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ABSTRACT

Seasonal forecasts made by coupled atmosphere–ocean general circulation models (CGCMs) undergo

strong climate drift and initialization shock, driving the model state away from its long-term attractor. Here

we explore initializing directly on a model’s own attractor, using an analog approach in which model states

close to the observed initial state are drawn from a ‘‘library’’ obtained from prior uninitialized CGCM

simulations. The subsequent evolution of those ‘‘model-analogs’’ yields a forecast ensemble, without addi-

tional model integration. This technique is applied to four of the eight CGCMs comprising the North

AmericanMultimodel Ensemble (NMME) by selecting fromprior long control runs thosemodel states whose

monthly tropical Indo-Pacific SST and SSH anomalies best resemble the observations at initialization time.

Hindcasts are then made for leads of 1–12 months during 1982–2015. Deterministic and probabilistic skill

measures of these model-analog hindcast ensembles are comparable to those of the initialized NMME

hindcast ensembles, for both the individual models and the multimodel ensemble. In the eastern equatorial

Pacific, model-analog hindcast skill exceeds that of the NMME. Despite initializing with a relatively large

ensemble spread, model-analogs also reproduce each CGCM’s perfect-model skill, consistent with a coarse-

grained view of tropical Indo-Pacific predictability. This study suggests that with little additional effort,

sufficiently realistic and long CGCM simulations provide the basis for skillful seasonal forecasts of tropical

Indo-Pacific SST anomalies, even without sophisticated data assimilation or additional ensemble forecast

integrations. The model-analog method could provide a baseline for forecast skill when developing future

models and forecast systems.

1. Introduction

Seasonal forecast skill has significantly improved over

the past three decades (Barnston et al. 2012; Barnston

and Tippett 2017). Operational prediction centers

worldwide use coupled atmosphere–ocean general cir-

culation models (CGCMs) to conduct routine initialized

seasonal forecasts with actionable skill of 6–12 months

in advance (Doblas-Reyes et al. 2013), much of which is

related to predictions of tropical sea surface tempera-

ture (SST) and especially of El Niño–Southern Oscilla-

tion (ENSO) (Jin et al. 2008; Barnston et al. 2012;

Kirtman et al. 2014). Both model and initialization im-

provements have driven advances in forecast skill, with

considerable effort devoted to developing data assimi-

lation schemes (Ji and Leetmaa 1997; Stockdale et al.

1998, 2011; Keenlyside et al. 2005; Saha et al. 2014).

While coupled models have improved, they remain

imperfect. Models continue to suffer from both un-

conditional biases in their mean states, such as the
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double ITCZ and cold tongue bias (e.g., Li and Xie

2014), and conditional biases in their variability, such as a

westward shift of ENSO (e.g., Joseph and Nigam 2006).

CGCM seasonal forecast skill is significantly impacted by

these model errors (e.g., Barnston et al. 2015; Newman

and Sardeshmukh 2017). Initialization shock, which can

arise when forecast error rapidly develops from an initial

imbalance between the analyzed initial state and all

possible model states, degrades forecast skill in the

presence of nonlinear air–sea interactions (Mulholland

et al. 2015, 2016). At longer forecast leads, this problem

may be worsened by the difficulty of spinning up the

deeper oceanic component of the initialization.

When model-state space trajectories do not coincide

with trajectories in nature, we could try to find and ini-

tialize those model trajectories that are closest (in some

sense) to nature. This ‘‘shadowing’’ approach has been

applied to relatively simplemodels (e.g., Judd et al. 2004),

although the real-world problem may be considerably

more complex (Smith 2001). Anomaly initialization (e.g.,

Hazeleger et al. 2013; Volpi et al. 2017) and nudging (e.g.,

DelSole et al. 2008; Meehl et al. 2014; Carrassi et al. 2016)

both aim to remove effects of the initial model drift, but

are only partly successful and do not directly confront

conditional model error. Alternatively, model errors may

be addressed through postprocessing hindcast ensembles,

although their length and size are limited by available

computational resources.

Here, we take the view that for forecast lead times

where the model has drifted toward its own climatology

and forecast states follow trajectories that lie within the

model attractor, model initialization should be directly

in the model phase space and not in the phase space of

nature. To this end, we investigate initializing climate

forecasts with states taken directly from long control

simulations of operational CGCMs. These states are

chosen as analogs to the observed initial state; then,

their evolution within the control simulation imme-

diately provides the forecast ensemble, and no addi-

tional model integration is necessary. In this paper we

further simplify this approach by choosing these ‘‘model-

analogs’’ solely from the current position of the state in

phase space, without considering the phase-space tra-

jectory, and determining them not from the entire cli-

mate state, but rather from monthly anomalies of SST

and sea surface height (SSH). Nevertheless, applying

this technique to tropical Indo-Pacific Ocean forecasts

yields skill, such as shown in Fig. 1, that is not only

surprisingly competitive with the traditional approach of

executing an initialized forecast ensemble from the

corresponding CGCMs, but actually appears to exceed

it in the key ENSO region within the equatorial eastern

Pacific.

The use of analogs in weather and climate forecasting

goes back many decades (Lorenz 1969; Barnett and

Preisendorfer 1978; Gutzler and Shukla 1984; Livezey

andBarnston 1988; Van denDool 1989). The underlying

assumption is that a pair of states that are initially suffi-

ciently similar to each otherwill follow similar trajectories

for some subsequent finite period. Lorenz (1969) first

noted that the increasing difference between two such

analog trajectories represents error growth and therefore

a measure of potential predictability. He suggested this

difference might be empirically determined, but found

that for daily weather, no pair of analogs taken from the

observational record was close enough to be useful. In

fact, Van den Dool (1994) suggested that global daily

weather anomalies may have too many degrees of free-

dom for useful analogs to be found.

However, analogs may be more useful for problems

with fewer effective degrees of freedom (Van den Dool

1994). Observational analogs have been applied with

some success to short-term climate forecasting (Barnett

and Preisendorfer 1978; Nicholls 1980) including U.S.

surface temperature seasonal anomalies (Livezey and

Barnston 1988; Barnston and Livezey 1989), climate

downscaling (Kruizinga and Murphy 1983; Zorita and

von Storch 1999; Wetterhall et al. 2005), and calibration

of ensemble weather forecasts (Van den Dool et al.

2003; Fraedrich et al. 2003). However, these applications

are still limited by the relatively short observational

record. The recent easy availability of long climate

model runs, providing access to larger data libraries than

the observational record, has made analog techniques

particularly attractive for applications such as paleo-

climate reconstruction (Overpeck et al. 1992; Graham

et al. 2007; Goodwin et al. 2014), estimating perfect-

model climate predictability (Branstator et al. 2012),

and separation of internal and forced trend compo-

nents within climate runs (Deser et al. 2016; Lehner

et al. 2017).

This study will investigate the use of a model-based

analog technique for seasonal forecasts of tropical Indo-

Pacific SST variability, which many studies have sug-

gested can be represented by relatively few degrees of

freedom. For example, most central and eastern Pacific

ENSO events can be described through a linear com-

bination of two dominant spatial patterns that together

explain more than half of the variance in the tropical

Indo-Pacific region (e.g., Takahashi et al. 2011). Also,

the evolution of ENSO is well approximated by a low-

dimensional, Markovian dynamical system with rela-

tively few spatial degrees of freedom (Penland and

Sardeshmukh 1995). Additionally, Wittenberg (2009)

found that for the GFDL CM2.1 control simulation, 500

years of data was sufficient to sample the range of ENSO
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events. We might thus expect that our model-analog

approach to ENSO could be more tractable than other

problems in terms of the amount of data needed.

The paper is organized as follows. Section 2 describes

the details of the model-analog technique employed in

this study, along with the CGCM simulations used. In

section 3, model-analogs are first applied to forecast

each model itself. The sensitivity of the technique to the

size of historical data as well as ensemble size is ex-

plored, and it is shown that, in agreement with Lorenz

(1969), model-analogs can be used to estimate a

CGCM’s perfect model seasonal tropical predictability.

In section 4, themodel-analog technique is used tomake

hindcasts for the 1982–2009 period, their skill is shown

comparable to hindcast skill from the operational

CGCM ensemble, and their sources of skill are evalu-

ated. A summary and discussion of some implications of

the model-analog technique are presented in section 5.

2. Models and method

a. Model-analog technique

We choose analogs at each time t by minimizing a

metric of the distance between the target state x(t) and

each library state y(t0). Here, the target state is defined as

the state at the initialization time, and the library con-

sists of all preexisting states obtained from a CGCM

control simulation. In this study, we define a simple

distance metric d(t, t0) from the root-mean-square

(RMS) difference between a subset of variables within

the full state vectors, or

d2(t, t0)5 �
I

i51
�
J

j51

"
xij(t)

si
X

2
yij(t

0)

si
Y

#2

, (1)

where i represents a variable, with I as the total vari-

ables, and j represents a spatial degree of freedom (e.g.,

gridpoint index or principal component) within the

training region, with J as the total spatial degrees of

freedom. In (1), each variable is normalized by its re-

spective domain-averaged standard deviation, si
X and

si
Y , to have equal weight within this metric. Monthly

mean data are used in (1), and to include seasonality, the

library states are restricted to have the same calendar

month as the target state. Consequently, only one analog

is available from each year of the model simulation, so

that the library length N is equivalent to the number of

years in the training period.

Distances are ranked in ascending order, and the

K states closest to the target state are chosen as the

model-analog ensemble members, indicated by the set

fy(t01), y(t02), . . . , y(t0k), . . . , y(t0K)g, with k as the analog

index and t0k as the time of this analog in the library. The

subsequent model evolution of this ensemble fy(t01 1 t),

FIG. 1. (a) Model-analog and (b) NMME hindcast skills of observed SST variations at

6-month lead. Only RMS skill score is shown. The grand mean of 60 analogs is shown in (a),

which consist of 15 best initial analogs from each of the four control runs (Table 1). The grand

mean of the four NMME experiments is shown in (b) (Table 1).
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y(t02 1 t), . . . , y(t0k 1 t), . . . , y(t0K 1 t)g is the model-

analog forecast ensemble for x(t 1 t) at lead time

t months. The ensemble mean z(t)[�K

k51y(t
0
k)/K

represents the initial model-analog ensemble-mean

reconstruction of the target x(t), and z(t1 t) [

�K

k51y(t
0
k 1 t)/K is the model-analog ensemble-mean

forecast at lead time t months. In this paper, we do not

weight the model-analog ensemble members. Note

that a linear weighting such as used in the constructed

analog method (Van den Dool 1994) can be shown to

reduce to multivariate linear regression (Tippett and

DelSole 2013). We also tested a quadratic weighting

[i.e., inversely weighting each member by d2(t, t0)] but
found no notable improvement.

To define analogs, we set I5 2 and constructed target

and library states from SSH anomalies (SSHAs; i 5 1)

and SST anomalies (SSTAs; i 5 2). SST is one of the

most important quantities for seasonal forecasts (e.g.,

Latif et al. 1998; Barnston et al. 2012), and fluctuations in

central and eastern tropical Pacific SST can exert a sig-

nificant impact on atmospheric circulation and remote

ocean regions via the atmospheric bridge (Alexander

et al. 2002). Ocean heat content variations are also im-

portant for ENSO dynamics (Zebiak and Cane 1987;

Neelin et al. 1998) and have been shown to be important

for ENSO prediction (Kleeman et al. 1995; Ji and

Leetmaa 1997; Rosati et al. 1997; Newman et al. 2011).

Here, SSH variations are used to represent ocean heat

content variations, since in the tropical oceans, SSH is

intimately linked to the depth of the thermocline (Cane

1984). Furthermore, SSH is also an indicator of equa-

torial wave dynamics in the oceans (Gill and Clarke

1974), which affects the development and termination of

ENSO events (Suarez and Schopf 1988). Using SSTAs

alone substantially degraded the forecast skill of the

model-analogs (not shown).

b. Model and observational datasets

The training (library) dataset consists of monthly

mean data taken from CGCM control simulations of

varying lengths, conducted using four climate models:

CM2.1, CM2.5 FLOR, CCSM4, and CESM1, listed in

Table 1. In each control simulation, only the portion of

integration near equilibrium (i.e., spunup) is retained.

Atmospheric greenhouse gas concentrations are fixed

throughout each simulation, with the specified year also

indicated in Table 1. The longest run, the 4000-yr pre-

industrial simulation of the GFDL CM2.1, has pre-

viously been analyzed to investigate record length

needed to adequately sample ENSO events (Wittenberg

2009; Atwood et al. 2017), the predictability of decadal

modulations of ENSO events (Karamperidou et al.

2014; Wittenberg et al. 2014) and their impact on

decadal variability (Ogata et al. 2013), and ENSO di-

versity (Kug et al. 2010; Capotondi et al. 2015; Chen

et al. 2017).

Versions of all four models are also currently used by

NCEP to make operational seasonal forecasts as part of

the second phase of the North American Multimodel

Ensemble (NMME) project, and were also used to

generate ensembles of retrospective forecasts (‘‘hind-

casts’’) initialized from the beginning of each month

from 1982 to 2009 and integrated forward for 12 months

(Kirtman et al. 2014; see Table 1). To calculate anom-

alies, all these hindcasts were bias corrected: the mean

hindcast drift as a function of lead and calendar month

was removed separately for each model, as is common

practice with CGCM seasonal forecasts (Stockdale

1997; Saha et al. 2006; Kirtman and Min 2009). For

convenience, these hindcasts are denoted as NMME

hindcasts, which wewill compare with our model-analog

hindcasts.

To determine initial observed states, we used SSTs

from the monthly mean NOAAOptimum Interpolation

SST, version 2, dataset (OISST; Reynolds et al. 2002)

and SSHs from theECMWFOceanReanalysis System 4

dataset (Balmaseda et al. 2013), for the years 1982–2015.

SSTA and SSHA were determined by removing the

monthly mean 1982–2009 climatology.

All model and observed data were interpolated onto a

common 28 longitude by 28 latitude grid prior to our

analysis. Analogs were determined within the domain

bounded by 308S–308N, 308E–808W, covering the entire

tropical Indo-Pacific Ocean.

c. Skill metrics

To measure how well the initial analog ensemble

mean reproduces the target state, we use dK(t), the dis-

tance between the target state x(t) and themodel-analog

ensemble mean z(t), which from (1) is

d2
K(t)5 �

2

i51
�
J

j51

"
xij(t)

si
X

2
zij(t)

si
Y

#2

, (2)

where zij(t) indicates the ith component of z(t) at the jth

grid point. Note that dK(t) will generally be different

than the mean of the distances of the analog members

themselves.

We use two deterministic skill measures: anomaly

correlation (AC) and RMS error skill score (RMSSS;

Barnston et al. 2015) defined as 1 2 «, where « 5 �/s is

the standardized RMS error, � is the RMS error of the

ensemble-mean forecast, and s is the observed clima-

tological standard deviation. The overall skill within

the tropical Indo-Pacific domain was assessed using the
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standardized RMS error and the pattern correlation

between the forecast and verification (OISST or perfect

model) SSTA fields in the region 308S–308N, 308E–
808W. Probabilistic skill is assessed using ranked prob-

ability skill score (RPSS; Weigel et al. 2007), reliability,

and sharpness (Murphy 1973), applied to the observed

and forecast tercile distributions.

3. Assessing perfect-model predictability with
model-analogs

In this section, we evaluate the model-analog tech-

nique in a perfect model context. That is, for each

CGCM, we construct model-analogs from a portion of

its control run (‘‘data library’’) and use them to make

forecasts within the withheld (‘‘verification’’) dataset.

For each control simulation, data from the first 200 years

are used for verification, with the remaining data used as

the data library. Thus, the numbers of years N in the

training periods for the CM2.1, CM2.5 FLOR, CCSM4,

and CESM1 control simulations are 3800, 500, 900, and

500, respectively. For all four simulations, we set the

analog ensemble size atK5 10. Parametric sensitivity is

discussed in section 3b for choices of N and K, and in

section 3c for the length of the verification period.

a. Evaluation of model-analogs from four control
simulations

Figure 2 shows how well the model-analog ensemble

means represent the target anomalies for each control

simulation. In general, the AC between the target-state

and the model-analog ensemble mean (shading) is

above 0.7 throughout the training region (red box in

Fig. 2a). For each simulation, the model-analog en-

semble mean matches the target anomaly best along or

near the equator, both for SSTA and for SSHA (not

shown; values are generally similar with some differ-

ences in details). However, even in the eastern equato-

rial Pacific, the RMSSS (shown by white contours) does

not exceed about 0.75; that is, on average there is at best

about an initial 60.25s difference between the model-

analog ensemble mean and the target anomalies.

The model-analogs better capture larger-scale, more

slowly decorrelating variations in the target anomalies

than smaller-scale, more rapidly decorrelating varia-

tions. This is demonstrated in Fig. 3, which shows the

monthly initial model-analog reconstruction error pro-

jected on the first 40 SSTA EOFs determined from

the verification datasets. The model-analog ensemble

means have a better representation of the target SSTA

within the space of the leading principal components

(PCs), which correspond to larger spatial scales and

have the longest decorrelation time scales (not shown).
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Most of the initial RMS error outside of the equatorial

Pacific in Fig. 2 is due to the relatively larger error in the

higher-order PCs, which dominate the variability there.

Given the nontrivial error in the analog represen-

tation of the target anomalies, it is notable that the

6-month-lead model-analog ensemble-mean forecasts

have considerable skill over large parts of the tropical

Indo-Pacific Ocean (Fig. 4); for some of the models,

much of this skill is retained up to leads of 24 months

(Fig. 5; see also Fig. S1 in the supplemental material).

For all fourmodels, AC skill at 6-month lead exceeds 0.8

in the equatorial Pacific and 0.7 in large parts of the

tropical Indian Ocean, and in the CESM1 even reaches

0.8 in portions of the Indian Ocean. Interannual vari-

ability in the tropical Indian Ocean is strongly related to

ENSO (e.g., Nicholson 1997; Klein et al. 1999; Venzke

et al. 2000; Alexander et al. 2002), although other

sources exist (e.g., Saji et al. 1999; Yamagata et al. 2004).

FIG. 2. Perfect-model skill of ensemble-mean model-analog reconstruction of SSTA at zero

lag for the verification period in (a) CM2.1, (b) CM2.5 FLOR, (c) CCSM4, and (d) CESM1.

Shading denotes local anomaly correlation and contours RMSSS. For each model, the first 200

years of its control run was used as the verification period, with the remaining data used for the

data library. Contour and shading interval is 0.1. Red box in (a) indicates the region used for

evaluating the analog distances from the initial target state.
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Themodel-analog technique also captures some notable

skill differences between the four models. For example,

in CM2.1 (Fig. 4a), skill is greatest in the western–central

equatorial Pacific, while in CESM1 it peaks in the central

to eastern equatorial Pacific (Fig. 4d), consistent with the

greater westward displacement of ENSO variability in the

CM2.1 compared to the CESM1 (not shown).

Note that, for all four models, the patterns of RMSSS

(contours) and AC (shading) are very similar. This does

not appear to be coincidental. In fact, it can be shown

that for the mean of an infinite ensemble of any perfect

model (i.e., a model whose forecasts have no conditional

or unconditional bias), AC skill r and standardizedRMS

forecast error «, standardized by the standard deviation

of the verification data, are directly related by

r2 1 «2 5 1 (3)

(von Storch and Zwiers 2002; Newman and Sardeshmukh

2017). This relationship is largely satisfied for the model-

analog skill shown in Fig. 4, apart from some small

(;1%–3%) differences in some regions (Fig. S2 in the

supplemental material). Additionally, r2 1 «2 computed

from standardized RMS error and pattern correlation

values determined over the entire tropical Indo-Pacific

training domain largely satisfies (3) for all forecast leads

(Fig. S3). That is, despite the relatively large spread of its

initial ensemble, the model-analog technique applied in a

perfect model sense provides an excellent estimate of the

potential predictability of each model within the tropical

Indo-Pacific region, consistent with Lorenz (1969).

Potential predictability of equatorial SSTA AC skill

(Fig. 5) is greater than persistence (not shown) for all

forecast lead times ranging from 0 to 24 months. Fol-

lowing previous studies (e.g., Collins et al. 2002), we

defined a maximum predictable lead time (MPLT) as

the forecast lead time at which the AC reaches 0.6.

Figure 5 shows that MPLTs for equatorial SSTAs have a

strong dependence upon both model and longitude. For

instance, in CM2.1, MPLT ranges from 20 months in the

western equatorial Pacific to only about 8 months in the

eastern part of the basin (Fig. 5a). The other three

models have MPLT in the central equatorial Pacific

varying between 16, 12, and 24 months for CM2.5

FLOR, CCSM4, and CESM1, respectively.

Past studies of potential (i.e., perfect model) ENSO

predictability (e.g., Boer 2000; Collins et al. 2002; Power

et al. 2006; Wittenberg et al. 2014) employed the more

commonly used approach, known as reforecast experi-

ments, in which a target trajectory in amodel is forecasted

by an ensemble of perturbed runs. The model-analog

technique appears to yield similar results at less compu-

tational expense. For example, we obtain an MPLT of

about 20 months in CM2.1 through the model-analog

method, which agrees with the estimate based on CM2.1

reforecasts in Wittenberg et al. (2014).

b. Sensitivity to library length and ensemble size

One potential area of parametric dependence for

analog forecasts is the library length necessary to

achieve useful skill. For our model-analogs, this ques-

tion has a practical aspect, since it might give guidance

on how long to run the control simulation. The library

needs to sample the attractor for the phenomenon of

interest (e.g., ENSO) well enough to provide sufficient

analogs near a given target state. The required library

length will thus depend on the required number of an-

alogs (i.e., the required resolution of the forecast PDF,

and the required robustness of the forecast ensemble

mean), the required precision of the analogs (i.e., the

acceptable neighborhood width in phase space), and the

attractor’s recurrence time for the target state(s) of in-

terest (which is related to the attractor’s dimension and

the ergodic time scale of the phenomenon). The library

can be expanded by either lengthening trajectories (e.g.,

running a longer control simulation) or diversifying

trajectories (e.g., increasing the number of independent

ensemble members). Van den Dool (1994) estimates

that the required library length depends on the number

FIG. 3. Skill of ensemble-mean model-analog reconstruction of

SSTA for the verification period, measured by (a) RMSSS and

(b) correlation, as a function of EOF index. EOFs are calculated

using monthly SSTAs from the verification period separately for

each control run.
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of spatial degrees of freedom. Here, we consider this

question using the GFDLCM2.1 control simulation, the

longest simulation available in this study, although re-

sults are qualitatively similar for all four models

(not shown).

Using the first 200 years of the GFDL CM2.1 simu-

lation as the verification period, we tested varying N

from 50 to 3800 years. Extending the training period in

this way corresponds to extending the control simula-

tion. Also, since more analogs are potentially available

with increasing library length, we tested ensemble size

by letting K range from 1 to 70. Setting K 5 1 corre-

sponds to using the nearest analog with distance d1.

The impacts of library length and ensemble size are

first evaluated in terms of the representation of the ini-

tial target states, using the distance dK between the

target states x(t) and corresponding ensemble-mean

model-analog state vectors z(t) (section 2). Figure 6a

shows the time mean of dK(t) determined over the ver-

ification period hdKi scaled by the climatological root-

mean-square distance of states from the verification

period, the square of which is given by s2 5

�T

t51�
2

i51�
J

j51[x
i
j(t)/s

i
X]

2/T , where T 5 12M, and M is

the number of verification years. In all cases, the initial

ensemble-mean distance is minimized by using an an-

alog ensemble mean rather than the single best analog

FIG. 4. As in Fig. 2, but for perfect-model skill of ensemble-mean forecasts at 6-month lead.

5444 JOURNAL OF CL IMATE VOLUME 31



(Fig. 6a). Most of this improvement comes from simply

increasing K from 1 to 5, and in fact results are optimal

for K . 10–20 (with a weak dependence upon N), be-

coming worse for further increase of ensemble size.

Clearly, the gain in additional ensemble members can

be offset by adding members that are increasingly far

from the target state. On the other hand, the minimum

value of hdKi decreases monotonically as N is in-

creased, consistent with the availability of more library

states, increasing the chance of better matches to the

target state. However, much of the improvement is

realized by N ; 500 with relatively less improvement

thereafter, even as the length of the training period is

further extended.

Potential predictability estimates similarly depend

upon N and K. This is shown in Fig. 6 for Niño-3.4
SSTA forecast skill at a lead time of 6 months, for

both AC (Fig. 6b) and RMSSS (Fig. 6c). Forecast skill

again maximizes for K ; 10–20, with most of the im-

provement in forecast skill apparent for K ; 5, and

again most of the benefits of library size are reached for

N ; 500, with more modest improvement thereafter.

Note that forecast skill is less sensitive to the ensem-

ble size K as the library size increases, especially for

N * 1000.

c. Sensitivity to verification period

A historical record of 200 years may not be long

enough to completely sample ENSO events (Wittenberg

2009), so we also tested sensitivity to the choice of

the verification period. First, we repeated the analog

calculation using the GFDL CM2.1, but used the first

500 years instead of the first 200 years of the simula-

tion as the verification period, with the remainder used

for the library as before. However, we found no ap-

preciable change (not shown); for example, Niño-3.4
SSTA 6-month-lead forecast skill increased from

0.81 to 0.83. Next, the CESM1 simulation was divided

into two nonoverlapping portions of 350 years each,

with each half of the simulation using the verification

period with the other half serving as the library. The

skill was the same in both cases and very close to the

CESM1 results shown above. Our sensitivity experi-

ments all suggest that potentially useful model-analog

FIG. 5. Perfect-model equatorial SSTA forecast skill from AC as a function of forecast lead for each model’s

200-yr verification period for (a) CM2.1, (b) CM2.5 FLOR, (c) CCSM4, and (d) CESM1. SSTA is averaged be-

tween 58S and 58N; areas with hatching are continents. Results shown are a function of longitude (abscissa) and

lead time (ordinate).
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ENSO forecast skill can be obtained with surprisingly

small ensemble size, library length, and verification

periods.

4. Retrospective forecasts using model-analogs

In this section we use the model-analogs to make

retrospective forecasts (hindcasts) of observed SSTAs in

the tropical Indo-Pacific region, and compare their skill

to initialized NMME seasonal forecasts.

a. Description of model-analog forecast technique

To make real-world forecasts, we find model-analogs

to target state vectors constructed from observed

anomalies. Note that now we use the entire dataset from

each model simulation as its data library, in contrast to

the analysis in section 3. We constructed model-analog

hindcasts for forecast leads of 0–12 months, where

month 0 is the initial (target) state and the ensuing

forecast leads are chosen to match the forecast range of

FIG. 6. (a) Time mean of initial dK calculated using the ensemble mean of analogs

and 6-month-lead forecast skills of Niño-3.4 SST anomalies measured by (b) correlation

and (c) RMSSS as a function of ensemble size of analogs (abscissa) and the number of

years in a training period (ordinate). The first 200 years of the CM2.1 control run is used as

the verification period. In (a), distance is scaled by climatological-mean distance of states

from the verification period. All values tested are indicated next to the tick marks of

both axes.
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the NMME hindcasts. (Clearly, the model-analog fore-

casts could be extended beyond 12 months.) The

NMME forecasts were initialized on or near (for stag-

gered starts) the first day of each month. The month-0.5

forecast was then the mean of the first month of the

forecast run, that is, centered in the middle of the cal-

endar month. The equivalent model-analog forecast

was initialized with the monthly mean observations

centered on the previous month (i.e., month 0) so that

the 1-month-lead model-analog forecast and the

NMME month-0.5 forecast verified at the same time.

We renamed both these forecasts the month-1 forecast,

and so on for increasing forecast lead times. Thus, to

match NMME hindcasts initialized between January

1982 and December 2009, the model-analog hindcasts

should be initialized from December 1981 to November

2009. Figure 7 shows a schematic of how each fore-

cast system is initialized. In the following, both model-

analog and NMME hindcasts are verified against

OISST data.

As in section 3b, we investigated the sensitivity of the

model-analog reconstruction of observations to ensem-

ble size K and library length N. Figure 8 shows hdKi for
each of the four models. In general, the effects of library

length and ensemble sizes resemble those in Fig. 6a, with

more improvement from using even a small ensemble

rather than from increasing library length. Note that for

CM2.1, hdKi is much greater for observations than for

the perfect model (cf. Figs. 6a and 8a), which is not

surprising given that the models all suffer from biases in

simulating ENSO variability (Delworth et al. 2006;

Wittenberg et al. 2006). It also appears that hdKi has a
similar dependence onN for all four models. Consistent

with our findings in section 3b, it appears to be sufficient

to construct model-analogs using a historic record of

approximately 500 years with K ; 10–15. In the fol-

lowing, we use K 5 15 for each model case.

b. Comparing model-analog and NMME hindcast
skill

How well each set of model-analog ensemble means

represent observed target anomalies is assessed using

AC and RMSSS (Fig. 9). Some observed states, notably

the mature stages of the 1982/83 and 1997/98 El Niño
events, are not as well reconstructed in model space as

others (not shown, but see dK(t) in Fig. S4 of the sup-

plemental material, which is essentially a measure of

how well each model reproduces observed anomalies).

As in the perfect-model analysis (Fig. 2), the model-

analogs best reproduce SSTA variability in the equato-

rial Pacific, where the AC and RMSSS are as high as 0.9

and 0.6, respectively. Model-analogs also reproduce

some observed SSTA variability in the subtropical Pa-

cific, particularly as seen in relatively high AC (0.6) and

RMSSS (0.3) values in the western part of the basin. In

the northern subtropical Pacific, the model-analogs all

represent aspects of the North Pacific meridional mode

(Chiang and Vimont 2004), which has been linked to

ENSO variability (Chang et al. 2007) via the seasonal

footprinting mechanism (Vimont et al. 2003; Alexander

et al. 2010).

However, outside of these regions the model-analogs

provide a poorer representation of observed target

anomalies than they did for the model states (cf. Figs. 9

and 2). This is most notable in the equatorial Indian

Ocean, where the perfect-model-analogs mostly have

initial correlation values that were nearly as high as

in the Pacific, while the model-analogs of observations

do not. So, compared to the perfect model, variability

in the Indian Ocean plays a much smaller role in de-

fining the model-analogs. This is also the case in the

western equatorial Pacific, most dramatically for the

CM2.1, where the model space for the GFDL CM2.1

control run with preindustrial forcings is apparently so

different from nature in the late twentieth century that

it is not possible for any model-analog to simulta-

neously match observed SSTAs in both the eastern and

western parts of the basin. The bias in the model de-

grades analog forecast skill as well as corresponding

NMME forecast skill in the western equatorial Pacific

(see below).

Month-6 model-analog andNMME hindcast skill are

shown in Figs. 10a,c,e,g,i and 10b,d,f,h,j, respectively.

The bottom row shows the four-model grand ensemble

mean of the model-analog and NMME hindcasts. The

model-analogs clearly reproduce the essential details

of skill from the NMME hindcasts. In particular, both

sets of hindcasts are skillful in the central and eastern

equatorial Pacific, where correlation is as high as 0.7.

The model-analogs have higher skill along the equator

FIG. 7. A schematic of how forecast lead time is defined for the

model-analog and NMME hindcasts.
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and South American coast than the NMME hindcasts.

Month-6 model-analog hindcasts also display skill in

the northwestern tropical Pacific and in the South Pa-

cific near 308N, 1508W, with a correlation of 0.5. In

these regions, SSTA variability is largely driven by

ENSO via the atmospheric bridge (Alexander et al.

2002). In general, NMME hindcasts outperform

model-analog hindcasts in the northwestern tropical

Pacific except for CESM1. In the South Pacific, skill is

comparable. However, the model-analogs appear to

have poorer skill than the corresponding NMME

hindcasts in much of the western tropical Pacific and

Indian Ocean, except for CM2.1.

The evolution of equatorial skill as a function of

forecast lead time is shown in Fig. 11 for the model-

analogs and their corresponding hindcasts, with the

bottom row again showing the grand ensemble means of

each. Model-analog skill is comparable to the NMME

hindcast skill throughout the Pacific for all forecast

leads. The model-analogs are more skillful than the

NMME hindcasts near the date line and along the South

American coast. The poorer Indian Ocean skill for the

model-analogs remains evident.

Figure 12 shows how well the model-analogs capture

individual events by comparing the month-6 model-

analog hindcasts of the Niño-3.4 time series to ob-

servations and the month-6 NMME hindcasts. The

model-analog hindcasts reproduce most of the strong

ENSO events (blue lines in Fig. 12), particularly the

1982/83 and 1997/98 El Niño events and the 1988/89 and

1998/99 La Niña events, and again appear to have skill

comparable to that of the NMME. We carried out a

more detailed skill comparison by applying the random

walk test of DelSole and Tippett (2016) to RMSSS

values of month-6 Niño-3.4 hindcasts (Fig. S5 in the sup-

plemental material). We found that the model-analogs

for the CM2.1 and CCSM4 were both significantly more

skillful (at the 95% significance level) than the corre-

sponding NMME hindcasts. The model-analogs for the

other two models, as well as the multimodel ensembles,

were equally as skillful as the corresponding NMME

hindcasts.

The pattern correlation within the Indo-Pacific train-

ing region of observed and month-6 hindcast SSTA is

shown for both the model-analog and NMME in Fig. 13.

Both sets of hindcasts show similar variations of skill,

FIG. 8. Time mean of dK calculated using the ensemble mean of analogs calculated from

(a) CM2.1, (b) CM2.5 FLOR, (c) CCSM4, and (d) CESM1. Analogs are searched for observed

states from December 1981 to November 2009.
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although there is a tendency for the model-analogs to

perform better in ENSO events than in neutral condi-

tions. Again, the model-analog hindcasts perform as

well as the NMME hindcasts although there are dis-

crepancies between the two forecast methods. The time-

mean values of the pattern correlations are 0.34 (0.29,

0.32, and 0.34) and 0.34 (0.39, 0.37, and 0.37) for the

model-analog and NMME hindcasts using CM2.1

(CM2.5 FLOR, CCSM4, and CESM1, respectively).

Finally, Fig. 14 shows probabilistic skill based on

the upper (El Niño), middle (ENSO neutral), and lower

(La Niña) terciles of the SSTA distributions. RPSS

calculated from the multimodel ensembles of model-

analog and NMME month-6 hindcasts are shown in

Figs. 14a and 14b, respectively. Again, the model-analog

technique clearly reproduces the essential details of skill

from the NMME hindcasts in the tropical Indo-Pacific

region (see also Tippett et al. 2018). In particular, both

sets of hindcasts aremore skillful than climatology in the

central and eastern equatorial Pacific, with RPSS above

0.3. Plots of the corresponding reliability (Figs. 14c–e,

top panels) and frequency of occurrence (Figs. 14c–e,

FIG. 9. Initial model-analog ensemble-mean reconstruction skill for observed (1982–2009)

SSTA in (a)CM2.1, (b)CM2.5 FLOR, (c)CCSM4, and (d)CESM1. Shading and contours denote

correlation and RMSSS, respectively. In each model, all data are used to define analogs.
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bottom panels) for the same three categories, averaged

over the central and eastern equatorial Pacific (68S–68N,

1608E–808W), likewise show that the model-analog and

NMMEhindcast ensemble distributions are comparable

within the ENSO region. For the upper and lower ter-

ciles, the model-analogs appear somewhat less sharp but

more reliable than the NMME hindcasts, which corre-

sponds to the slightly higher overall values of RPSS;

both hindcast ensembles are overconfident when fore-

casting neutral conditions.

c. Evaluating sources of model-analog skill

Recently, Newman and Sardeshmukh (2017) showed

that a low-dimensional empirical dynamical model of

monthly SSTA and SSHA variability, a linear inverse

model (LIM) with approximately 30 degrees of free-

dom, had similar tropical Indo-Pacific SSTA skill to the

grand ensemble mean of all eight NMME operational

models, and that both LIM and CGCM spatial and

temporal skill variations were largely predicted by the

LIM itself. Therefore, they suggested, the seasonal

predictability of tropical SSTAs is effectively linear, and

both forecast systems may already be near the intrinsic

limit of tropical Indo-Pacific SSTA predictability, with

two exceptions: potential nonlinear predictability in the

far eastern tropical Pacific, where the NMME-mean

hindcast skill was greater than the LIM, and significant

NMME forecast error in the western tropical Pacific,

where the LIM alone had positive skill.

We might then ask whether the skill of the model-

analogs is also a consequence of low-dimensional linear

predictability. Certainly, the model-analogs appear

effectively low-dimensional. While the operational

models have detailed full-field initializations, themodel-

analogs are initialized only with tropical Indo-Pacific

SSTA and SSHA, and have relatively large initial errors

apart from the leading PCs (Fig. 3). In fact, training the

model-analogs using only the leading 10–20 combined

SSTA–SSHA PCs (i.e., with 100% initial error in all

higher-order PCs) led to initial error and forecast skill

nearly identical to that presented in this paper, a result

that is consistent with previous reduced-space empiri-

cal dynamical models of ENSO (e.g., Penland and

Sardeshmukh 1995; Berliner et al. 2000; Chen et al.

2017). Capturing both perfect-model and actual NMME

hindcast skill with analogs determined from such

FIG. 10. (left) Model-analog and (right) NMME hindcast skills of observed SST variations at 6-month lead.

Shading denotes correlation. Analog and NMME hindcasts are based on (a),(b) CM2.1, (c),(d) CM2.5 FLOR,

(e),(f) CCSM4, (g),(h) CESM1, and (i),(j) multimodels. The grand mean of 60 analogs is shown in (i), which consist

of 15 best initial analogs from each of the four control runs. The grand mean of the four NMME experiments is

shown in (j).
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relatively short data libraries also suggests that the ef-

fective number of degrees of freedom must be O(10) as

opposed to O(100) or higher (Van den Dool 1994).

Likewise, the ensemble members of the model-analogs

are close enough [in the Lorenz (1969) sense] that their

evolution can be used to estimate predictability (i.e.,

trajectory divergence) within the CGCMs.

To test whether the model-analog skill is effectively

linear, the analysis of the previous section was repeated

using ‘‘antianalogs’’ from the control simulations, de-

termined by 1) reversing the target anomaly sign;

2) constructing an analog ensemble, its subsequent evo-

lution, and ensemblemean as before; and 3) reversing the

sign again to yield the forecast. Skill of these antianalogs

FIG. 11. (left) Model-analog and (right) NMMEhindcast skill (relative to observations) for SST averaged between

58S and 58N, as a function of longitude (abscissa) and lead time (ordinate). Both shading and contours denote

correlation. Analog and NMME hindcasts are based on (a),(b) CM2.1, (c),(d) CM2.5 FLOR, (e),(f) CCSM4, and (g),(h)

CESM1. The grandmean of 60 analogs is shown in (i), which consist of the 15 best initial analogs from each of the four

control runs. The grand mean of the four NMME experiments is shown in (j). Hatching indicates continents.
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for month 6, shown in Fig. 15, can then be compared to

the corresponding model-analog skill (Figs. 10a,c,e,g).

To first approximation, the patterns and values are

largely similar, consistent with effectively linear skill,

particularly in the central equatorial Pacific, north-

western tropical Pacific, and IndianOcean. However, all

four models show substantial differences between ana-

log and antianalog skill in the far eastern Pacific, notably

the Niño-1.2 region, supporting the importance of pre-

dictable nonlinearity there that is captured by the model-

analogs. Other areas where the skill of the analogs

exceeded the antianalogs are generally regions of low skill

and where these differences may also not be significant.

The LIM is a Markovian model; that is, its forecasts

depend only on the current state, not on any past states.

This is a justification for the approach applied to de-

termine analogs in this paper, but of course it is not a

necessary component of the model-analog technique.

For example, we can incorporate information about

trajectory velocity by defining analogs using a different

metric than in (1), such as

d2(t, t0)5 �
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where dxij(t) 5 xij(t) 2 xij(t 2 1) and dyij(t
0) 5 yij(t

0) 2
yij(t

0 2 1). However, using this metric to select model-

analogs led to no forecast skill improvement (Fig. S6 in

the supplemental material).

In the key ENSO regions, the model-analogs have

higher skill than their NMME hindcast counterparts,

and perfect-model skill is also comparable to actual

skill. Elsewhere, model-analog skill is lower than NMME

hindcast skill and much lower than perfect-model skill.

The reasons for this remain to be determined. One

FIG. 12. Niño-3.4 SST anomalies from observations (black lines), compared to month-6

model-analog (blue lines) and NMME (red lines) hindcasts in (a) CM2.1, (b) CM2.5 FLOR,

(c) CCSM4, (d) CESM1, and (e) four-model grand mean.
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possibility is suggested by the notably poorer repre-

sentation of observed initial conditions provided by the

model-analogs outside the equatorial Pacific compared

to the perfect-model analysis (cf. Figs. 9 and 2). During

the hindcast period, the tropical SST warming trend

was also much larger outside of the equatorial eastern

Pacific, especially in the Indian Ocean and west Pa-

cific warm pool (e.g., Solomon and Newman 2012).

However, all the control simulations used for the

model-analogs were run under fixed radiative forc-

ing conditions. Interestingly, we found that the CM2.5

model-analogs had higher Indian Ocean hindcast skill

when trained from the entire CM2.5 library, which in-

cluded a (spurious) trend resulting from a spinup pe-

riod of several hundred years rather than from the

equilibrated last 700 years that we ultimately employed

here (not shown). Moreover, the LIM hindcasts, which

used a fixed dynamical operator but whose initial

conditions included the trend, had Indian Ocean skill

that was similar to the NMME hindcasts. This suggests

that our model-analog skill was negatively impacted

by external radiative forcing. If so, training model-

analogs with large ensembles of externally forced

model simulations [such as in Kay et al. (2015)] could

improve skill.

5. Summary and discussion

We have investigated the use of analogs based on long

climate simulations, rather than observational datasets,

FIG. 13. Evaluation of retrospective forecast of SST at 6-month lead by pattern correlation in

(a) CM2.1, (b) CM2.5 FLOR, (c) CCSM4, (d) CESM1, and (e) four-model grand mean. SST in

the training region is involved in the calculation of pattern correlation. Blue lines denote analog

hindcasts; red lines denote NMME hindcasts.
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to make monthly forecasts of observed tropical Indo-

Pacific Ocean SST and SSH anomalies. Analogs are

chosen from model states that are most similar to the

observed target state in a given calendar month, where

both are defined only from tropical Indo-Pacific Ocean

SSTAs and SSHAs. An analog ensemble is defined from

those model states that minimize the distance to the

target state. This model-analog ensemble and its sub-

sequent time evolution then yields the time-evolving

forecast ensemble from the target state.

FIG. 14. Metrics of month-6 SSTA hindcast probabilistic skill. RPSS of multimodel hindcast ensembles for (a) model-analog and

(b) NMME hindcasts. Positive (negative) values indicate probabilistic skill that is better (worse) than a forecast of climatology. (c) Re-

liability and sharpness (averaged over the central and eastern equatorial Pacific region; 68S–68N, 1608E–808W) for multimodel model-

analog (blue) and NMME (red) hindcast ensembles, shown for the (c) lower (below normal), (d) middle (neutral), and (e) upper (above

normal) terciles. In (c)–(e), the bottom panels show the frequency of occurrence (i.e., sharpness) for each tercile category for model-

analog and NMME hindcasts, corresponding to the reliability diagram in the top panels.
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For ensemble sizes of about 10–15members, 500 years

of model output appears sufficient to generate estimates

of ensemble-mean perfect-model skill, and to make

hindcasts of the 1982–2009 period that have generally

similar deterministic and probabilistic skill as the ini-

tialized hindcast ensembles from four climate models

that are also used tomake operational seasonal forecasts

as part of the NMME project. This appears consistent

with Wittenberg (2009), who showed that a record of 500

years is required in order to obtain a complete sampling of

ENSO events in the CM2.1. Extending the model simu-

lation record to 4000 years yielded only slight skill im-

provement. More important was the initial increase of

ensemble members from 1 to 10–15, and in fact, skill was

degraded for ensemble sizes greater than about 20–30.

Our results thus raise the possibility that the tropical Indo-

Pacific forecast skill of any CGCM, both in a historical

and a perfect model sense, could be assessed using the

model-analog technique as soon as a sufficiently long

control run is produced, an assessment that could even be

made part of the model development cycle itself.

The skill of the model-analog hindcasts is all the more

striking given the relatively small amount of data that

‘‘initializes’’ them; we used only monthly anomalies of

tropical Indo-Pacific SST and SSH, neither field drawn

directly from a data assimilation system employing the

CGCM in question. The relatively large initial ensem-

ble spread also raises the possibility that for the tropical

Indo-Pacific region, seasonal forecasts may only require

accurate initialization within a low-dimensional subspace

involving relatively large spatial scales. Moreover, this

spread may be sufficient to estimate model potential

predictability based on the divergence of an ensemble of

analog trajectories (e.g., Lorenz 1969), consistent with

earlier suggestions that on monthly time scales, the

tropical Indo-Pacific region could be considered a coarse-

grained,Markovian dynamical system (e.g., Newman and

Sardeshmukh 2017).

Our model-analog technique is, in essence, an attempt

to reconstruct the phase space of a CGCM from a library

of its states. The theoretical basis for phase-space re-

construction is that the underlying attractor may be

FIG. 15. Antianalog hindcast skill of observed SST variations at 6-month lead. Compare with

Figs. 10a,c,e,g.
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reconstructed using a succession of states, represented

within so-called embedding vectors, to reproduce past

trajectories (Takens 1981; Sugihara and May 1990; see

also Ye et al. 2015). In practice, this means that analogs

determined using multiple time lags could capture in-

formation about the phase-space trajectory near the

target state (e.g., McDermott and Wikle 2016; Lguensat

et al. 2017; McDermott et al. 2018). Weighting analog

ensemble members by their distance from the target

state, such as with kernel-weighting strategies (e.g.,

Zhao and Giannakis 2016), may also enhance this ap-

proach. Note, however, that for Markovian dynamics,

previous states provide no predictive information, which

might justify the simpler method of our study. More-

over, the larger data libraries available from climate

model simulations, compared to the more limited ob-

servational datasets used in previous analog studies,

likely aided our analog determination. Still, these issues

will need to be reevaluated as the model-analog tech-

nique is applied to other forecast problems.

The model-analog method potentially has some notable

advantages compared with the conventional seasonal

forecasting approach in which an ensemble of initialized

climate model forecasts is run (e.g., Latif et al. 1998;

Keenlyside et al. 2005; Kirtman et al. 2014). First, initiali-

zation shockmay be avoided in themodel-analog forecasts,

since both initial conditions and their subsequent trajecto-

ries are taken from a free-running model in which each

component of the model is well balanced and the consis-

tency of model physics is retained. Recall that model-

analog skill is higher than the corresponding model

hindcast skill throughout the ENSO region. The improve-

ment is greatest in the Niño-1.2 region, with differences

large enough to be statistically significant for eachCGCM’s

model-analog and for their ensemblemean, suggesting that

the NMME hindcast error in this region is at least partly

due to initialization shock. Moreover, since the model-

analog anomalies are always in the model space, the mean

bias in their forecasts is removed by construction. This may

also improve model-analog skill relative to the NMME

hindcasts, whose bias correction is determined retrospec-

tively from a relatively short 28-yr training period.

Second, the use of the model-analog technique could

mean the reduction of technological barriers for new

models to participate in seasonal forecasting, which would

further enhance the diversity ofmultimodel ensembles and

potentially allow for improved ensemble forecast calibra-

tion. Certainly, it is encouraging that a skillful ensemble of

model-analogs can be constructed from a control simula-

tion of just a few hundred years in length, since such runs

are often routinely executed, such as for the IPCC as-

sessments (Meehl et al. 2007; Taylor et al. 2012). The

model-analog technique could therefore allow for the

construction of forecast ensembles based on amuch larger

number of CGCMs than are currently employed opera-

tionally, since it is far less computationally expensive than

running a model in both initialization and forecast modes

and does not require additional data assimilation or new

suites of retrospective ensemble forecast integrations. For

example, a 15-member NMME hindcast ensemble cover-

ing 1982–2009, with monthly initializations and forecast

leads of up to one year, would be computationally equiv-

alent to a control simulation of over 5000 years, or about 10

times what the model-analogs would require. Also, since

only SSTAs and SSHAs are needed to construct the

model-analogs, and monthly data are available since 1958,

hindcast skill could be evaluated over a much longer pe-

riod than 28 years at no additional computational cost

(although the quality of SSH prior to the satellite era may

be a concern).

In this paper, we have only displayed SSTA skill,

although we also found similar results for SSHA. Of

course, all other quantities associated with a target

SSTA–SSHA state (e.g., rainfall and air temperature)

can be forecasted as well, using corresponding quantities

associated with the preidentified analogs. We could also

test the inclusion of such variables in the analog selec-

tion metric itself. Given the results shown in this paper,

further development of the model-analog technique

along the lines outlined above seems promising.
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