entirely clear if the early 2000s were unique and/or if there is a long‐term trend in
potential ENSO prediction skill.

Global climate forecasts are typically made by initializing coupled climate models with full‐field estimates of
the global climate state determined using a sophisticated data assimilation system, perturbing this state sev-
eral times to create an ensemble whose spread samples initial uncertainty, and finally integrating each
ensemble member forward several months, yielding the forecast ensemble. This procedure, repeated
monthly, requires considerable computational resources and therefore is undertaken only by large opera-
tional forecasting centers. Generating large hindcast data sets is even more resource intensive and addition-
ally requires an extensive atmospheric and oceanic reanalysis effort.

Ding et al. (2018; hereafter D18) recently demonstrated an alternative forecast method in which predictions
could be drawn from a large library of states previously simulated by a CGCM. Specifically, for each forecast
month from 1982 to 2009, a set of states taken directly from a long uninitialized control CGCM simulation
were chosen by matching their sea surface temperature (SST) and sea surface height (SSH) components to
observed initial tropical Indo‐Pacific SST and SSH anomalies. The subsequent evolution of these states
(called “model‐analogs” by D18) within the control simulation then provided forecast ensembles at various
lead times. D18 showed that tropical Indo‐Pacific SST forecast skill of four model ensembles taken from the
North AmericanMulti‐Model Ensemble (NMME; Kirtman et al., 2014), in which seasonal forecasts are initi-
alized with observations using the standard operational approach, was generally matched (and occasionally
exceeded) by this model‐analog method applied to the corresponding long control runs from each NMME
model. This immediately suggests that any CGCM with a sufficiently long uninitialized control simulation
could also produce seasonal forecasts, using only initial observations of SST and SSH, without otherwise
building a comprehensive assimilation‐initialized forecast system around the model. That is, the model‐ana-
log technique makes it possible to generate forecasts from a great many more models than only the
operational models.

In this paper, we use the model‐analog technique to significantly expand the preexisting tropical Indo‐
Pacific hindcast data set, covering the years 1961–2015 and using not only NMMEmodels (Table S1) but also
28 CGCMs available through the fifth phase of the Coupled Model Intercomparison Project (CMIP5; Table
S2 in the supporting information). CMIP5 climate model simulations have been widely employed in numer-
ous ENSO studies (e.g., Bellenger et al., 2014; Chen et al., 2017). The accessibility of CMIP5 output makes it
particularly attractive for conducting climate forecasts using the model‐analog method, even though CMIP5
models have generally not been used to make ensemble forecasts at their respective development centers.
Using a larger and more diverse set of models and a longer period of record allows for more robust determi-
nation of both the spatial and seasonal dependence of tropical Indo‐Pacific skill and long‐term variations in
skill over the past 55 years.

2. Data and Methods
2.1. Model‐Analogs

Following D18, we choose analogs at each time t by minimizing a distance between a target state vector x(t)
and each library state vector y(t′), where the target state is defined as the observed state at the initialization
time, and the library consists of all states obtained from a CGCM control simulation. D18's simple distance
metric was the root‐mean‐square (RMS) difference between two variables chosen from the full state vectors
x and y: spatial maps of SST and SSH anomalies (SSTA and SSHA) within the domain bounded by 30°E to
80°W and 30°S to 30°N (see the supporting information). Distances are then ranked in ascending order, and
the K states closest to the target state are chosen as themodel‐analog ensemble members, indicated by the set

{y t′1
� �

;y t′2
� �

;…; y t′k
� �

;…; y t′K
� �g with k the analog index and tk′ the time of this analog in the library. D18

found that for data libraries on the order of several hundred years in length, an ensemble size of K~10–20

gave the best results. The subsequent evolution of this ensemble within the control simulation, {y t′1 þ τ
� �

;y

t′2 þ τ
� �

;…; y t′k þ τ
� �

;…; y t′K þ τ
� �g, is the model‐analog forecast ensemble for x(t+ τ) at lead time τmonths.

See D18 for additional discussion of important details of the technique.

The model‐analog technique can be used to make forecasts of not only the subset of variables used to define
the analogs (e.g., tropical Indo‐Pacific SSHA and SSTA) but also any other model quantity associated with
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the library states and their subsequent evolution within the control simulation. Therefore, in this study we
extend the technique by making model‐analog forecasts for anomalous precipitation as well.

2.2. Model and Observational Data Sets

The library data sets are monthly mean data from preindustrial control simulations of the 28 different
CMIP5 models listed in Table S2, which have varying simulation lengths (≥200 years). Monthly anomalies
are calculated for eachmodel by subtracting its monthly climatology, determined over the full length of each
model simulation. This effectively removes mean biases relative to observations.

Observations used to determine the initial model‐analog states were obtained from monthly mean SSTs in
the Hadley Sea Ice and Sea Surface Temperature v1.1 data set (Rayner et al., 2003) and SSHs from the
European Centre for Medium‐Range Weather Forecasts (ECMWF) Ocean Reanalysis System 4 data set
(Balmaseda et al., 2013), for 1961–2015. Anomalies were determined by removing the monthly mean
1961–2015 climatology. These were also used for hindcast verification, along with precipitation anomalies
derived from the Global Precipitation Climatology Project version 2.3 precipitation data set (Adler et al.,
2003) but for the years 1979–2015.

All model and observed data were interpolated onto a common 2° longitude by 2° latitude grid prior
to analysis.

2.3. Hindcast Determination and Skill Metrics

We applied the model‐analog technique to each CMIP5 simulation to make retrospective forecasts (hind-
casts) from tropical Indo‐Pacific SST and SSH initial conditions during 1961–2015 at leads of 1–12 months.
From each simulation, a 10‐member analog ensemble (K = 10) was drawn; results were similar for K = 15.
All ensemble members were equally weighted, since D18 found no improvement for unequal weighting stra-
tegies. Each initial observed state (SSHA and SSTA) was detrended using the method described below in
section 3 before analogs were determined.

The SST and precipitation hindcasts were evaluated with two deterministic skill measures: anomaly correla-
tion (AC) of the ensemble mean forecast anomaly with the verification anomaly and RMS error skill score
(Barnston et al., 2015) defined as 1− ε, where ε is the RMS error of the ensemble‐mean forecast standardized
by the observed climatological standard deviation. Probabilistic skill was assessed using the ranked probabil-
ity skill score (RPSS; Weigel et al., 2007) applied to the observed and forecast tercile distributions. The pat-
terns of the metrics are generally similar, so only AC and RPSS are shown here (RMS metrics are in the
supporting information). Additionally, each hindcast's ENSO skill was assessed with the pattern correlation
between predicted and observed SSTA fields within an “ENSO” region bounded by 20°S to 20°N, 170°E
to 80°W.

3. Accounting for Externally Forced Trends

In nature, SSH and SST anomalies arise from both externally forced (greenhouse gas, aerosols, and other
radiative forcing) and internal climate variability (e.g., Solomon et al., 2011). However, fixed‐climate control
simulations (e.g., with preindustrial or late twentieth century forcings) retain only the model's internal cli-
mate variability. D18 did not include secular trend components within their initial observed states, which
may explain why their model‐analog forecasts were less skillful than the corresponding assimilation‐
initialized forecasts in regions where external radiative forcing may already have affected SST, such as over
the tropical Indian Ocean and northwestern and southwestern tropical Pacific (e.g., Deser et al., 2010;
Knutson et al., 2014; Solomon & Newman, 2012).

Here we aim to improve this aspect of the model‐analog technique by using the time‐evolving multimodel
ensemble mean of the historical and Representative Concentration Pathway 4.5 (RCP4.5) CMIP5 simulations
to estimate the externally forced secular trend.We then use that estimate to identify and remove the trend com-
ponent from the observed SSH and SST anomalies prior to searching for model‐analogs in the fixed‐forcing
control simulations and finally add the predicted trend component back to the final forecast (see the support-
ing information for details). In essence, the CMIP5 ensemble mean predicts the externally forced component,
and the model‐analog technique predicts the internal climate anomaly. We used all 45 CMIP5 historical simu-
lations to estimate the externally forced signal, although using just those 28 models corresponding to our
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model‐analog ensemble yielded essentially the same results. For each initial state at time t, the trend compo-
nent was redetermined from the 1961–2015 period except for data from the interval (t, t + 5 years), which was
withheld to ensure that the trend component of each hindcast was independent of the verification data.

We evaluated this technique by applying it to the NMMEmodel‐analog hindcasts (Table S1) previously used
in D18 and then comparing to the NMME assimilation‐initialized hindcasts. Using the CMIP5 historical run
multimodel ensemble mean to represent the externally forced component significantly improves model‐
analog SST forecast skill over the tropical Indian Ocean, the western tropical Pacific, and the South Pacific.
However, including the trend component has almost no impact on skill within the ENSO region
(Figure S1), where SST trends are small and not statistically significant (Solomon & Newman, 2012) apart
fromNiño4 (Newman et al., 2018). That is, for the 1982–2009 period, accounting for the externally forced com-
ponent now allows the NMME model‐analog ensemble‐mean forecast skill to match (or exceed) NMME
assimilation‐initialized hindcast skill throughout the tropics and well into the subtropics (Figure S2). RMS
skill score (Figure S3) and RPSS (Figure S4) show similar results. Consequently, we next extend this model‐
analog technique to the CMIP5 models and also expand the analysis to a longer hindcast epoch.

4. ENSO Skill, 1961–2015

We first assess the skill of the CMIP5 model‐analog hindcasts of internal variability alone (i.e., prior to
including the projected externally forced component), as D18 did for the NMME models. Figure 1 shows
the ensemble‐mean AC skill from every model's 6‐month lead SST forecasts, compared to the skill from
two different multimodel ensemble means: one using all 28 models and another based on a selected
10‐model subset (see below). All CMIP5 models generate model‐analog hindcasts with skill in the central
and eastern equatorial Pacific, with correlations ranging between 0.6 and 0.7. Some models are also skillful
in the tropical Indian Ocean and the northwestern tropical Pacific, with correlations of 0.4–0.5. In these
regions, SST anomalies are strongly influenced by ENSO via the atmospheric bridge (Alexander et al.,
2002), although ENSO‐independent variability also occurs, especially in the tropical Indian Ocean (e.g.,
Saji et al., 1999; Webster et al., 1999).

In general, the grand 28‐model ensemble mean (hereafter the 28‐model mean) is more skillful than most
individual models within most parts of the tropical Indo‐Pacific Ocean (Figure 1), consistent with previous
studies showing that combining forecasts from multiple models often yields better skill compared to single‐
model forecasts (e.g., DelSole et al., 2014; Kirtman et al., 2014). We determined a subset of 10 CMIP5 models
(marked by stars in Table S2) whose ensemble mean yielded the maximum 6‐month Niño3.4 skill (see
Figure S5 in the supporting information for details). The resulting “CMIP5 10‐model mean” is more skillful
than the 28‐model mean and any individual model.

Next, we assess the multimodel ensemble‐mean skill with the externally forced trend component included,
for the years 1961–2015 (Figure 2). The CMIP5 10‐model mean has SST forecast skill comparable to that of
the NMMEmodel‐analogs, for both the ensemble mean (cf. Figures 2a and 2c) and ensemble distribution (cf.
Figures 2e and 2g). The NMME (Figure 2b) and CMIP5 10‐model mean (Figure 2d) model‐analogs also have
similar ensemble‐mean skill for 6‐month lead precipitation hindcasts during the shorter 1979–2015 period,
with the notable exception of the far eastern equatorial Pacific where the CMIP5 10‐model mean is clearly
worse. This difference is much less for RPSS, however (cf. Figures 2f and 2h). Both are considerably better
than the 28‐model mean precipitation skill (not shown), especially in the central/western tropical Pacific,
an important region for teleconnections to the extratropics (Barsugli & Sardeshmukh, 2002). Since there is
little trend in precipitation, the externally forced component has little effect on its skill (see also Figure
S1b). Note that no atmospheric information is used to constrain the model‐analog hindcasts, so the precipi-
tation skill is only due to knowledge of the initial ocean state.

The skill of the NMME model‐analogs also exceeds that of the assimilation‐initialized hindcasts for the
1982–2009 period, for SST (a and c of Figures S2–S4) and even more for precipitation (b and d of Figures
S2–S4), especially east of 110°W between 5°S and 5°N (see also D18). The SSTA skill reported in Figures
S2–S4 is also slightly higher than in D18, which appears to be due to using SSTA from the Hadley Sea Ice
and Sea Surface Temperature v1.1 data set for verification rather than the National Oceanic and
Atmospheric Administration optimum interpolation SST V2 data set (Reynolds et al., 2002), especially since
precipitation skill is almost unaffected (not shown).

10.1029/2018GL080598Geophysical Research Letters

DING ET AL. 1724



Figure 3 shows how equatorial forecast skill depends upon lead time for SST (left column) and precipitation
(right column). SST skill for the CMIP5 10‐model mean and the NMME model‐analog mean is generally
comparable (cf. Figures 3a and 3c). Including the projected externally forced trend component improves skill
in the Indian Ocean and the western Pacific at all forecast leads, more so for the CMIP5 10‐model mean than
the NMME model‐analog mean (not shown). In the central and eastern Pacific, where the trend has little
impact on skill, the NMME and CMIP5 model‐analogs have remarkably similar skill for leads up to
~10 months, except east of about 100°E. Likewise, the seasonality of Niño3.4 SSTA skill (Figure S6) is nearly
identical for CMIP5 and NMME. In particular, both have quantitatively similar spring predictability barriers
(e.g., Latif et al., 1998; McPhaden, 2003), with hindcasts initialized during boreal spring having generally
reduced skill and hindcasts initialized in all other months showing a sharp decrease in skill with lead time
when verifying during spring.

The notable difference in precipitation skill between the NMME and CMIP5model‐analog ensemble means,
shown for Month 6 hindcasts, can be seen at all leads when comparing NMME (Figure 3b) and CMIP5 10‐

Figure 1. Model‐analog hindcast local correlation skill at 6‐month lead, relative to observed sea surface temperature anomalies, calculated for both “best 10‐” and
28‐model grand ensemble means, and individual model ensemble means. Effects of projected radiative forcings are not included in this figure.
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Figure 2. Six‐month lead hindcast skill of observed SST (a, c, e, g), 1961–2015, and precipitation (b, d, f, h), 1979–2015,
variations, including the CMIP5‐projected response to external radiative forcing. Anomaly correlation and ranked
probability skill score are shown in panels (a–d) and (e–h), respectively. Analog hindcasts are based on the NMMEmodels
(a, b, e, and f) and the “best 10” CMIP5 models (c, d, g, and h). SST = sea surface temperature; CMIP5 = fifth phase of the
Coupled Model Intercomparison Project; NMME = North American Multi‐Model Ensemble.

Figure 3. Equatorial model‐analog hindcast local anomaly correlation skill for SST (left column), 1961–2015, and preci-
pitation (right column), 1979–2015, averaged between 5°S and 5°N, as a function of longitude (abscissa) and lead time
(ordinate). Analog hindcasts are based on (a, b) the NMMEmodels and (c, d) the “best 10” CMIP5models, respectively. In
all model‐analog hindcasts, the projected response to external radiative forcing is included. SST = sea surface temperature;
NMME = North American Multi‐Model Ensemble; CMIP5 = fifth phase of the Coupled Model Intercomparison Project.
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model mean (Figure 3d) equatorial precipitation skill. This difference is evident throughout most of the
eastern Pacific, with smaller differences near the dateline. Skill is even less for the 28‐model mean
(not shown).

The 6‐month lead SSTA prediction skill over the past 55 years is shown in Figure 4a, based on the pattern
correlation of hindcast and observed anomalies within the ENSO region (section 2.3), for both the CMIP5
10‐model mean and the NMME model‐analog ensemble mean. Also shown is skill of the operational
eight‐model NMME grand ensemble mean (Kirtman et al., 2014) since 1982. The evolution of skill is
smoothed using a 13‐month running mean to emphasize the year‐to‐year variations. All the skill curves dis-
play similar modulation, with a marked correspondence between the modulation of skill and ENSO activity
such that higher (lower) skill is coincident with stronger (weaker) ENSO activity, also noted by previous stu-
dies (e.g., Kumar et al., 2015; Newman & Sardeshmukh, 2017). The early 2000s period of reduced skill is evi-
dent, but now it is also clear that this period is not unique, since skill was even lower during 1976–1982.
Conversely, the high skill evident in the late 1980s and 1990s appears to be matched in the early 1970s.
Overall, both skill time series are consistent with red noise with an ~1‐year decorrelation time scale; that
is, on average skill variations are almost independent from year to year. Additionally, there is no significant
trend in skill over the entire period.

The predicted and observed evolution of Niño3.4 SST anomalies for two high‐skill events is also shown in
Figure 4, using model‐analog ensembles initialized in either June 1973 (Figure 4b) or June 2015
(Figure 4c) and their subsequent 1‐ to 12‐month lead forecasts. These model‐analogs are taken from the
CMIP5 CCSM4 preindustrial simulation, which has the highest 6‐month correlation skill in Nino3.4 SST

Figure 4. (a) Temporal variations of 6‐month lead hindcast skill in the El Niño–Southern Oscillation region, for forecasts
initialized monthly during 1961–2015. The measure of skill used is the spatial pattern correlation between the multimodel
grand ensemble mean forecast and the corresponding observed monthly SST anomalies within the region bounded by
20°S to 20°N, 170°E to 70°W, smoothed with a 13‐month running mean to emphasize annual variations. All anomalies are
determined relative to a 1961–2015monthly climatology. In all model‐analog hindcasts, the projected response to external
radiative forcing is included. The light red (blue) shaded epochs indicate periods of >1 sigma warm (< −1 sigma cold)
Niño3.4 seasonal SST anomalies. (b, c) Evolution of predicted anomalous Niño3.4 index from the CCSM4 model‐analog
hindcast ensemble, initialized in (b) June 1973 and (c) June 2015. Solid magenta lines show the ensemble means,
dashed magenta lines show individual ensemble members, and solid black lines show the observations. These figures
represent forecast leads of 1–12 months, where July is Month 1 and June of the following year is Month 12. SST = sea
surface temperature; NMME = North American Multi‐Model Ensemble; CMIP5 = fifth phase of the Coupled Model
Intercomparison Project.
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(Figure S5), but results are similar for other skillful models. The observed time evolution of both ENSO
events is clearly captured by the model‐analog hindcasts. Note that the initial spread of each ensemble is
not particularly small, partly because the model‐analogs primarily capture the dominant spatial patterns
(e.g., Figures S7 and S8). However, the spread also does not increase substantially, and the observed evolu-
tion generally stays well within the envelope of the ensemble members. See D18 for more discussion of
this point.

5. Summary and Discussion

We have shown that, with the inclusion of the projected externally forced climate response from the CMIP5
historical ensemble mean, the NMME model‐analog ensemble‐mean and the NMME assimilation‐
initialized ensemble‐mean hindcasts have almost identical skill for both SSTA and precipitation anomalies
throughout the tropical Indo‐Pacific. This suggests that we have likewise determined the skill of the CMIP5
models, as well as of the CMIP5 multimodel ensemble mean, without running any of them as traditional
assimilation‐initialized forecast models. Most of the CMIP5 models generate skillful forecasts, although
the skill varies considerably from model to model. Likewise, the skill of a smaller subset of the models
(10, determined by the single metric used here) is higher than the skill of the full 28‐model ensemble. The
10‐model mean SST hindcast skill is quite close to the NMME model‐analog grand ensemble mean skill
in the equatorial Pacific. This is surprising, since the CMIP5 models were finalized about 8 years ago, while
the NMME model development since then aimed to better reproduce observed aspects of ENSO variability
for the purpose of making operational forecasts. The larger gap in precipitation skill in the eastern tropical
Pacific, however, may have implications for how the CMIP5 models are capturing tropical air‐sea coupling.

The model‐analog technique essentially measures how well each CMIP5 model reproduced the observed
evolution of ENSO, including its precipitation response. This work therefore has great practical significance
given that the CMIP5 project was designed to support the Intergovernmental Panel on Climate Change Fifth
Assessment Report (Taylor et al., 2012); likewise, the model‐analog technique can be used to assess upcom-
ing CMIP6 models and develop seasonal forecasts from them. It may also be worth searching for model‐ana-
logs using large ensembles of externally forced model simulations (e.g., Kay et al., 2015) rather than using
control simulations as was done here, both so that the externally forced component is more consistently
included without the need to determine it separately and to determine how external forcing may impact
ENSO predictability.

The power of the model‐analog technique is evident in the size of our new tropical Indo‐Pacific SST and
precipitation hindcast database, which contains 10‐member ensembles of 1‐ to 12‐month lead forecasts,
from each of 4 NMME and 28 CMIP5 models, initialized each month during 1961–2015, using only SSTA
and SSHA as initial conditions. By doubling the length of current hindcast databases (e.g., the NMME) as
well as substantially increasing the number and variety of the forecast models, we have obtained better
estimates of overall ENSO forecast skill and have found that the lull in ENSO forecast skill in the early
2000s was not a unique event, with an even more notable reduction occurring in the late 1970s when
ENSO activity was also at a minimum. More notably, the model‐analog technique allows users to make
seasonal ENSO forecasts without the development of a sophisticated forecast system, by taking advantage
of freely available large model simulation databases. That is, anyone can be a climate forecaster.
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