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noise in CM2.1 likely exaggerate the ENSO modulation 
by contributing to the overly active ENSO variability. In 
contrast, simulations with the linear model suggest that 
intrinsically-generated tropical Pacific decadal mean state 
changes do not contribute to the extreme-ENSO epochs in 
CM2.1. Rather, these decadal mean state changes actually 
serve to damp the intrinsically-generated ENSO modu-
lation, primarily by stabilizing the ENSO mode during 
strong-ENSO epochs. Like most coupled General Circula-
tion Models, CM2.1 suffers from large biases in its ENSO 
simulation, including ENSO variance that is nearly twice 
that seen in the last 50 years of observations. We find that 
CM2.1’s overly strong ENSO variance directly contributes 
to its strong multi-decadal modulation through broadening 
the distribution of epochal variance, which increases like 
the square of the long-term variance. These results suggest 
that the true spectrum of unforced ENSO modulation is 
likely substantially narrower than that in CM2.1. However, 
relative changes in ENSO modulation are similar between 
CM2.1, the linear model tuned to CM2.1, and the linear 
model tuned to observations, underscoring previous find-
ings that relative changes in ENSO variance can robustly 
be compared across models and observations.

Keywords ENSO · Multi-decadal variability · GFDL 
CM2.1 · Linearized model · Nonlinear feedbacks

1 Introduction

The decadal- and longer-scale modulation of ENSO is a 
critical element of past and future climate variations, yet 
it is poorly constrained by the short observational record 
(Capotondi et  al. 2015; Wittenberg 2015). ENSO vari-
ability is thought to have exhibited large changes over 

Abstract Large multi-decadal fluctuations of El Niño-
Southern Oscillation (ENSO) variability simulated in a 
4000-year pre-industrial control run of GFDL CM2.1 have 
received considerable attention due to implications for con-
straining the causes of past and future changes in ENSO. 
We evaluated the mechanisms of this low-frequency ENSO 
modulation through analysis of the extreme epochs of 
CM2.1 as well as through the use of a linearized interme-
diate-complexity model of the tropical Pacific, which pro-
duces reasonable emulations of observed ENSO variability. 
We demonstrate that the low-frequency ENSO modula-
tion can be represented by the simplest model of a linear, 
stationary process, even in the highly nonlinear CM2.1. 
These results indicate that CM2.1’s ENSO modulation is 
driven by transient processes that operate at interannual 
or shorter time scales. Nonlinearities and/or multiplicative 
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the Holocene (Cobb et  al. 2013; Koutavas et  al. 2006; 
McGregor et al. 2013; Tudhope et al. 2001), however it is 
not yet known to what extent these variations are forced, 
versus inherent to a noisy coupled ocean–atmosphere sys-
tem. This uncertainty arises in part from poor observational 
constraints on the unforced intrinsic component of ENSO 
modulation on multi-decadal and longer timescales.

Given the short observational record of tropical Pacific 
climate variability, long unforced simulations of the cli-
mate system with fully coupled General Circulation Mod-
els (GCMs) are helpful for investigating ENSO variability 
on decadal and longer timescales (Russon et al. 2014; Wit-
tenberg 2009). A 4000 year-long pre-industrial control run 
of GFDL CM2.1 (Delworth et  al. 2006; Wittenberg et  al. 
2006) has been shown to exhibit strong, unforced, largely 
unpredictable, multi-decadal changes in ENSO variabil-
ity (Karamperidou et  al. 2014; Kug et  al. 2010; Witten-
berg 2009; Wittenberg et  al. 2014), which also influence 
the background climatological state of the tropical Pacific 
(Ogata et al. 2013). These large low-frequency ENSO mod-
ulations suggest that in order to detect a forced change in 
ENSO variability (e.g. from paleoclimate proxies or obser-
vations), long records are needed.

However, large ENSO biases prevalent in GCMs obscure 
the real-world relevance of the tropical climate variability 
obtained from GCM simulations (Guilyardi 2016). GCMs 
used in the Fourth and Fifth Assessment Reports of the 
Intergovernmental Panel on Climate Change exhibit a 
wide range of biases in their representation of ENSO vari-
ability, including biases in the amplitude of variance, spa-
tial pattern of SST variability, distribution of ENSO SST 
anomalies, and seasonal synchronization of ENSO (An and 
Wang 2000; Bellenger et  al. 2014; Capotondi et  al. 2015; 
Graham et al. 2016; Guilyardi et al. 2009, 2012a, b), which 
has resulted in little agreement on how ENSO is likely to 
change in the future (Cai et al. 2014; Chen et al. 2016; Col-
lins et al. 2010; DiNezio et al. 2012; Taschetto et al. 2014; 
Watanabe et al. 2012). The sources of these ENSO biases 
are largely unknown, but likely result partly from mean 
state biases in the models. In this study, we investigate the 
sources of the low-frequency ENSO modulation by per-
forming further analyses of ENSO in the CM2.1 control 
run, observations, and that simulated by a linearized inter-
mediate model of the tropical Pacific. Through this process, 
we evaluate the influence of the overly active interannual 
variability in CM2.1 on the interdecadal modulation of 
ENSO in an effort to improve constraints on the true spec-
tral characteristics of ENSO in nature.

Because the CM2.1 control simulation is unforced, there 
are essentially four, non mutually exclusive, mechanisms 
that could cause the large multi-decadal ENSO variabil-
ity: (1) low frequency changes in the tropical Pacific mean 
state, which alter the stability of the ENSO system; (2) 

low frequency changes in stochastic (weather) processes 
that influence ENSO; (3) random sampling from a station-
ary, linear process; and (4) nonlinear dynamics, including 
multiplicative noise, in the ENSO system that spreads vari-
ance over a range of time scales. Using the linear model, 
we show that linear dynamics acting in response to low fre-
quency changes in the tropical Pacific mean state are not 
the source of low-frequency ENSO modulation in CM2.1. 
While the influence of low frequency changes in stochas-
tic noise is difficult to address using the suite of tools 
employed in this analysis, we demonstrate using the linear 
model runs, CM2.1, and observations that random varia-
tions associated with a stationary, linear process are impor-
tant. Our analyses lead us to conclude that the nonlineari-
ties are also inextricably linked to the multi-decadal ENSO 
modulation in CM2.1, and while they do not dramatically 
broaden the distribution of variance as compared to a lin-
ear system with equal (i.e. overly active) ENSO variability, 
they likely shape the distribution of absolute ENSO modu-
lation by contributing to the overly active ENSO variability.

2  Description of the linearized model

The Linearized Ocean Atmosphere Model (LOAM; 
Thompson and Battisti 2000) is a linearized variant of the 
(Zebiak and Cane 1987) intermediate complexity model 
of the tropical Pacific, updated to include observationally 
constrained parameter values and observed climatologi-
cal mean state fields, including ocean currents and verti-
cal thermal structure (Thompson 1998a, b; Roberts 2007). 
LOAM is constructed as an anomaly model, such that it 
calculates the anomalies of its state variables about a set of 
prescribed mean states. These mean state variables deter-
mine the details of the behavior of ENSO in the model. 
Because the mean states are explicitly prescribed in the 
model, it is an ideal tool to investigate how changes in these 
mean states can alter the behavior of ENSO. Indeed it has 
been shown (Roberts and Battisti 2011; Roberts et al. 2014) 
that relatively small changes in the mean states can result 
in relatively large changes in the behavior of ENSO. The 
set of seasonally varying mean fields required by LOAM 
are the SST, near-surface winds, vertical structure of ocean 
temperature along the equator, upper ocean currents and 
upwelling. To understand what can cause a change in the 
behavior of ENSO between two climate states it is possible 
to use individual mean states from either climate to isolate, 
for example, the impact of changing the mean wind. The 
governing equations in LOAM are provided in the Supple-
mentary material (S.1), along with a summary of the con-
stants and tuning parameters used in LOAM (Table S1; Fig. 
S1).
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Briefly, LOAM is comprised of a 1.5-layer ocean model 
and a two-layer atmosphere model in which heating is 
a function of SST and surface wind convergence (Gill 
1980). The atmosphere is linear, and modeled as a single 
baroclinic mode on an equatorial β-plane, with mechani-
cal and thermodynamic damping. In contrast to the Zebiak 
and Cane (1987) model and the Battisti (1988) model, the 
atmospheric convergence feedback has been linearized 
as in Battisti and Hirst (1989). The ocean model consists 
of an active upper layer, governed by the linear shallow 
water equations on an equatorial β-plane, and a motion-
less lower layer. A 50 m deep Ekman layer, assumed to be 
in steady state with the surface winds, is embedded in the 
active upper layer. The linearized prognostic equation for 
sea surface temperature (SST) includes three-dimensional 
advection of temperature anomalies by the climatological 
currents, anomalous advection of the climatological tem-
perature, vertical mixing, and a simple parameterization of 
the surface heat flux (Roberts and Battisti 2011; Thompson 
1998b). The dependent variables for the ocean are: meridi-
onal and zonal current, thermocline depth, and SST pertur-
bations. The ocean equations are spectrally discretized in 
the meridional direction by projecting them onto Rossby 
wave space, and discretized in the zonal direction using 
finite differences. The atmosphere and SST equations are 
projected onto Hermite functions in the meridional direc-
tion, and are discretized in the zonal direction using finite 
differences.

There are three parameters in LOAM that must be 
tuned using observations or model output, which repre-
sent processes not resolved by the idealized model. These 
three tuning coefficients (one in the atmosphere, two in 
the ocean) are described in the Supplementary material. 
They are tuned independently for the LOAM simulations 
with observed mean states and with CM2.1 mean states, as 
these two systems are fundamentally different. However, 
the tuning parameters are held constant for all subsequent 
LOAM experiments using the various CM2.1 mean states. 
In effect, we assume that these coefficients represent a spe-
cific dynamical configuration of the system that is inde-
pendent of the mean state changes across CM2.1 epochs. In 
this way, any changes in ENSO in the linearized model are 
due solely to changes in the mean state fields and not to the 
tuning parameters.

Given a prescribed set of seasonally varying climatolog-
ical mean fields (SST, near-surface winds, vertical struc-
ture of ocean temperature along the equator, upper ocean 
currents and upwelling), LOAM simulates the anomalies 
about the mean state. The underlying assumption in LOAM 
is that the dynamics of the coupled system in the tropical 
Pacific are described by linear physics. The coupled atmos-
phere–ocean variability in the tropical Pacific can then 
be characterized in terms of the stability, growth rate and 

frequency of the system’s Floquet modes (eigenmodes of 
the cyclo-stationary annual propagator matrix). Because the 
eigenmodes of the coupled system are damped, the model 
is stochastically forced (as white noise in space and time 
applied to the SST field). Thompson and Battisti (2001) and 
Roberts and Battisti (2011) demonstrated that LOAM with 
observed background states supports a leading mode of the 
coupled system that has a similar spatial structure, decay 
rate, and period to that estimated from observations fit to 
empirical models (Roberts and Battisti 2011). The leading 
(slowest-decaying) Floquet mode in LOAM is thus referred 
to as the ENSO mode. Given observed climatological mean 
states and white noise forcing, LOAM produces reasonably 
realistic tropical Pacific climate variability, as demonstrated 
by the spatial structure and variance explained by the lead-
ing EOFs of tropical Pacific SSTAs and the seasonal vari-
ance and power spectra of SSTAs averaged over the Niño 
3 region (5°S–5°N, 150°W–90° Roberts 2007; Roberts and 
Battisti 2011). It has also been shown to capture the char-
acter of ENSO in GCMs, and to capture how ENSO can 
change in the presence of altered mean states (Roberts et al. 
2014).

In the present study, we run LOAM with mean fields 
prescribed from each of three 40-year epochs that were 
highlighted in Wittenberg (2009), Karamperidou et  al. 
(2014), and Wittenberg et al. (2014), characterized by low 
(Epoch L), medium (Epoch M) and high (Epoch H) ENSO 
variance in the CM2.1 pre-industrial control simulation, 
and investigate the influence of the changes in tropical 
Pacific mean state on ENSO. These runs are referred to as 
 LOAMEPOCH L,  LOAMEPOCH M and  LOAMEPOCH H, respec-
tively. LOAM was also run with mean states prescribed 
to be the average over all three of these epochs, hereafter 
referred to as  LOAMCM2.1, as well as from observed mean 
fields, hereafter referred to as  LOAMOBS. In  LOAMOBS, 
the ocean temperature, currents, upwelling and wind 
stress fields are taken from the UMD Simple Ocean Data 
Assimilation reanalysis (SODA; Carton and Giese 2008) 
for the period 1958–2001, and wind fields are taken from 
the European Centre for Medium-Range Weather Forecast 
ERA-40 reanalysis (http://apps.ecmwf.int/datasets/) for 
the same period. Stochastic forcing in LOAM is applied 
by adding a normally distributed random number to each 
of the spectrally and spatially discretized SST compo-
nents in the model. The amplitude of the noise forcing 
is adjusted so that the variance of Niño 3 SST anomalies 
in LOAM equals that from observations, or from a given 
epoch of the CM2.1 control simulation. Specifically, three 
different estimates of the noise amplitude are used in the 
LOAM experiments: (i)  FM, in which the noise amplitude 
is adjusted so that the Niño 3 variance in LOAM is equal to 
that during Epoch M; (ii)  FCM2.1, in which the noise ampli-
tude is adjusted so that the Niño 3 variance in LOAM is 

http://apps.ecmwf.int/datasets/


2848 A. R. Atwood et al.

1 3

equal to that over the 4000 years of the CM2.1 simulation; 
and (iii)  FOBS, in which the noise amplitude is adjusted so 
that the Niño 3 variance in LOAM is equal to that from the 
observed Niño 3 index. The SST output is smoothed with 
a 1–2–1 filter to reduce the noise, as in Zebiak and Cane 
(1987) and Thompson (1998a, b). The various LOAM sim-
ulations implemented in this study are outlined in Table 1, 
along with their prescribed mean states and noise forcings.

3  Characteristics of tropical Pacific variability 
and extreme ENSO epochs in CM2.1

The GFDL CM2.1 global atmosphere/ocean/land/ice 
model has been widely recognized as a top-performing 
GCM with regard to its simulation of tropical climate 
variability, and featured prominently in the third Coupled 
Model Intercomparison Project (CMIP3) and the Inter-
governmental Panel on Climate Change Fourth Assess-
ment Report (Reichler and Kim 2008; van Oldenborgh 
et al. 2005; Wittenberg et al. 2006). However, like most 
coupled GCMs, CM2.1 has biases in its ENSO simula-
tion (Wittenberg et  al. 2006). These include excessive 
ENSO variance [Figs.  5a, c, 7 (Takahashi and Dewitte 
2016; Wittenberg et al. 2006)] and biased spatial patterns 
of SST variability, including SST variability that extends 
too far west, is too equatorially-confined, and is underes-
timated in the far equatorial eastern Pacific (Fig.  4a, c). 
Such ENSO biases are common in GCMs, and are likely 

tied to tropical Pacific mean state biases (Ham et  al. 
2013), which in CM2.1 include a cold SST bias along the 
equator, a warm bias along the coast of South America, 
and equatorial easterlies that are too broad zonally and 
extend too far into the western Pacific (Wittenberg et al. 
2006).

The 4000 year-long pre-industrial control run of GFDL 
CM2.1 exhibits large variations in ENSO behavior on 
multi-decadal time scales, which have been the focus of a 
number of recent studies (Karamperidou et al. 2014; Wit-
tenberg 2009; Wittenberg et al. 2014). In the control run of 
this model, the variance of Niño 3 SSTAs during a given 
40-year epoch can vary by over a factor of four (from 0.7 
to 3.0 °C2; Fig. 1). In this paper we focus on three 40-year 
periods in the CM2.1 control run that were highlighted in 
Wittenberg (2009), Karamperidou et  al. (2014), and Wit-
tenberg et al. (2014), to represent the diversity of the mod-
el’s ENSO variability. The time series of Niño 3 SSTAs 
for each period are shown in Fig. 1b–d. Years 1151–1190 
(Epoch L) represent a period of extreme low variabil-
ity (variance of Niño 3 SSTAs = 0.7 °C2). Years 531–570 
(Epoch M) are characterized by variability that is simi-
lar to the mean of the first 2000  years (variance of Niño 
3 SSTAs = 1.8 °C2), with fairly normally-distributed Niño 
3 SSTAs that have a regular periodicity. Years 1711–1750 
(Epoch H) are characterized by numerous intense warm 
events (variance of Niño 3 SSTAs = 3.0 °C2) that are farther 
apart in time and have less regular periodicity than those in 
Epoch M.

Table 1  ENSO characteristics in LOAM simulations

a The amplitude of the noise forcing was prescribed in the following way:  FM was prescribed such that the variance of Niño 3 SSTAs in 
 LOAMEPOCH M matched that in CM2.1 Epoch M,  FCM2.1 was prescribed such that the variance of Niño 3 SSTAs in  LOAMCM2.1 matched that 
over the 4000-yr CM2.1 control run, and  FOBS was prescribed such that the variance of Niño 3 SSTAs in  LOAMOBS matched that from the last 
40 years of observations
b Atmospheric drag coefficient (see Supplementary material)
c Period of the ENSO mode
d Mode growth rate, expressed as the fractional change in the amplitude of the ENSO mode over the course of a year. Growth rates less than 1 
indicate damped modes
e Variance of 3-month running mean Niño 3 SSTAs
f Variance of Niño 3 SSTAs across 4000 years of CM2.1

LOAM CM2.1 or obs

Run name Mean state Variance tuned to Noise forc-
ing ampl. 
(°C)a

CD
b Mode 

period 
(year)c

Mode growth 
rate  (year−1)d

Variance 
in  LOAMe

Variance in 
CM2.1 or 
 obse

LOAMEPOCH L + FM Epoch L – 0.104 1.82E–3 3.2 0.49 2.2 0.7
LOAMEPOCH M + FM Epoch M Epoch M 0.104 1.82E–3 3.0 0.49 1.8 1.8
LOAMEPOCH H + FM Epoch H – 0.104 1.82E–3 3.0 0.43 1.3 3.0
LOAMCM2.1 + FM Epoch L, M, H avg – 0.104 1.82E–3 3.0 0.48 1.8 1.7f

LOAMCM2.1 + FCM2.1 Epoch L, M, H avg 4000-year CM2.1 0.102 1.82E–3 3.1 0.48 1.7 1.7f

LOAMCM2.1 + FOBS Epoch L, M, H avg – 0.054 1.82E–3 3.1 0.48 0.5 1.7f

LOAMOBS + FOBS obs obs 0.054 1.85E–3 2.8 0.44 0.8 0.8
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The leading patterns of tropical Pacific SST variability 
in each epoch are shown in Fig.  2. Empirical orthogonal 
functions (EOFs) 1–3 display roughly similar character-
istics across epochs. Notably, a lower fraction of the total 
variance is explained by the first two EOFs in Epoch L 
relative to the other epochs and EOFs 2 and 3 appear to 
be mixed in Epoch M (their eigenvalues are not distin-
guishable). Figure 3 shows that compared to the long-term 
variance, the region of maximum variance in Epoch L is 

reduced and shifted east, while that in Epoch H is amplified 
and shifted west.

4  ENSO in a linearized intermediate model 
versus GFDL CM2.1

As part of our analysis to investigate the sources of the 
low-frequency ENSO modulation in CM2.1, we employ a 
linearized anomaly model of the tropical Pacific (LOAM). 
The rationale for this approach is that it has been shown 
that all but the strongest observed ENSO events are well 
represented by linear dynamics (Penland and Sardeshmukh 
1995; Roberts and Battisti 2011). Furthermore, compari-
son of the linear model simulations to the fully nonlinear 
CM2.1 simulation enables a rough partitioning of the linear 
and nonlinear components of ENSO evolution in CM2.1.

The LOAM simulation with mean fields prescribed 
from the CM2.1 climatology averaged over all 120  years 
of the three epochs  (LOAMCM2.1), demonstrates spatial 
and temporal patterns of tropical Pacific SSTA variability 
that compare well in some aspects to CM2.1, while other 
features are notably dissimilar (Figs.  4, 5, 6, 7). Differ-
ences include the region of maximum variance, which 
does not extend as far west in  LOAMCM2.1 and is broader 
meridionally and weaker near the eastern boundary than 
in CM2.1 (c.f. Fig.  4c, d). In addition, Niño 3 SSTAs in 
CM2.1 display large asymmetry in the amplitude of warm 
versus cold events (Figs. 5c, 6), indicating the presence of 
strong nonlinearities in CM2.1 (Choi et al. 2013, 2015). In 
contrast, Niño 3 SSTAs in LOAM are linear by construc-
tion (Figs.  5d, 6). The power spectrum of Niño 3 SSTAs 
in the first 2000 years of CM2.1, much like the observa-
tions, shows a broad spectral peak between 2 and 5  year 
(median period 3.4  year), while the power spectrum in 
 LOAMCM2.1 is much more sharply peaked (median period 
3.2 year; Fig. 7). These results suggest that ENSO nonlin-
earities and/or multiplicative noise, which are not included 
in LOAM, may be important contributors to the temporal 
and spatial structure of ENSO in CM2.1.

In nature, ENSO is strongly synchronized to the calen-
dar year, with ENSO events tending to peak in boreal win-
ter (Fig.  8a). In contrast, ENSO in CM2.1 displays weak 
seasonality, with Niño 3 SSTA variance peaking in boreal 
summer (Fig.  8c). Given CM2.1 mean states, ENSO in 
LOAM displays a notably distinct seasonality from CM2.1, 
with variance reaching a minimum in May/June and peak-
ing around Sept. (Fig.  8d). The differences in seasonality 
between  LOAMCM2.1 and LOAM tuned to observations 
 (LOAMOBS, panels b and d in Fig. 8) are likely related to 
the biased annual cycle in CM2.1, through its influence 
on the seasonal growth rate of ENSO. In particular, the 
CM2.1 climatological wind field features an overly muted 
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and delayed relaxation of the trades during boreal spring 
and an enhancement of the trades during boreal summer 
and fall that is too strong and does not persist into the win-
ter. These trade wind biases are associated with a stronger 
semi-annual cycle in the tropical Pacific than is observed 
(Wittenberg 2009).

These results indicate that LOAM is able to capture 
some, but not all of the important features of ENSO 
behavior in CM2.1. Shortcomings of LOAM include the 
absence of surface heat flux dependence on wind speed 
(which may account for the difference in SST variability 
in the western Pacific and in the subtropics in CM2.1 ver-
sus LOAM; c.f. Fig. 4c, d). In addition, LOAM omits all 
nonlinear dynamics, including nonlinear dependence of 
atmospheric heating and wind stress anomalies on SST 
anomalies and nonlinear ocean dynamics (Chen et  al. 
2016; Choi et  al. 2013; Takahashi and Dewitte 2016). 
However, that LOAM has successfully managed to cap-
ture many of the fundamental characteristics of observed 
ENSO (Roberts and Battisti 2011; Thompson and Battisti 

2001) as well as capture changes to ENSO due to mean 
state changes in other CGCMs (Roberts et al. 2014) sug-
gests that the inability of LOAM to characterize some 
of the important features of ENSO in CM2.1 is because 
CM2.1’s ENSO does not conform to the assumptions 
that are in LOAM, e.g. due to the strong nonlinearities in 
CM2.1.

Given the success of LOAM in simulating many 
observed features of ENSO variability, the linear model 
provides an excellent opportunity to contrast the lin-
ear components of ENSO evolution with the full non-
linear evolution in CM2.1. It also provides insight into 
how the mean state contributes to the (linear component 
of the) differences in variance between the L, M, and H 
epochs. We thus use LOAM to evaluate the linear com-
ponent of the ENSO dynamics, sensitivities, and feed-
backs in CM2.1. While this linear component is dominant 
in observations, it appears to be less so in CM2.1. The 
misfit of LOAM’s ENSO to CM2.1’s ENSO is then one 
measure of the importance of nonlinearities in CM2.1.
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Fig. 2  Normalized EOF 1–3 of tropical Pacific SSTAs from a–c 
detrended observations (ERSST.v3b, 1971–2010) and CM2.1 epochs 
d–f Epoch L, g–i Epoch M, and j–l Epoch H. The fraction of total 

SSTA variance captured by each pattern is indicated in the top left 
corner of each panel. **EOF 2 and 3 in Epoch M are not statistically 
distinguishable, based on the method of North (1982)
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Fig. 3  Variance of tropical 
Pacific SSTAs in a 500 years 
of the CM2.1 control run and 
the CM2.1 epochs b Epoch L, 
c Epoch M, and d Epoch H. In 
subpanels (e–h), the variances 
are normalized with respect to 
the maximum in each plot
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5  Drivers of low frequency ENSO modulation 
in CM2.1

Because the CM2.1 control simulation is unforced, there 
are essentially four, non mutually exclusive, mechanisms 
that could cause the large multi-decadal ENSO variabil-
ity: (1) low frequency changes in the tropical Pacific mean 
state, which alter the stability of the ENSO system; (2) 
low frequency changes in stochastic (weather) processes 
that influence ENSO; (3) random sampling from a station-
ary, linear process; and (4) nonlinear dynamics, including 
multiplicative noise, in the ENSO system that spreads vari-
ance over a range of time scales—e.g. nonlinear interaction 
between the annual cycle and internal modes of variability 
in the tropical Pacific that produce deterministic chaos (see 
e.g. Timmermann et  al. 2002). We discuss each of these 
possible mechanisms, below:

5.1  Influence of tropical Pacific mean state changes 
on ENSO in the linear model

In their examination of the multi-decadal rectification of 
ENSO modulation in CM2.1, Ogata et  al. (2013) demon-
strated that mean state changes during the different CM2.1 
epochs may be generated by the extreme ENSO behavior 
(that is, they are the residual impact of the ENSO cycles 
during each epoch), as also suggested by Vimont (2005), 
Wittenberg (2009), and Wittenberg et  al. (2014). On the 
other hand, the concept that ENSO is highly sensitive to 
mean state changes in the tropical Pacific has been widely 
explored and demonstrated, typically in studies that invoke 
intermediate complexity models of varying descriptions 
(Battisti and Hirst 1989; Dewitte 2000; Roberts et al. 2014; 
Wittenberg 2002; Zebiak and Cane 1987). It has further 
been suggested that the post-1970’s shift in ENSO charac-
teristics may be related to changes in the tropical Pacific 
background state (An and Wang 2000).

We sought to evaluate the impacts of the tropical 
Pacific mean state changes in CM2.1 on ENSO by pre-
scribing the annual cycle of tropical Pacific climatology 

Fig. 8  Variance of 3-month 
running mean Niño 3 SSTAs as 
a function of month in a obser-
vations (ERSST.v3b, 1880–
2010), b the 4000 year LOAM 
with observed mean states, c the 
4000 year CM2.1 control run, 
and d the 4000 year LOAM run 
with CM2.1 mean states
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averaged separately over the three representative CM2.1 
epochs in LOAM. The differences in annually-averaged 
tropical Pacific climatology among these epochs are 
shown in Figs.  9 and 10. Progressing from Epoch L to 
Epoch H, the mean states are characterized by weaken-
ing of the surface easterly trade winds in the western and 
central equatorial Pacific, warming of the ocean surface 
and subsurface in the eastern equatorial Pacific, and cool-
ing in the western equatorial Pacific (Figs. 9, 10)—con-
sistent with the results of Ogata et  al. (2013) in their 
examination of the multi-decadal rectification of ENSO 
modulation in CM2.1.

When the mean states from the three CM2.1 epochs 
are prescribed in LOAM, the relative changes in the vari-
ance of Niño 3 SSTAs in the linear model are opposite 
to those observed in the CM2.1 simulation: the variance 
is lowest in Epoch H and highest in Epoch L (Table  1; 
Fig. 11). In Epoch H, the decreased ENSO variance rela-
tive to Epoch M is due to a decrease in the growth rate of 
the ENSO mode. In Epoch L, the increase in variance rela-
tive to Epoch M is tied to the increased growth rate of the 
lower order coupled modes (not shown). Collectively, these 

results indicate that tropical Pacific mean state changes are 
not the primary cause of the intrinsically-generated extreme 
ENSO epochs in the CM2.1 control run.

The LOAM simulations demonstrate the sensitivity 
of the linear component of ENSO to changes in the tropi-
cal Pacific mean state (Table  1) and provide evidence for 
a two-way feedback mechanism between low frequency 
ENSO modulation and tropical Pacific mean state changes 
in CM2.1, wherein: (1) stochastic forcing and nonlinearity 
produce low frequency ENSO modulation, which rectify 
into tropical Pacific mean state changes due to the ENSO 
asymmetries in CM2.1; (2) these rectified mean state 
changes then feed back negatively on the ENSO growth 
rates, thus tempering the ENSO modulation. For example, 
as shown in Ogata et  al. (2013), strong-ENSO epochs in 
CM2.1 weaken the multi-decadal zonal SST gradient and 
zonal winds in the central to western equatorial Pacific 
(Fig. 9c), and thus weaken the zonal tilt of the thermocline 
(Fig.  10b). According to the stability analysis performed 
with LOAM, these mean state changes act to stabilize the 
coupled system and weaken ENSO (Table  1). Along the 
same lines, weak-ENSO epochs in CM2.1 strengthen the 
multi-decadal zonal SST gradient and zonal wind stress 
in the central to western equatorial Pacific (Fig.  9b), and 
thus strengthen the zonal tilt of the thermocline (Fig. 10a). 
The LOAM stability analysis indicates that these mean 
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state changes act to destabilize the lower order modes (not 
shown) and thereby modestly strengthen the ENSO vari-
ability (Table 1; Fig. 11).

Further experiments were performed with LOAM, in 
which individual components of the mean states of Epochs 
H and L were substituted into the Epoch M simulation. 
Results from these experiments (not shown) indicate two 
primary mechanisms of increased stability of the coupled 
system in Epoch H. First, the weaker climatological trade 
winds lead to reduced ocean-atmosphere coupling via the 
linear dependence of the wind stress anomalies on the 
mean wind speed in LOAM (see Eq.  18 in Supplemental 
material; Battisti and Hirst 1989). Second, a weaker mean 
zonal tilt of the equatorial thermocline leads to weaker 
contribution of anomalous upwelling to SST changes (i.e. 
weakened upwelling feedback; see Eqs. 1–3 in the Supple-
mentary material). Details of these feedback processes can 
be found in Thompson (1998a, b) and Roberts and Battisti 
(2011). The primary mechanisms of decreased stability of 
the coupled system in Epoch L are the same as those dis-
cussed above, only with opposite sign (e.g. stronger clima-
tological winds enhance coupling).

There are two caveats to the proposed negative feedback 
mechanism between the tropical Pacific mean state changes 
and low frequency ENSO modulation in CM2.1. First, 
nonlinearities in CM2.1 may act to compensate for these 
large “mean state induced” changes in the linear stability, 
thereby tempering the sensitivity of ENSO to mean state 
changes. Second, because LOAM does not include state-
dependent noise forcing, any influence that the mean state 
changes may have on the noise forcing are not considered 
in this analysis.

5.2  Influence of changes in atmospheric noise 
on low-frequency ENSO modulation

The results highlighted in the previous section suggest that 
mean state changes in the tropical Pacific do not explain 
the periods of extreme ENSO variability in CM2.1—sug-
gesting that the ENSO modulation in CM2.1 is instead 
driven by atmospheric noise and/or nonlinear dynam-
ics. These results are consistent with the results presented 
in Wittenberg et  al. (2014), who showed that the occur-
rence of extreme-ENSO epochs in CM2.1 were in fact 
unpredictable.

Multi-decadal fluctuations of ENSO variability could 
arise through low frequency changes in the structure and/or 
amplitude of the atmospheric noise forcing (either internal 
or external to the tropical Pacific), including a multiplica-
tive dependence of westerly wind bursts on the zonal extent 
of the Pacific warm pool (Graham et  al. 2016). While an 
attempt was made to characterize the noise forcing in the 
three CM2.1 epochs using a Linear Inverse Model (LIM; 

e.g. Penland and Sardeshmukh 1995), it was concluded that 
40  years of CM2.1 data was not long enough to robustly 
constrain the dynamics of the coupled system (see S.2 in 
the Supplemental material for details). These results are 
in contrast to those from (Newman et  al. 2011), in which 
42 years was deemed sufficient to constrain a LIM trained 
on observational data. These results again highlight the dif-
ference between ENSO in CM2.1 and ENSO in nature—
the LIM fit to CM2.1’s strongly-modulated ENSO system 
is less robust to short epochs than the LIM fit to observa-
tions. Because of these issues, the possible role of changes 
in atmospheric noise forcing on CM2.1’s ENSO modula-
tion has yet to be evaluated.

5.3  Low-frequency ENSO modulation 
through randomly sampling a stationary, linear 
process

Independent from any changes in the background climate 
state or changes in the structure or amplitude of atmos-
pheric noise forcing, multi-decadal fluctuations in ENSO 
variability can arise solely from a system governed by lin-
ear, stationary dynamics. For a stationary, linear process 
with well-defined long-term variance, and for epochs that 
randomly and independently sample the underlying distri-
bution of multi-decadal ENSO variance, the probability 
distribution function (PDF) of epochal variance will match 
that of a χ2 distribution (Russon et al. 2014).

In order to compare a χ2 distribution to the ENSO mod-
ulation present in CM2.1, the probability distribution of 
ENSO variance (hereafter defined as the variance of Niño 
3 SSTAs) in 40-year intervals was plotted from the first 
2000  years of the CM2.1 simulation alongside χ2 distri-
butions (Fig. 12), calculated using Eqs. 1–2, below (from 
Russon et  al. 2014). To further compare CM2.1’s ENSO 
modulation with that of a linear system with additive noise, 
the 2000-year LOAM simulation with CM2.1 mean states 
and CM2.1-tuned noise, and the 2000-year LOAM simula-
tion with observed mean states and observation-tuned noise 
were also plotted.

While one might expect the temporal properties of 
ENSO in the low-dimensional, linear system in LOAM to 
be notably distinct from the high dimensional, fully non-
linear CM2.1, the distribution of multi-decadal ENSO 
variance is notably similar in CM2.1 and the linear model, 
with the exception of a slightly broader distribution in 
CM2.1  (Fig.  12a). A two-sample Kolmogorov–Smirnov 
test of the variance histograms indicates that the null 
hypothesis (that the two data sets were drawn from the 
same distribution) cannot be rejected. The correspondence 
of the CM2.1 histogram with the χ2 distribution indicates 
that ENSO statistics even in the highly nonlinear CM2.1 
are roughly stationary at multi-decadal time scales. This 



2856 A. R. Atwood et al.

1 3

result is consistent with the finding by Wittenberg (2009) 
and Wittenberg et  al. (2014) who showed that the warm 
events in CM2.1 resembled a memory-less interannual pro-
cess with no decadal-scale predictability. These findings 
demonstrate that the low-frequency ENSO modulation in 
CM2.1 is driven by transient processes that operate at time 
scales that are interannual or shorter.

Like most coupled GCMs, CM2.1 has biases in its ENSO 
simulation (Wittenberg et al. 2006). Importantly, these biases 
include excessive ENSO variance in CM2.1 [Figs.  5a, c, 7 
(Takahashi and Dewitte 2016; Wittenberg et  al. 2006)]. In 
order evaluate the influence of this overly strong ENSO vari-
ance on the low-frequency ENSO modulation, the variance 
distribution from the LOAM simulation tuned to observa-
tions  (LOAMOBS + FOBS; red histogram in Fig. 12) was com-
pared to the distribution from the LOAM simulation tuned to 
CM2.1  (LOAMCM2.1 + FCM2.1; black histogram in Fig.  12). 
The results demonstrate that the distribution with weaker 
ENSO variance  (LOAMOBS + FOBS) is much more sharply 
peaked about its respective mean than the distribution with 
stronger ENSO variance  (LOAMCM2.1 + FCM2.1). Indeed, 
the range of multi-decadal variance in CM2.1 (and LOAM 
tuned to CM2.1) is twice that produced by LOAM tuned to 
observations.

There is a simple statistical reason for this, which explains 
how CM2.1’s strong ENSO variance is directly related to its 
strong inter-epoch modulation of ENSO variance (Fig.  12). 
Given a normal distribution with variance σ2, the expected 
distribution of the sample variance of a random sample of 
size n is

where �2

n∗−1
 is the Chi square distribution with n* − 1 

degrees of freedom. n∗ can be estimated from:

where �
d
 is a dimensionless factor by which the effec-

tive degrees of freedom are reduced relative to the num-
ber of data points in each interval (here, n = 480) and is 
constrained by the autocorrelation of the Niño 3 SSTA 
data. The autocorrelation function (�) is summed over 
the number of time steps (L) needed to reach the first 
two sign changes in the autocorrelation function (von 
Storch and Zwiers 2003; Russon et  al. 2014). Now sup-
pose that ENSO is memoryless beyond a few years—as in 
CM2.1, in which the wait times between El Niño events 
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are Poisson-distributed at decadal and longer scales (Wit-
tenberg 2009), with no apparent decadal predictability of 
ENSO amplitude (Wittenberg et al. 2014). Further suppose 
that the Niño 3 SST anomalies have long-term variance 
σ2, and that each 40-year epoch contains n* effectively-
independent samples of the Niño 3 SST anomalies. The 
inter-epoch spread of the epochal variance, i.e. the vari-
ance modulation, would then increase like the square of the 
long-term variance σ2:

In simple terms, a weak memoryless ENSO can only 
exhibit weak variance, while a strong memoryless ENSO 
can exhibit either strong or weak variance—resulting in 
much more variance modulation. This disparity is largely 
removed if the relative change in variance (with respect to 
the long-term variance) is compared instead (Fig. 12b). In 
this case the empirical distributions are highly similar, and 
thus a −40 to +55% change in ENSO variance in a given 
40-year interval (representing 2.5–97.5% of the CM2.1 dis-
tribution) is similarly likely in the CM2.1,  LOAMCM2.1 and 
 LOAMOBS simulations.

To summarize: these results indicate that the distribu-
tion of ENSO variance in CM2.1 is dramatically broadened 
with respect to the linear system with ENSO variance tuned 
to that observed over the past 50 years. However, the broad 
CM2.1 distribution is entirely consistent with the distribu-
tion expected from a linear system that has excessive ENSO 
variance. The correspondence of the CM2.1 histogram with 
that from the linear model and the χ2 distribution indicates 
that ENSO statistics in CM2.1 are roughly stationary at 
multi-decadal time scales, demonstrating that the low-fre-
quency ENSO modulation in CM2.1 is driven by transient 
processes that operate at time scales that are interannual or 
shorter. Taken together, the results from the linear LOAM 
and nonlinear CM2.1 show that a memory-less interannual 
ENSO, whether linear or highly nonlinear, will generate 
interdecadal variance modulation that resembles a χ2 distri-
bution, and that the variance modulation increases sharply 
as ENSO strengthens. In this way, CM2.1’s overly strong 
ENSO variance directly contributes to its strong multi-
decadal modulation. In absolute terms, the multi-decadal 
modulation in CM2.1 is twice that produced by a linear 
system tuned to the ENSO variance observed over the past 
50 years. In contrast, the relative changes in ENSO modu-
lation are notably similar between the linear and nonlinear 
models, with the exception of a slightly broader distribu-
tion in the nonlinear CM2.1. These results underscore the 
findings of Russon et al. (2014) that only relative changes 
in multi-decadal ENSO variance can robustly be compared 
across models and observations.
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5.4  The influence of nonlinearities on low-frequency 
ENSO modulation in CM2.1

While the results presented in Sect. 5.3 demonstrate that 
the nonlinearities in CM2.1 do not dramatically broaden 
the distribution of variance as compared to a linear sys-
tem with equal ENSO variability, this does not imply that 
nonlinearities are entirely unimportant in determining the 
multi-decadal modulation of ENSO. The nonlinearities 
may in fact be critical to the multi-decadal ENSO modu-
lation by contributing to the overly active ENSO variabil-
ity that causes the enhanced multi-decadal modulation, 
e.g. through enhancing the growth of strong El Nino 
events (e.g. Takahashi and Dewitte 2016).1 Additional 
simulations with LOAM suggest that linear dynamics 
operating on the biased CM2.1 mean states are not the 
source of the overactive ENSO activity in CM2.1 (see S.3 
in the Supplementary material)—which in turn further 
suggests that nonlinear dynamics and multiplicative noise 
likely play an important role in driving the excessive 
ENSO variance, and thus low-frequency ENSO modula-
tion, present in CM2.1. Results presented below indeed 
demonstrate that these nonlinearities are inextricably 
linked to the low-frequency ENSO modulation in CM2.1.

The coupled ocean–atmosphere system appears to 
be substantially more nonlinear in CM2.1 than has 
been observed over the past 50  years (Figs.  13, 14). A 
key nonlinearity in CM2.1 is the response of the central 
Pacific low-level wind (and zonal wind stress) anomalies 
to SST anomalies—indicative of the Bjerknes feedback 
that is central to the physics of ENSO (Battisti and Hirst 
1989). This feedback is approximately linear for all but 
the strongest El Nino events in the observations, while a 
highly nonlinear feedback is present in CM2.1 (Fig.  13, 
S2). These results suggest that the highly nonlinear 
response of the atmosphere to central Pacific SST anoma-
lies may be responsible for the growth of strong El Nino 
events in CM2.1.

Previous studies have also suggested that the key non-
linearities relevant to ENSO in CM2.1 are in the atmos-
phere (Chen et al. 2016; Choi et al. 2013; Takahashi and 
Dewitte 2016). Possible sources of the nonlinear response 

1 However, it is also possible that the strong nonlinearity in CM2.1 
is a symptom, rather than a cause of its strong ENSO variability. The 
strong climatological cold tongue in CM2.1 suggests that the model 
has overactive ocean-dynamical cooling. If this is indeed the case, 
hyperactive (but possibly still linear) subsurface ENSO feedbacks 
may be the driver of its higher amplitude SSTAs. In a model with a 
climatological equatorial cold bias (which shifts the atmospheric 
convective zones farther to the west and farther off-equator), those 
greater SSTAs then produce a greater atmospheric nonlinearity (Choi 
et al. 2013).
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Fig. 13  Monthly zonal wind 
stress anomalies in the western 
Pacific (left column) and central 
Pacific (right column) versus 
Niño 3 SSTAs in 500 years of 
the CM2.1 control simulation 
(top row) or observations (bot-
tom row; 1958–2001; SODA 
zonal windstress and ERSST 
v3b SST data). The CM2.1 data 
are divided into two subsets—
the “high variance epochs” 
subset contains data from 
periods in which the 40-year 
running mean variance of Niño 
3 SSTAs ≥2.0 °C2, while the 
“low variance epochs” subset 
contains data from periods 
in which the 40-year running 
mean variance of Niño 3 SSTAs 
≤1.0 °C2. For the WP data (left 
column) zonal wind anoma-
lies were averaged over the 
Niño 4 region (160°E:150°W, 
5°S:5°N) for observations and 
over 150°E:160°W, 5°S:5°N for 
CM2.1 (representing the region 
of peak zonal wind anomalies 
in each data set). For the CP 
data (right column), the zonal 
wind anomalies were aver-
aged over the Nino 3.4 region 
(170°W:120°E, 5°S:5°N) for 
both CM2.1 and observations
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Fig. 14  Skewness of tropical Pacific zonal wind stress anomalies in 
a 500 years of the CM2.1 control simulation; b observations (SODA 
v2.0.2-4, 1958–2007); c low variance epochs in CM2.1 and d high 
variance epochs in CM2.1. The CM2.1 data are divided into two sub-
sets—the “low variance epochs” subset c contains data from peri-

ods in which the 40-year running mean variance of Niño 3 SSTAs 
≤1.0 °C2 while the “high variance epochs” subset d contains data 
from periods in which the 40-year running mean variance of Niño 3 
SSTAs ≥2.0 °C2
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of the atmosphere to SST anomalies in CM2.1 include a 
nonlinear moisture convergence feedback, changes in the 
character of the central Pacific atmospheric boundary 
layer associated with shifts in the edge of the warm pool 
convective region, the nonlinear relationship between 
specific humidity and surface air temperature in the trop-
ics, and state-dependent multiplicative noise forcing (e.g. 
the eastward shift of westerly wind events, as the warm 
pool shifts eastward during the onset of El Nino events; 
Graham et al. 2016; Levine 2016; Vecchi et al. 2006; see 
S.4 in the Supplementary material for further discussion). 
Each of these nonlinearities may be amplified by the 
background state biases in the Pacific in CM2.1, includ-
ing an excessive contrast between the off-equatorial con-
vergence zones (which are too rainy) and the eastern 
equatorial cold tongue (over which the atmosphere is too 
clear and dry). This enhanced contrast could strengthen 
the atmospheric nonlinearity near the equator, by giving 
convection more room to increase during El Niño and 
less room to decrease during La Niña (Chen et al. 2016). 
Whatever the source(s) of the overly nonlinear Bjerknes 
feedback in the central Pacific in CM2.1, it appears to 
give rise to larger ENSO events than those yet observed.

Evidence for an important role of such transient nonlin-
earities in driving the low-frequency ENSO modulation in 
CM2.1 can be seen by evaluating the SST and wind/wind-
stress anomalies separately for the high- and low-variance 
ENSO epochs. High-variance ENSO epochs in CM2.1 are 
populated by more extreme ENSO events (panels a and b of 
Fig. 13), which are governed by a highly nonlinear Bjerknes 
feedback in the central Pacific. The threshold behavior of 

zonal wind and wind stress anomalies in the central Pacific 
during these epochs in response to warm SST anomalies 
are evidence of this strong nonlinearity (Figs. 13b, 14b; as 
identified in Takahashi and Dewitte 2016), as is the large 
positive skewness in central Pacific wind stress anomalies 
(Fig. 14d) and in eastern Pacific SST anomalies (Fig. 15d). 
In contrast, the low-variance epochs are characterized by 
weaker ENSO events with more linear behavior (Fig. 13a, 
b; panel c of Fig. 14). From these results we conclude that 
(1) the physics of the coupled ocean–atmosphere system 
in CM2.1 are close to linear for the weaker ENSO epochs, 
resembling the past 50  years; and (2) CM2.1’s high-vari-
ance ENSO epochs (such as Epoch H; Fig. 1d) are gener-
ated by a collection of stochastically-driven extreme ENSO 
events that are highly nonlinear. From these analyses we 
conclude that transient nonlinearities or multiplicative 
noise help drive the low-frequency ENSO modulation in 
CM2.1. This is consistent with previous results showing 
that CM2.1’s ENSO modulation is decadally unpredictable 
(Wittenberg et  al. 2014) and produces rectified effects on 
the decadal mean state (Ogata et al. 2013).

6  Conclusions

Large, unforced, multi-decadal changes in ENSO vari-
ability have been previously reported from the long pre-
industrial control run of GFDL CM2.1. We evaluated the 
possible sources of this low-frequency ENSO modulation, 
by characterizing the extreme ENSO epochs in CM2.1 and 
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employing a linearized intermediate-complexity model of 
the tropical Pacific (LOAM).

Simulations with the linear model demonstrate that 
intrinsically-generated tropical Pacific decadal mean state 
changes produced through a rectified nonlinear response 
to the low frequency ENSO modulation do not contribute 
to the extreme-ENSO epochs in CM2.1. Rather, these dec-
adal mean state changes actually serve to damp the ENSO 
modulation, primarily by stabilizing the ENSO mode dur-
ing strong-ENSO epochs. These results point to a pos-
sible feedback loop between ENSO and the mean state—
whereby noise and nonlinearities produce extreme ENSO 
epochs, which are then counteracted by linear feedbacks 
from the mean state. However, it is also possible that in 
CM2.1, nonlinearities and/or state-dependent noise forcing 
give rise to mean state feedbacks that are not predicted by 
the linear model.

The presence of low frequency changes in stochastic 
(weather) processes is difficult to address using the suite 
of tools employed in this analysis and thus its contribution 
to the low-frequency ENSO modulation in CM2.1 has yet 
to be evaluated. However, we demonstrate (using the lin-
ear model runs, CM2.1, and observations) that the low-
frequency ENSO modulation can be well described by the 
simplest model of a linear, stationary process. These results 
indicate that even in the highly nonlinear CM2.1, ENSO 
statistics are roughly stationary at multi-decadal time scales 
(in the absence of external forcings); and the intrinsic low-
frequency ENSO modulation in CM2.1 is driven by tran-
sient processes operating at interannual or shorter time 
scales. One might expect nonlinearities, multiplicative 
noise, and other physics not included in the simple linear 
model to contribute significantly to the spectral broadening 
of ENSO, in both the observations and CM2.1. However, 
we show that their effects on the level of ENSO modulation 
appear to be weak, compared to the effects of the strong 
ENSO variance in CM2.1.

We demonstrate that nonlinearities are inextricably 
linked to the multi-decadal ENSO modulation in CM2.1. 
High-variance ENSO epochs in CM2.1 are populated by 
extreme ENSO events that are characterized by a highly 
nonlinear Bjerknes feedback in the central Pacific; low-
variance epochs are characterized by weaker ENSO events 
with more linear behavior. While nonlinearities in CM2.1 
do not dramatically broaden the distribution of variance 
compared to a linear system with equal long-term ENSO 
variance, the nonlinearities likely shape the amplitude dis-
tribution of ENSO modulation by contributing to an over-
active ENSO (e.g. by intensifying strong El Nino events), 
which then broadens the distribution of epochal ENSO 
variance.

These results have important implications for under-
standing the past, present, and future of ENSO. Taken at 

face value, CM2.1’s strong unforced decadal-to-centennial 
modulation of ENSO would suggest that existing observa-
tional records might be too short to rule out such modu-
lation in the real world (e.g. a factor of four spread in the 
variance of Niño 3 SSTAs across 40-year epochs). There-
fore, to detect a forced change in ENSO variability, e.g. 
using proxy recorders like Pacific corals to characterize the 
pre-instrumental epoch, either the records would have to 
be long or the change large. However, our results suggest 
that if the past 50 years of observations are representative 
of the average interannual variance of ENSO in the real 
world, then the true spectrum of unforced ENSO modula-
tion is, in absolute terms, likely substantially narrower than 
that suggested by CM2.1. Forced changes might therefore 
be detectable using relatively short records. However, when 
relative, rather than absolute, changes in ENSO variance 
are compared, the distributions of variance are remark-
ably insensitive to the differing ENSO characteristics. The 
statistics of the relative changes in ENSO variance might 
therefore be extrapolated from the fully nonlinear CM2.1 
to other systems (e.g. those with less variable and/or more 
linear ENSOs).

Lastly, we note that tropical Pacific mean state changes 
due to future greenhouse gas increases are projected to 
grow substantially larger than the unforced mean state 
changes seen between the weak-ENSO versus strong-ENSO 
epochs in CM2.1 (Wittenberg 2015; Xie et al. 2010). Given 
projected future climate changes in the tropical Pacific, 
the LOAM-inferred ENSO sensitivity would suggest sub-
stantial and detectable changes in ENSO that are consist-
ent with actual forced CM2.1 scenarios (Wittenberg 2015). 
On the other hand, the LOAM-inferred ENSO sensitivity 
would also suggest that the mean state biases prevalent in 
GCMs could have large impacts on how ENSO responds 
to forcings—underscoring the critical need to reduce these 
biases, in order to make reliable projections of the future of 
ENSO.
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