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ABSTRACT

The driving of tropical precipitation by the variability of the underlying sea surface temperature (SST)

plays a critical role in the atmospheric general circulation. To assess the precipitation sensitivity to SST

variability, it is necessary to observe and understand the relationship between precipitation and SST. How-

ever, the precipitation–SST relationships from any coupled atmosphere–ocean system can be difficult to

interpret given the challenge of disentangling the SST-forced atmospheric response and the atmospheric

intrinsic variability. This study demonstrates that the two components can be isolated using uncoupled

atmosphere-only simulations, which extract the former when driven by time-varying SSTs and the latter when

driven by climatological SSTs. With a simple framework that linearly combines the two types of uncoupled

simulations, the coupled precipitation–SST relationships are successfully reproduced. Such a framework can

be a useful tool for quantitatively diagnosing tropical air–sea interactions. The precipitation sensitivity to SST

variability is investigated with the use of uncoupled simulations with prescribed SST anomalies, where the

influence of atmospheric intrinsic variability on SST is deactivated. Through a focus on local precipitation–

SST relationships, the precipitation sensitivity to local SST variability is determined to be predominantly

controlled by the local background SST. In addition, the strength of the precipitation response increases

monotonically with the local background SST, with a very sharp growth at high SSTs. These findings are

supported by basic principles of moist static stability, fromwhich a simple formula for precipitation sensitivity

to local SST variability is derived.

1. Introduction

Variations in tropical sea surface temperature (SST)

play a crucial role in regulating global atmospheric

variability (Trenberth et al. 1998). The impact of tropi-

cal SST is predominantly achieved through its local

influence on precipitation and convection (Barsugli and

Sardeshmukh 2002), which affects not only nearby cir-

culation through atmospheric latent heating (Gill 1980)

but also remote climate through the propagation of

planetary waves (Hoskins and Karoly 1981). With a

strong response in local precipitation, certain tropical

SST variations can exert worldwide climatic impacts,

including droughts, floods, and intense hurricanes (Palmer

1986; Saji et al. 1999; McPhaden et al. 2006; Donnelly

and Woodruff 2007).

From a thermodynamic perspective, we would expect

greater precipitation sensitivity to SST variability at higher

climatological SSTs, since SST anomalies over warmer re-

gions should induce larger perturbations of boundary layer

moist static energy, as low-level atmospheric moisture is
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expected to increase exponentially with SST. However,

early observations of the SST–precipitation relationship

showed a more complex picture. In scatterplots made

from monthly mean data with SST on the x axis and

convection on the y axis, a curve fit to the data steepens

with a large positive slope as the SST reaches approxi-

mately 27.58C but flattens and turns over with a negative

slope at the highest SSTs (Gadgil et al. 1984; Graham and

Barnett 1987; Bhat et al. 1996). Such an observation has

engendered a number of studies, and it was later argued

that the nonmonotonic SST–precipitation relationship

is a result of the complex interplay between SST, circu-

lation, and precipitation and should not be interpreted

as a threshold of SST forcing at high SSTs (Waliser and

Graham 1993; Zhang 1993; Lau et al. 1997).

We can think of tropical precipitation variability as

partially driven by the variability of SST and partially by

atmospheric (and land) internal dynamics, independent

of the SST variability. Using atmosphere-only simula-

tions with prescribed climatological SSTs, He et al.

(2017) showed that a substantial amount of tropical pre-

cipitation variability can be generated without the influ-

ence of the temporal SST variations. Thus in a coupled

atmosphere–ocean system, the intrinsic atmospheric forc-

ing of the ocean is an important part of the interplay be-

tween SST and precipitation and must be accounted for

when interpreting coupled SST–precipitation relationships

(Trenberth and Shea 2005; Wu et al. 2006; He et al. 2017).

As argued by Waliser and Graham (1993), the weak SST–

precipitation relationship in the warm pool regions should

reflect a strong influence of convective cloud on SST and

not necessarily a weak SST forcing of precipitation. On the

other hand, because the atmospheric intrinsic forcing of

SST is inherently integrated into the coupled air–sea rela-

tionships, there remains a fundamental challenge in dis-

entangling the SST-forced precipitation variability and the

atmospheric intrinsic variability, and in quantitatively un-

derstanding the precipitation response to SST variability.

In this study, we show that atmosphere-only simula-

tions forced with different boundary conditions (i.e.,

SSTs) can be used to disentangle the SST-forced re-

sponse and the atmospheric intrinsic variability. Focus-

ing on local SST–precipitation relationships, we aim to

quantify precipitation sensitivity to local SST variability

and to theoretically understand the relationship be-

tween this sensitivity and the background SST. Last, we

construct a simple framework for the quantitative under-

standing of the coupled SST–precipitation relationships.

2. Data and simulations

We summarize the simulations here and will explain

their purposes and briefly describe them again when

they are analyzed in the following sections. The results

shown here include all seasons but the conclusions are

consistent for individual seasons (not shown).

The main model used here is the Geophysical Fluid

Dynamics Laboratory Forecast-Oriented Low Ocean

Resolution model (GFDL-FLOR), which incorporates a

0.58 atmospheric (and land) model and a 18 ocean model

(Vecchi et al. 2014). We perform three experiments with

GFDL-FLOR: 1) a 200-yr fully coupled preindustrial

control experiment, 2) a 200-yr atmosphere-only experi-

ment with prescribed monthly mean SSTs and climato-

logical mean sea ice concentrations taken from the

coupled experiment, and 3) a 200-yr atmosphere-only

experiment with prescribed climatological mean SSTs

and sea ice concentrations from the coupled experiment.

We use two experiments from phase 5 of the Coupled

Model Intercomparison Project (CMIP5; Taylor et al.

2012): 1) the coupled preindustrial control experiment

(years 201–300) and 2) the 30-yr uncoupled atmosphere-

only experiment driven by observed monthly mean

SST and sea ice concentration from 1979–2008. Nine

models that provide the necessary variables are used:

BCC-CSM1.1, CanESM2, CNRM-CM5, HadGEM2-

ES, IPSL-CM5B-LR, MIROC5, MPI-ESM-LR, MPI-

ESM-MR, and MRI-CGCM3. All CMIP5 outputs are

interpolated to a common 28 3 28 grid. All uncoupled

experiments (including CMIP5 and GFDL-FLOR) that

incorporate monthly varying SSTs are referred to as

AMIP_fullSST and those with climatological SSTs as

AMIP_climSST.

Two sets of observations are used, namely the Climate

Prediction Center (CPC)MergedAnalysis of Precipitation

(CMAP; Xie and Arkin 1997) and the merged Hadley

Centre–NOAA Optimal Interpolation SST (Hurrell et al.

2008) for the 1979–2008 period (to be consistent with the

temporal range of the uncoupled CMIP5 simulations).

3. Coupled SST–precipitation relationships

Figure 1 shows the spatial distribution of the SST–

precipitation local covariability diagnosed from obser-

vational estimates and CMIP5 coupledmodel simulations.

In general, large SST–precipitation regression coefficients

are located away from cold tongue regions, but the am-

plitude of the regression coefficients does not exactly

follow the climatological SST. The largest regression

coefficients appear near the west-central equatorial

Pacific. This resembles the pattern of El Niño–Southern
Oscillation (ENSO), which is known to induce large

variations in precipitation. On the other hand, the re-

gression coefficients are small in some of the warm pool

regions (e.g., part of the off-equatorial Pacific conver-

gence zones) and negative in some subtropical regions,
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which can suggest a weak precipitation response to SST

variability, a strong atmospheric intrinsic forcing of

SST by convective clouds, or relatively strong remote

forcing (Waliser and Graham 1993; Wu et al. 2006; He

et al. 2017).

Whilewe understand that the coupled SST–precipitation

relationships result from a combination of SST forcing

precipitation and precipitation forcing SST, it is difficult

to directly observe and quantify either process as the two

are inherently integrated in nature. This in turn creates

a fundamental challenge in understanding and simulat-

ing the coupled climate. To expand on this issue, we first

consider a heuristic one-dimensional linear model that

couples local SST anomalies (SST0) and precipitation

anomalies P0:

P0 5 a3 SST0 1F
P
, (1)

dSST0

dt
5

1

c
w
r
w
H

(b3P0 1F
SST

) . (2)

In this model, precipitation variability is partially

driven by local SST anomalies with a positive forcing

parameter a and partially by dynamics internal to the

atmosphere or remote effects, as represented by FP. As

shown by He et al. (2017), the atmospheric intrinsic

precipitation variability resembles white noise at monthly

and longer time scales. On the other hand, precipitation

also influences SST, primarily through the cooling effect

of cloud shading (Waliser and Graham 1993; Lau and

Sui 1997), although downdrafts of cold, dry air also

play a role (Sud et al. 1999). This precipitation forcing is

captured with a negative value of b in Eq. (2). In this

section, we set a equal to 2mmday21 8C21 and b equal

to 23Wm22 (mmday21)21, and for simplicity, we set

both FP and FSST to Gaussian white noise. The values of

these parameters are based on our climate model sim-

ulations as explained in section 7, wherewe apply amore

realistic set of parameters to the linear model and will

also consider the spatial characteristics of these param-

eters. The parameters cw, rw, and H denote the specific

heat capacity of water, seawater density, and mixed

layer depth (set to 40m), respectively.

We use the simple model to simulate the SST–

precipitation relationship for a range of amplitudes of

FP and FSST. As shown in Fig. 2, the regression co-

efficient is consistently smaller than the SST forcing

a (except for FP 5 0). In addition, the degree to which

the regression coefficient deviates from a depends on the

relative amplitude of FP and FSST. For the same SST

FIG. 1. Pointwise regression coefficients of anomalous monthly precipitation on SST from (a) observations and (b) the CMIP5 coupled

multimodel mean. Contours show the climatological SST; contour levels are 228, 268, 288, 298, and 29.58C. The (multimodel mean) spatial

Spearman rank-order correlations between the SST–precipitation regression coefficients and the climatological SST are shown in the

panel titles.
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forcing parameter a and precipitation forcing parameter

b, a large FP leads to a small regression coefficient,

whereas the opposite is true for FSST. The various factors

that are inherently integrated into the SST–precipitation

relationship thus hinder the direct assessment of pre-

cipitation sensitivity to SST forcing from coupled SST–

precipitation relationships. Moreover, the inability to

quantify SST forcing and the other parameters in Eqs. (1)

and (2) in turn creates a challenge for understanding and

simulating the coupled SST–precipitation relationships.

4. Simulated precipitation sensitivity to SST
variability

How should we then quantify the precipitation sen-

sitivity to SST forcing? Consider Eqs. (1) and (2) from a

mathematical perspective. According to Eq. (1), the

SST–precipitation regression would yield the correct

forcing amplitude a if FP were uncorrelated with SST0.
However, this is not the case in a coupled system, as FP

impacts SST0 via b3 P0 in Eq. (2), which would result in

a discrepancy between the regression coefficient and a.

A straightforward solution is to use atmosphere-only

models with prescribed SST evolution. In these simula-

tions, the impact of atmospheric intrinsic variability on

SST is disabled (Barsugli and Battisti 1998), so the SST–

precipitation relationship only reflects the precipitation

response to SST forcing.

Here, we analyze an ensemble of CMIP5 atmosphere-

only simulations with prescribed monthly SSTs from

1979–2008 observations. To ensure the robustness of the

results, these 30-yr simulations are discussed in con-

junction with a 200-yr simulation from the uncoupled

GFDL-FLOR model. The uncoupled GFDL-FLOR

simulation is forced with the model’s own monthly

SSTs from the coupled preindustrial control run. We

show in section 7 that such an experimental setup

(AMIP_fullSST) is able to accurately quantify the pre-

cipitation sensitivity in coupled climate models.

Consistent with the linearmodel, the SST–precipitation

regression from the AMIP_fullSST simulations (Fig. 3)

is systematically larger than that in the coupled simula-

tions (cf. Figs. 3 and 1). In contrast with the observations

and CMIP5 coupled simulations, the uncoupled regres-

sion coefficients exhibit very similar patterns to the cli-

matological SST, with spatial correlations exceeding 0.8.

The largest regression coefficients generally are found

over the warm pools, with only exceptions in the equa-

torial Atlantic. As discussed in section 5, these pointwise

regression values primarily reflect the precipitation re-

sponse to local SST variability.

The close pattern similarity between the precipitation

sensitivity to SST forcing and the climatological SST

indicates that the strength of SST forcing is largely de-

termined by the climatological SST. The solid lines in

Fig. 4a show the average SST forcing sorted by clima-

tological SSTs. In both CMIP5 and GFDL-FLOR sim-

ulations, the SST forcing increases monotonically with

the climatological SST (with the exception of CNRM-

CM5 at SST5 298C, possibly due to the shortness of the

simulation). At high climatological SSTs, SST forcing

grows drastically to high levels, but the point at which

SST forcing starts to grow rapidly appears to vary among

individual models (Fig. 5).

5. Local versus nonlocal SST forcing

Precipitation responds to both local and remote SST

anomalies. This section aims to clarify the physical

meaning of the precipitation sensitivity diagnosed from

pointwise SST–precipitation regression coefficients.

Because the atmospheric intrinsic precipitation vari-

ability is uncorrelated with SST anomalies in theAMIP_

fullSST simulation, regressing precipitation onto SST

effectively filters out the atmospheric intrinsic variabil-

ity (which is not the case in the coupled simulation).

Likewise, if the SST anomalies were random in space

and time, the pointwise regression would average out the

nonlocal SST forcing with only locally forced responses

remaining. Nonlocality could arise, however, when the

SST anomalies are temporally and spatially coherent.

In a separate uncoupled simulation in which SST

anomalies are prescribed randomly, we found that its

FIG. 2. Regression coefficients of monthly precipitation anoma-

lies onto monthly SST anomalies from the simplified linear sto-

chastic model for different amplitudes of stochastic precipitation

variability FP and dynamical SST variability FSST. Note that the

SST forcing of precipitation is set to 2mmday21 8C21.
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SST–precipitation regression coefficients have similar

structure and amplitude to those in a realistic SST set-

ting (see Fig. S1 in the online supplemental material).

This may not be intuitively predicted, since the realistic

SST anomalies often occur with a repeating spatial

structure, with ENSO being the most dominant case. In

Fig. 6, we compare the SST–precipitation regression

during the ENSO months and non-ENSO months.

Discrepancies can be found on regional scales between

the two cases, with ENSO acting to amplify the re-

gression in the central western Pacific at the expense of

the other ocean basins. This indicates that the remote

SST forcing that is associated with the large-scale SST

structure of ENSO can affect the local SST–precipitation

relationship. However, the general features of the SST–

precipitation regression are consistent during ENSO

and non-ENSO months (Fig. 6d), both with the largest

regression coefficients over warm pool regions. There-

fore, the pointwise SST–precipitation regression coeffi-

cients to first order reflect precipitation sensitivity to

local SST variability.

It should be noted, however, that the precipitation

response to local SST variability at any given time

should be considered in conjunction with the spatial

structure of the SST anomaly, as the gradient of the SST

anomalies can have great influence on surface wind,

particularly in the convective zone in the eastern Pacific

(Lindzen and Nigam 1987; Back and Bretherton 2009).

The local regression allows us to generalize the SST

forcing as a time-averaged product, while neglecting the

structure of such forcing that varies with time. Although

we do not discuss the nonlocal SST forcing in this paper, it

can be studied as well with atmosphere-only simulations.

6. A simple moist static energy model

Although the monotonic increase in precipitation

sensitivity to climatological SST conforms with in-

tuition, we still seek theoretical arguments for the rate

at which the precipitation sensitivity increases. By

neglecting horizontal advection and making a two-

layer approximation that neglects vertical structure of

convection, Neelin and Held (1987, hereafter NH87)

derived a simple formula for tropical precipitation, in

which precipitation is inversely proportional to the gross

moist stability:

P}2q
s
= �V

s
’

F

Dm
, (3)

where qs is the surface specific humidity, Vs is the hori-

zontal wind, and m is the moist static energy; F is

FIG. 3. Regression coefficients of anomalous monthly precipitation onto SST in the AMIP_fullSST simulations from (a) the CMIP5

multimodel mean and (b) GFDL-FLOR. Contours are as in Fig. 1. The (multimodel mean) spatial Spearman rank-order correlations

between the SST–precipitation regression and the climatological SST are shown in the panel titles.
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constant and is derived from the energy flux difference

between the tropopause and surface. The denominator

on the right-hand side represents the gross moist stability

(GMS; i.e., Dm5mt 2ms, where subscript t denotes the

tropopause). Because moisture in the upper troposphere

is negligible, Dm5 Ds2Ly 3 qs, where Ly is the latent

heat of condensation of water, and Ds is the dry static

stability.Assuming constant tropopause temperature and

that variations in surface moist static energy depend

primarily on moisture rather than temperature (i.e.,

constant Ds), the GMS is only determined by surface

moisture, which depends essentially on SST. This way,

SST becomes the sole ingredient of precipitation in

Eq. (3).

Many subsequent studies have raised issues with

NH87’s theory, particularly regarding the parameteri-

zation of GMS as a function of SST. It was shown that

the GMS actually does not correlate well with SST and

involves intricate dynamical parameters that are not

entirely driven by SST variability, such as convective

depth and vertical velocity (Yu et al. 1998; Back and

Bretherton 2006; Raymond et al. 2009). In addition, the

assumption of constant tropopause temperature, which

has been commonly used (e.g., Sobel and Bretherton

2000; Daleu et al. 2016), does not seem to hold, as

observations show that upper-tropospheric temperature

variability far exceeds the SST variability (e.g., Fig. 3 of

Stephens et al. 2004).

The mismatch between GMS and SST is expected,

in part because GMS, just like precipitation, can be

strongly influenced by atmospheric intrinsic dynamics.

However, since our goal is to understand only the part of

precipitation variability driven by SST variability, we

can neglect all atmospheric intrinsic processes and only

consider how variations in SST influence GMS (even

though SST is not the only factor). Since the correlation

between SST and tropospheric temperature quickly

diminishes with height, we assume that SST only affects

GMS through surface moist static stability. To calcu-

late qs from SST, we set surface relative humidity to

80% and surface air–sea temperature difference to

1.58C. We define Dm5Ds2Ly 3 qs (where Ds is con-
stant) as the SST-driven moist static stability (SMS)

and rewrite Eq. (3) as

P(SST)’
F*

SMS
5

F*3 q
s
(SST)

Ds2L
y
3 q

s
(SST)

, (4)

where F* is a constant. Equations (3) and (4) are the

same except that Eq. (4) only applies to the SST-driven

FIG. 4. (a) Average SST–precipitation regression coefficients from the CMIP5 (red) and GFDL-FLOR (blue) AMIP_fullSST simu-

lations sorted by climatological SST in 0.58C bins (solid lines). Shading shows the uncertainty based on the CMIP5 intermodel standard

deviation of the average SST–precipitation regression (red) and the 95% regression coefficient confidence interval for the GFDL-FLOR

simulation (blue). Dashed lines show the corresponding values calculated fromEq. (5). (b) Average climatological precipitation sorted by

climatological SST in 0.58C bins (solid lines) and the corresponding values calculated from Eq. (4) (dashed lines) for observations (black),

the CMIP5 multimodel mean (red), and the GFDL-FLOR simulation (blue). Note that GFDL-FLOR was run under preindustrial

conditions and has a colder climatology than the uncoupled CMIP5 models that were run under present-day conditions.
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precipitation, which is related to SMS instead of GMS.

This is a necessary conceptual adjustment for consoli-

dating the mismatch between GMS and SST, and based

on this adjustment we will test the utility of Eq. (4) for

understanding precipitation sensitivity to SST variability.

It should be noted that there still remain two impor-

tant caveats. First, the horizontal advection of moist

static energy can be important for convection, particular

on regional scales (Yu et al. 1998; Back and Bretherton

2006). Second, the SST-driven convections could have

varying vertical structure and depth. Either process, if

significant, would break the derivation of Eq. (4). It is

possible that both processes can be important for indi-

vidual SST-driven convective events but are arguably

less sowhen it comes to the average sensitivity to SSTanom-

alies, which is what we focus on here. Other simplifications

associated with Eq. (4) include the lack of SST gradient

forcing (Lindzen and Nigam 1987; Back and Bretherton

FIG. 5. Average SST–precipitation regression coefficients from individual uncoupled CMIP5 models sorted by climatological SST in

0.58C bins. Shading shows the 95% regression coefficient confidence interval. Dashed lines show the corresponding values calculated from

Eq. (7). See section 6 for definitions of F* and Ds.
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2009) and the lack of spatial variations in the tropo-

spheric energy imbalance (i.e., F;Wang and Sobel 2011).

We use climatological data to estimate constants F*

and Ds in Eq. (4), based on a nonlinear least squares fit

between the climatological qs and precipitation. In the

observations and models analyzed here, F* varies

around 30Wm22 and Ds is approximately 53 104 J kg21

(Figs. 4b and 5), which is close to the tropical mean dry

static energy difference between the tropopause and

surface in the present climate (Fig. 7). The consistency

between the estimated and the actual dry static stability

offers some confidence in the physical basis of Eq. (4).

As shown in Fig. 4b, Eq. (4) successfully captures the

basic features of the time-mean precipitation that is

binned onto the climatological SST, which was also

shown in NH87. This suggests that Eq. (4) could be a

reasonable starting point for studying the SST-forced

precipitation response.

Using the Clausius–Clapeyron relationship between

moisture and temperature, that is, ›qs/›SST ’ qs 3
7% 8C21, we obtain a simple formula for precipitation

sensitivity to local SST variability:

›P

›SST
’

F*3Ds3q
s
(SST)3 7% 8C21

[Ds2L
y
3 q

s
(SST)]2

. (5)

According to Eq. (5), the intensity of the SST forcing

of precipitation increases monotonically with SST. The

SMS, which appears in the denominator, is a crucial

factor. At high SSTs (i.e., the warm pools), as Ly 3 qs

approaches the critical limit set by the dry static stability

Ds, the precipitation sensitivity becomes very large.

(Note that the SMS is always positive at the monthly

time scale.)

Next, we apply Eq. (5) to the climate model simula-

tions. As shown by the dashed lines in Figs. 4a and 5,

the simple formula reproduces the general structure of

precipitation sensitivity to local SST variability from the

climate models. Certain discrepancies are expected due

to the simplicity of Eq. (5). In particular, Eq. (5) over-

estimates the SST forcing at very high climatological

SSTs. As shown in Fig. 8, for those models for which SST

forcing is overestimated by Eq. (5) at high SSTs (i.e.,

GFDL-FLOR, CanAM4, CNRM-CM5, andHadGEM2-

A), their surface moisture clearly does not keep up with

SST at high SSTs. Therefore, the overestimation is likely

due to the assumption of constant relative humidity,

which can be particularly problematic at high SSTs where

the advection of dry air can be significant. In summary,

the simple formula may serve as a starting point for un-

derstanding precipitation sensitivity and parameterizing

FIG. 6. SST–precipitation regression during (a) ENSOmonths and (b) non-ENSOmonths, and (c) the difference between the two from

the GFDL-FLORAMIP_fullSST simulation. The ENSO (non-ENSO)months are defined as months when the amplitude of the Niño-3.4
SST anomaly is larger than 1 (smaller than 0.5) standard deviation. The standard deviation is calculated separately for each of the 12

months so the ENSO and non-ENSOmonths are not biased by season. There are approximately 800 ENSO and non-ENSOmonths in the

200-yr simulation. Contours show the climatological SST with the same contour style as Fig. 1. (d) The average precipitation sensitivity to

SST sorted by 0.58C climatological SST bins for ENSOmonths (red), non-ENSOmonths (blue), and all months (black). Shading shows the

average 95% regression coefficient confidence interval for each climatological SST bin.
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it as a function of the background SST. On the other

hand, the simplifications used to derive Eq. (5), which we

have described earlier, need to be investigated for more

accurate applications.

7. A diagnostic framework for SST–precipitation
interactions

To understand how SST–precipitation relationships

emerge in a coupled system, we apply a more realistic

version of the linear model [Eqs. (1) and (2)] by ex-

panding it from one dimension (t) to three dimensions

(x, y, t) and adjusting its parameters tomatch theGFDL-

FLOR simulation. We set the SST forcing parameter

a to the SST–precipitation regression from the GFDL-

FLOR AMIP_fullSST simulation (shown in Fig. 3b).

We set the atmospheric intrinsic variability FP to daily

precipitation anomalies from an uncoupled GFDL-

FLOR simulation forced with seasonally varying cli-

matological SSTs from the coupled GFDL-FLOR control

simulation (AMIP_climSST). The use of a climatologically

forced uncoupled simulation to estimate the atmospheric

intrinsic variability was detailed and discussed in He

et al. (2017).

We set the SST equation based on a linear quantifi-

cation of the ocean mixed layer heat budget to take into

account SST variability that is driven by atmospheric

energy fluxes and ocean dynamics. Specifically, the SST

variability results from variations in surface shortwave

radiation (SW0), longwave radiation (LW0), latent heat
(LH0), sensible heat (SH0), and ocean dynamic forcing

Fdyn. We assume that the surface shortwave radiation is

primarily associated with precipitation variability (i.e.,

SW0 ’ b3P0). This is based on the fact that variations in

surface shortwave radiation largely result from varia-

tions in cloud and (to a lesser degree) atmospheric

moisture, which are closely related to precipitation (see

Fig. S2 in the online supplemental material). We esti-

mate parameter b using the regression coefficients of

daily surface shortwave radiation anomalies onto daily

precipitation anomalies from the GFDL-FLORAMIP_

fullSST simulation. An alternative way to insert pre-

cipitation into the surface energy budget is to parameterize

it into surface downwelling longwave radiation, since it has

been shown from observations that the shortwave and

longwave radiation associated with high cloud variability

has similar amplitudes (e.g., Ramanathan et al. 1989).

However in GFDL-FLOR, the shortwave forcing is much

stronger (see Fig. S3 in the online supplemental material).

Convection also cools SST through surface evaporation

and sensible heat. Although these effects can be strong on

certain occasions (Sud et al. 1999;WuandKirtman 2007), in

general they aremuch weaker than the shortwave radiation

effect (as shown by the evaporation–precipitation re-

gression inFig. S3c).We therefore decide to treatLW0, LH0,
and SH0 separately from P0. In Eq. (2) FSST then becomes

FIG. 7. Vertical profile of tropical mean temperature (red) and

dry static energy deviation from the surface (blue) from theGFDL-

FLORAMIP_fullSST simulation. Note the tropopause at 100 hPa,

where the dry static energy deviation from the surface is approxi-

mately 5 3 104 J kg21.

FIG. 8. Average surface specific humidity for 0.58C climatological

SST bins from each atmosphere-only simulation. The y axis is

logarithmically spaced.
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F
SST

5LW0 1LH0 1 SH0 1F
dyn

.

We estimate LW0, LH0, and SH0 in the same way as P0 by
separating them into an SST-driven component and an

intrinsic atmospheric component:

LW0 5 a
LW

3 SST0 1F
LW

,

LH0 5 a
LH

3 SST0 1F
LH

,

SH0 5 a
SH

3 SST0 1F
SH

,

where aLW, aLH, and aSH are specified as the regression

of the respective monthly surface flux anomalies onto

monthly SST anomalies from the GFDL-FLORAMIP_

fullSST simulation forced with SST anomalies from the

coupledGFDL-FLOR simulation; FLW, FLH and FSH are

set to the respective daily surface flux anomalies from

the GFDL-FLOR AMIP_climSST simulation.

The parameter Fdyn represents the forcing by ocean

dynamics, largely related to ENSO. Here, we estimate

Fdyn using the part of heat flux at the bottom of the

mixed layer (Q flux) that is linearly correlated with the

FIG. 9. (a) Precipitation forcing parameter b calculated as the regression coefficients of daily surface shortwave radiation anomalies onto

daily precipitation anomalies from theGFDL-FLORAMIP_fullSST simulation. (b) Amplitude of FP calculated as the standard deviation

of monthly precipitation anomalies from the GFDL-FLOR AMIP_climSST simulation. (c) Amplitude of FSST based on a linear quan-

tification of the ocean mixed layer heat budget (see section 7). Contours show the climatological SST from the coupled GFDL-FLOR

simulation with the same contour style as Fig. 1.
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Q flux averaged over the Niño-3.4 region (58S–58N,

1208–1708W) from the coupled GFDL-FLOR simula-

tion. This is a modest estimation, since it does not ac-

count for the ocean dynamic forcing that is unrelated

to ENSO.

Figure 9 illustrates the spatial distribution of the key

parameters of the linear model. The precipitation forc-

ing parameter b has a negative value and little spatial

variation, except in part of the Southern Hemisphere

subtropics where the strongest shortwave reflection is

associated with nonprecipitating stratocumulus clouds

resulting in a positive b. Because precipitation responds

most strongly to SST variability in the warm pool re-

gions, the amplitude of shortwave cooling b 3 P0 that is
driven by SST anomalies is largest at high SSTs. This

is consistent with the ‘‘cloud thermostat’’ hypothesis,

which was proposed as the key mechanism for cooling

SST hotspots (Ramanathan and Collins 1991; Wallace

1992; Hartmann and Michelsen 1993; Waliser 1996),

although this mechanism likely applies only to local re-

gions rather than the entire tropics as originally con-

ceived (Pierrehumbert 1995). The atmospheric internal

precipitation variability FP has a very similar pattern as

the climatological precipitation, with the largest ampli-

tude in the warm pool regions (He et al. 2017). The value

of FSST is largest in the central equatorial Pacific due to

active ocean circulation and in the subtropics due to

strong variability in wind-driven surface evaporation; it

is generally small in the warm pool regions.

With the use of a realistic set of parameters, the

linear model is able to reproduce the general features

of the SST–precipitation relationship from the coupled

GFDL-FLOR simulation (Fig. 10), including the large

positive values at the central equatorial Pacific and the

negative values in certain subtropical regions. In gen-

eral, the regression coefficients are slightly lower in the

linear model, which is likely due to its partial in-

corporation of ocean dynamics Fdyn. Combining the

characteristics of the parameters illustrated in Figs. 3b

and 9 and the idealized analysis in section 3, we can

quantitatively understand the spatial features of the

coupled SST–precipitation relationship. The strongest

SST–precipitation relationship that is both observed

(Graham and Barnett 1987; Lau et al. 1997) and sim-

ulated (Figs. 1 and 10a) in the western central equa-

torial Pacific results partially from a combination of

relatively strong ocean dynamics and relatively weak

atmospheric internal variability (compared to the Pa-

cific warm pool), despite the fact that its SST forcing of

precipitation is not the strongest. The Pacific warm

pool has the strongest SST forcing, but the weak ocean

dynamics and strong atmospheric internal variability

lead to a relatively weak SST–precipitation relation-

ship, particularly in the northern Pacific convergence

FIG. 10. Pointwise regression coefficients of anomalous monthly precipitation on SST from (a) the coupled GFDL-FLOR simulation

and (b) the linear model simulation. Contours show the climatological SST from the coupled GFDL-FLOR simulation with the same

contour style as Fig. 1.
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zone and the poleward side of the southern Pacific

convergence zone.

8. Implications and discussion

The climate is a fundamentally coupled system and

requires coupled models to fully simulate its variability.

On the other hand, the success of simulating a fully

coupled system relies on understanding the oceanic

forced climate response and the intrinsic atmospheric

feedback, which are difficult to disentangle from cou-

pled systems. Although the atmosphere-only simula-

tions have been long criticized for their lack of two-way

coupling, we have shown that their decoupled behavior

can actually be used as a unique strength to study oce-

anic and atmospheric forcing in isolation. By incorpo-

rating the atmosphere-only simulations into a linear

model, we have created a simple yet effective frame-

work to dissect the complex nature of coupled air–sea

relationships. The success of the linear framework

demonstrates that the atmosphere-only simulations are

useful tools for understanding precipitation sensitivity

to SST variability.

State-of-the-art climate models are generally able to

reproduce the basic structure of the observed air–sea

relationship, but they exhibit substantial spread and

biases on the spatial details (cf. Figs. 1l and 1a). These

biases need to be understood not only to achieve better

simulations of tropical climate variability, but also to

improve short-term climate predictions (Wang et al.

2005). Highly simplified linear models have proven

useful for understanding the basic nature of tropical

air–sea interaction (Waliser and Graham 1993; Sobel

and Gildor 2003; Wu et al. 2006), but the lack of re-

alistic parameters makes them inadequate for quanti-

tative analysis. By incorporating the linear model with

atmosphere-only simulations, the simple framework

that is demonstrated here can potentially be an effective

tool to diagnose the processes and sources of climate

model biases relating to coupled air–sea relationships.

In this regard, the framework adopted here may be a

first step toward the development of process-oriented

diagnostics that hone in on the mechanisms responsible

for variations in the SST–precipitation relationships

within climate models.

Such a framework may also help us to understand

future changes in tropical air–sea relationships, which

have already been detected in previous studies (Cai et al.

2014; Huang and Xie 2015). Future studies may benefit

from the analysis of atmosphere-only simulations, which

are able to quantify the changes in precipitation sensi-

tivity to SST forcing. Based on the moist static stability

theory, we showed that precipitation sensitivity is largely

determined by the tropospheric dry static stability and

SST patterns. Because both factors are projected to

change in a warming climate (Johnson andXie 2010; Xie

et al. 2010), changes in precipitation sensitivity to SST

variability are certainly expected (Huang et al. 2017)

and will remain an important research subject.
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