CORRESPONDING EDITOR:

Stephanie C. Herring, PhD
NOAA National Climatic Data Center
325 Broadway, E/CC23, Rm 1B-131
Boulder, CO, 80305-3328
E-mail: stephanie.herring@noaa.gov

COVER CREDITS:

FRONT: The final wave of rain storms make their way through Boulder, Colorado, bringing another day of flooding to the already rain swollen area, 15 September 2013. Image by ©Ed Endicott/Demotix/Corbis.

BACK: The city of Boulder, Colorado, experienced substantial flooding for four days that have lasting effects, 18 September 2013. Image by ©Anna M Weaver/Demotix/Corbis.

HOW TO CITE THIS DOCUMENT

Citing the complete report:

Citing a section (example):

EDITORIAL AND PRODUCTION TEAM

Misch, Deborah J., Graphics Support, JPS, Inc., NOAA/NESDIS
National Climatic Data Center, Asheville, NC

Osborne, Susan, Copy Editor, JPS, Inc., NOAA/NESDIS
National Climatic Data Center, Asheville, NC

Sprain, Mara, Editorial Support, LAC Group, NOAA/NESDIS
National Climatic Data Center, Asheville, NC

Young, Teresa, Graphics Support, ERT/STG, Inc., NOAA/NESDIS
National Climatic Data Center, Asheville, NC

Riddle, Deborah B., Lead Graphics Production, NOAA/NESDIS
National Climatic Data Center, Asheville, NC

Veasey, Sara W., Graphics Team Lead, NOAA/NESDIS
National Climatic Data Center, Asheville, NC

Griffin, Jessica, Graphics Support, CICS-NC, Asheville, NC

Love-Brotak, S. Elizabeth, Graphics Support, NOAA/NESDIS
National Climatic Data Center, Asheville, NC

Corresponding Editor:
Stephanie C. Herring, PhD
NOAA National Climatic Data Center
325 Broadway, E/CC23, Rm 1B-131
Boulder, CO, 80305-3328
E-mail: stephanie.herring@noaa.gov

Cover Credits:

Front: The final wave of rain storms make their way through Boulder, Colorado, bringing another day of flooding to the already rain swollen area, 15 September 2013. Image by ©Ed Endicott/Demotix/Corbis.

Back: The city of Boulder, Colorado, experienced substantial flooding for four days that have lasting effects, 18 September 2013. Image by ©Anna M Weaver/Demotix/Corbis.

How to Cite This Document

Citing the complete report:

Citing a section (example):

Editorial and Production Team

Misch, Deborah J., Graphics Support, JPS, Inc., NOAA/NESDIS
National Climatic Data Center, Asheville, NC

Osborne, Susan, Copy Editor, JPS, Inc., NOAA/NESDIS
National Climatic Data Center, Asheville, NC

Sprain, Mara, Editorial Support, LAC Group, NOAA/NESDIS
National Climatic Data Center, Asheville, NC

Young, Teresa, Graphics Support, ERT/STG, Inc., NOAA/NESDIS
National Climatic Data Center, Asheville, NC

Riddle, Deborah B., Lead Graphics Production, NOAA/NESDIS
National Climatic Data Center, Asheville, NC

Veasey, Sara W., Graphics Team Lead, NOAA/NESDIS
National Climatic Data Center, Asheville, NC

Griffin, Jessica, Graphics Support, CICS-NC, Asheville, NC

Love-Brotak, S. Elizabeth, Graphics Support, NOAA/NESDIS
National Climatic Data Center, Asheville, NC
shift towards a reduction in the magnitude of extremes in MD runs with a multimodel mean decrease of around one-third (Fig. 7.2). Likewise, while two models showed a nonsignificant increase for a 90th percentile early autumn maximum daily SWE, the MD runs primarily tended toward reduced magnitude (mean decrease of 20%) relative to PI runs. However, the changes for both metrics were only significant for a single model and were not considered a robust change. These results largely mirrored projected changes in early autumn SWE that showed intermodel agreement of reduced SWE relative to PI runs (mean decrease of 35%). By contrast, simulated differences in early autumn maximum daily precipitation and the 90th percentile early autumn daily precipitation showed nominal and mixed changes. Increased PW in MD runs relative to PI was found consistently across the study area and was consistent with overall increases in temperature and potential water holding capacity scaling with the Clausius–Clapeyron relationship.

Conclusions. The record-setting early season blizzard of October 2013 had significant impact on the agriculture, infrastructure, and economy of western SD. This event was associated with highly anomalous (95th to 99th percentile) atmospheric water vapor for early autumn and anomalous, but not unprecedented, 500-hPa heights for any time of year.

While several climate models are consistent with the observations in showing an increase in PW, there is no apparent model agreement regarding changes in extreme precipitation or snowfall in the early autumn season for western SD under modern conditions relative to preindustrial conditions.

8. MULTIMODEL ASSESSMENT OF EXTREME ANNUAL-MEAN WARM ANOMALIES DURING 2013 OVER REGIONS OF AUSTRALIA AND THE WESTERN TROPICAL PACIFIC

THOMAS R. KNUTSON, FANRONG ZENG, AND ANDREW T. WITTENBERG

CMIP5 simulations suggest that the extremely warm year observed over Australia and the far western Pacific during 2013 was largely attributable to human forcing of the climate system.

Introduction. A global survey of surface temperature anomalies occurring during 2013 (Fig. 8.1a; Supplementary Fig. S8.1) in the HadCRUT4 observations (Morice et al. 2012) reveals pronounced warm an-
nual and seasonal mean anomalies. Two regions with prominent record or near-record annual mean warm anomalies include large regions of Australia and a region in the far western tropical Pacific encompassing the Philippines and part of the Maritime Continent (Fig. 8.1b). The 2013 anomalies appear particularly extreme during austral fall and winter (MAM, JJA) in Australia and during MAM in the far western Pacific (Supplementary Fig. S8.1). Temperatures in these two regions are further assessed in this report for the causes of this extreme warmth. Twenty-three All-Forcing (anthropogenic plus natural) models and control runs and 10 Natural-Forcing models were used from the Coupled Model Intercomparison Project phase 5 (CMIP5; Taylor et al. 2012). See Knutson et al. (2013a,b) for background on our methodology and a global assessment of low-frequency variability and trends.

Global occurrence rates of record or near-record annual mean surface temperatures. Figure 8.1c,d shows the fraction of available global area with record or near-record (ranked in the top/bottom three with at least 100 years of record) annual mean positive or negative anomalies. In 2013, the fraction of area with record or near-record annual anomalies was very skewed toward warm occurrences, with 10.4% of the analyzed area having annual mean warmth that was first, second, or third highest on record, compared with 0% coverage of record or near-record cold. This continues a feature seen in recent decades, with similar rates for positive extreme occurrences since about 2000 and very little analyzed area with annual mean near-record negative temperature anomalies since about 1990. The large occurrence rates of record or near-record annual mean temperature anomalies is high in the early parts of the record as an artifact of the short record lengths, so the focus should be on the latter parts of the record. Figure 8.1d shows the annual rates using the full record to assess each year, including the early years, and shows the preference for cold mean annual extremes prior to about 1920 and the increasing preference for warm annual mean extremes since about 1990. Although global mean temperature has experienced a “hiatus” or pause since around 2000 (e.g., Fyfe et al. 2013), this pause has occurred at high overall temperature levels relative to the late 1800s, resulting in a much more common occurrence of regional seasonal and annual warm temperature records (or near records) around the globe compared to cold records (Fig. 8.1c,d). Seneviratne

Fig. 8.1. (a) Annual-mean surface air temperature anomalies (°C) for 2013 (1961–1990 base period) from the HadCRUT4 data set. (b) Colors identify grid boxes with annual-mean warm anomalies that rank first (dark red), second (orange-red), or third (yellow-orange) in the available observed record. Gray areas did not have sufficiently long records, defined here as containing at least 100 available annual means, with a seasonal mean requiring at least one of three months to be available, and an annual mean requiring at least three of four seasons to be available. (c) Fraction of available global area by year where the given year’s annual mean anomalies for that area rank in the top three highest (red curve) or lowest (blue curve) in the available record to that date. Available area restricted to those regions having at least 100 years of available data through 2013. (d) As in (c) but comparing each year’s annual anomalies to the entire record through 2013 (i.e., at least 100 years of data) for that gridpoint.
et al. (2014) have similarly found that there has been a continued increase in warm daily temperature extremes over global land regions during the “hiatus” period.

Is there a significant long-term anthropogenic warming trend in the Australian and far western Pacific regions? Annual-mean temperature anomaly time series extending back to the late 1800s for Australia and western tropical Pacific regions are shown in Fig. 8.2a,b. Both observed series (black curves) show a pronounced long-term warming, which has been more rapid since ~1970. This general behavior is well captured by the CMIP5 All-Forcing ensemble (red curves), though not by the Natural-Forcing ensemble (blue curves). The western tropical Pacific region has warmed slightly less than the global mean since the 1881–1920 base period, while the Australia region warming has been roughly comparable to that of the global mean (e.g., green curve in Fig. 8.2b).

To assess the causes of the observed long-term warming, we use a “sliding trend” analysis (Knutson et al. 2013a,b), incorporating multimodel samples from CMIP5 control runs and ensemble mean forced trends (Fig. 8.2c,d). The plots compare linear trends in the observations (black lines) with models, for trends ending in 2013 and beginning with a range of start years from the late 1800s to very recent. The pink region represents the “All-Forcing hypothesis”—the 5th–95th percentile range of trends from the All-Forcing runs. It is constructed as an ensemble distribution, aggregating the distributions of trends from the 23 individual CMIP5 models. Each model’s ensemble-mean All-Forcing trend is combined with randomly sampled internally generated trends from that model’s control run. These 23 distributions are aggregated to form the full distribution whose 5th–95th percentile range is depicted by the pink region, which thus reflects uncertainty in both the forced response and the influence of internal variability. The alternative “Internal-Variability-Only hypothesis” is shown by the green region on the plot. For comparison, Supplementary Fig. S8.2 shows an “All-Forcing hypothesis” versus a “Natural Forcing-Only” hypothesis version of the “sliding trend” analysis, in this case, for trends ending in 2012 (as a sensitivity test) and based on a 10-model subset of CMIP5 models with available Natural-Forcing runs through 2012.

The trend assessments in Fig. 8.2c,d and Supplementary Fig. S8.2 show that in both focus regions the observed long-term warming is generally detectable (outside the green band, i.e., significantly larger than simulated internal or natural climate variability), at least for trends beginning earlier than the 1970s. Moreover, the observed trends are generally consistent with the “All-Forcing” hypothesis (pink region) for trends beginning in these periods. Using the CMIP5 models’ simulated variability and responses to natural forcings to estimate real-world natural variability (see internal variability assessments in Knutson et al. 2013a), we conclude that the long-term observed trends in both regions are very likely inconsistent with natural variability but generally consistent with anthropogenic and natural forcing combined. Therefore, the model results suggest that the long-term observed warming in both regions is very likely attributable in part to anthropogenic forcing.

To what extent are the 2013 extreme annual mean temperatures attributable to anthropogenic forcing? We next assess the 2013 annual mean temperature anomalies in the two regions using All-Forcing and Natural-Forcing scenarios (Fig. 8.2e,f). For the All-Forcing runs (red), the CMIP5 historical runs are extended as necessary through 2013 using the RCP4.5 forcing scenario. However, the Natural-Forcing runs (blue) cannot be extended in this manner, and so the Natural-Forcing ensemble response for 2013 is estimated by using the 2012 ensemble mean of the models along with high and low sensitivity tests (Fig. 8.2a,b; see Supplemental Material). Using the 2012 Natural Forcing estimate, the observed 2013 anomalies (compared to a baseline for 1881–1920) are well outside the range of CMIP5 model-estimated natural climate variability for both regions (Fig. 8.2e,f). We use 1881–1920 as a reference value for the 2013 anomaly, as we are attempting to estimate anthropogenic contributions and so have chosen a relatively early baseline period to be closer to preindustrial conditions. Further discussion of the baseline period and observational uncertainties is contained in the Supplemental Material. According to our analysis, the Australia region 2013 anomaly of 1.72°C had contributions of 0.81°C (anthropogenic forcing), 0.23°C (natural forcing), and 0.68°C (natural internal variability). The observed 1.72°C anomaly was at the 99.3 percentile of the CMIP5 All-Forcing distribution and was much larger than the ensemble mean of the All-Forcing distribution (1.04°C). This suggests that either internal variability played a significant role (in addition to external forcing) in producing the 2013 anomaly (estimated as 0.68°C), or the net climate forcing or the response to climate forcing in the CMIP5 models could be too

S28 | BATS SEPTEMBER 2014
Fig. 8.2. (a,b) Time series of annual averaged surface temperature anomalies (°C) averaged over regions of (a) Australia, left column, and (b) the far western tropical Pacific, right column. The black curves depict the observed (HadCRUT4) anomalies; the dark red (dark blue) curves depict the multi-model ensemble anomalies from the CMIP5 All-Forcing (Natural Forcing-only) runs, with each of the 23 (10) available models weighted equally; the orange curves are individual All-Forcing ensemble members. The green curve in (b) is the 7-yr running mean observed global mean temperature anomaly. The three blue circles labelled “Sensitivity Tests” depict low, medium, and high estimates of the Natural Forcing-only response for 2013 (see Supplemental Material). The All-Forcing simulations for these regions included both anthropogenic and natural forcings from about 1860 to the present, with data from RCP4.5 runs used to extend the time series through 2013 where necessary. Only 10 models had Natural Forcing runs available to us through 2012. All time series shown are adjusted to have zero mean over the period 1881–1920. (c,d) Trends [°C (100 yr⁻¹)] in the area-averaged annual-mean surface temperature series in (a,b) as a function of starting year, with all trends ending in 2013. The black curves show trends from observations (HadCRUT4), with the black shading depicting the 5th–95th percentile range for the 100-member HadCRUT4 observed ensemble (Morice et al. 2012), giving one indication of the observational uncertainty in these results. The red curves show the inter-model mean of ensemble mean trends from the 23-member CMIP5 All-Forcing ensemble. The pink region represents the ‘All Forcing’ hypothesis—the 5th–95th percentile range of trends from the All-Forcing runs. The green-shaded region shows the 5th to 95th percentile range of the alternative “Internal Variability Only” hypothesis estimated from the pre-industrial control runs. Purple shading indicates where the pink- and green-shaded regions overlap. The white spaces in the curves denote years where the initial “start year” was missing due to inadequate spatial or temporal coverage. Temporal coverage was assessed as in Fig. 8.1, and the spatial coverage was assessed for each year by requiring at least 33% non-missing annual means for the region. (e,f) Distribution of annual mean anomalies in the CMIP5 Natural Forcing-only runs (blue) and for the All Forcing runs (red) for 2013. The observed temperature anomalies for 2013 are depicted as dark black vertical lines, with anomalies for another recent similarly extreme year shown by the gray vertical lines.
weak. Since an anomaly as large as observed was also outside the estimated range of the natural variability (natural forcing plus internal variability) distribution from the CMIP5 models, our analysis shows that the CMIP5 modeled fraction (or percent) of risk of the event that is attributable to anthropogenic forcing is essentially 100%. The second highest anomaly in the Australia region series (1.17°C in 2009) occurs very rarely if at all in the modeled Natural-Forcing distribution, depending on assumptions on the 2012 natural forcing response (Supplementary Table S8.1). We again conclude that the modeled fraction of risk attributable to anthropogenic forcing is near 100% for this alternative threshold value.

Lewis and Karoly (2013) performed a similar analysis on the full Australia region for summer 2013 (December 2012–February 2013). They find a significant anthropogenic contribution to extreme warmth, with about a seven-fold increase in risk of an event like 2013 for an RCP8.5 scenario centered on the year 2013 (2006–20). The increase in risk that we find is even higher than their estimate, presumably because we analyze only that subset of the Australian region having the most unusual 2013 temperatures and we assess annual means rather than summer mean temperatures. Both of these analysis choices would tend to enhance the signal-to-noise ratio for an anthropogenic warming signal (or relative risk); on the other hand, by analyzing the summer season, Lewis and Karoly (2013) were focused on the season with presumably the maximum heat-stress impact. Our findings are also generally consistent with those of two similar analyses of Australian 2013 annual temperature (“The role of anthropogenic forcing in the record 2013 Australia-wide annual and spring temperatures” and “Climate change turns Australia’s 2013 big dry into a year of record-breaking heat” in this report).

For the western tropical Pacific region, the 2013 annual mean anomaly was 0.97°C, or slightly less than the 1998 anomaly of 1.02°C. The estimated contributions to the 2013 anomaly, based on the CMIP5 models, were 0.76°C (anthropogenic forcing), 0.11°C (natural forcing), and 0.09°C (natural internal variability). Both of these observed anomalies (relative to an 1881–1920 baseline) are outside of, or very rarely occurring in, our estimated distribution of natural variability. Thus, the modeled fraction of event risk attributable to anthropogenic forcing is close to 100%. The 2013 anomaly is at the 75.8 percentile of the All-Forcing distribution, indicating either a likely role for natural variability as estimated above or perhaps an underestimated forcing response in this region.

A simple variance consistency test was also done (Supplemental Material) to assess the adequacy of the control runs’ internal variability as an estimate of the internal variability of the actual climate system. The latter was estimated by subtracting the CMIP5 models’ ensemble-mean All-Forcing response from the observed temperature series. For the Australia region, the residual variability so derived agrees well with the model control run ensemble. For the far western Pacific region, the standard deviation of the observed residual variability is about 16% higher than the control run ensemble, but adjusting the model control run variability upward by over 20% does not impact the main conclusions of our study. Similarly, our attribution conclusions remain robust in light of our assessment of the impact of baseline reference period and other observational uncertainties and related issues as discussed in the Supplemental Material.

Summary. Seasonal and annual temperature anomalies around the globe were highly skewed toward positive (warm) extremes in 2013, as in the recent few decades. Although global warming has been described as ”pausing” since 2000, global temperatures remain at anomalously high levels, and warm annual and seasonal temperature extremes continue to far outpace the occurrence of cold annual extremes. Two examples of regions with extreme (record or near-record) annual warmth during 2013 include much of Australia and a region of the far western tropical Pacific. In both regions, a contribution of anthropogenic forcing to an observed long-term warming trend was detected. The annual mean anomalies for 2013 were either completely outside of, or extremely rare in, the distributions of modeled natural variability. Thus, the fraction of risk of these extreme events attributable to anthropogenic forcing was 100% or close to 100%, according to the CMIP5 models. These results reinforce the notion of a potentially high signal-to-noise ratio for anthropogenic warming signals for seasonal and annual anomalies—even at the subcontinental scale in some cases. They further suggest that even if the global warming “hiatus” continues, further extreme (record or near-record) seasonal or annual mean warm anomalies at the regional scale can be anticipated, though the particular regions with such extremes change from year to year (e.g., comparing the present study with our 2012 analysis, Knutson et al. 2013b).
S8. MULTIMODEL ASSESSMENT OF EXTREME ANNUAL-MEAN WARM ANOMALIES DURING 2013 OVER REGIONS OF AUSTRALIA AND THE WESTERN TROPICAL PACIFIC

THOMAS R. KNUTSON, FANRONG ZENG, AND ANDREW WITTENBERG

We present here several auxiliary analyzes and figures relevant to our study, which were not possible to include in the main report due to space limits. In Fig. S8.1, we show for reference the seasonal mean anomaly maps and seasonal-mean extreme occurrence maps for temperature, which are analogous to Fig. 8.1 in the main text but for the individual seasons. We also present “sliding trend” analyzes like those in Fig. 8.2 in the main report (c,d) but comparing 10-model Natural Forcing ensembles with 10-model All-Forcing ensemble subsets of the CMIP5 models. We describe some background on our method and rationale for estimating a Natural-Forcing-only ensemble mean model response for 2013, and the sensitivity of our results to this estimate. We assess the adequacy of simulated internal climate variability in the model for the focus regions in our study. Finally, we assess certain observational issues.

‘Sliding trend’ analysis of Natural Forcing vs. All-Forcing Ensemble. In Fig. S8.2 we present ‘sliding trend’ analysis of trends of varying lengths, all ending in 2012, for the Australian and far western tropical Pacific regions. These analysis are similar to those in Fig. 8.2 in the main report, but compare the All-Forcing trend distributions from a 10-model subset of the CMIP5 models to the Natural-Forcing trend distributions from the same 10 models. The trend analysis are done through 2012 instead of 2013 (as in the main text) because the Natural Forcing runs generally ended in 2012 and we could also test the sensitivity of our trend analysis to leaving out the highly anomalous 2013 values for the observations.

The results show that for all start dates up until about the late 1970s, the trends (to 2012) in the two regions are detectable compared to the multi-model Natural Forcing trend distributions (i.e., outside of the blue envelope). The trends in the Australia region are consistent with the All-Forcing 10-member ensemble (i.e., within the pink envelope) for virtually all start dates examined up to 2000. The trends for the far western Pacific region are consistent with the All-Forcing 10-member ensemble for start dates up to about the late 1970s.

Thus for most start dates beginning in the late 1800s and extending until at least as late as the late 1970s, the CMIP5 model simulations indicate that there is a detectable anthropogenic influence on temperature trends to 2012 in these two regions, according to our testing methodology.

Estimating the Natural-Forcing-only response for 2013. Since the CMIP5 models typically ended their Natural-Forcing runs between 2005 and 2012, we did not have a readily available 23-model estimate of the Natural Forcing ensemble mean response for 2013. However, 10 models had Natural Forcing runs available through 2012. Inspection of the Natural Forcing ensemble time series from those 10 models, in Fig. 8.2 a,b in the main report, suggests that an approximate Natural Forcing ensemble mean component for 2013 would be to reuse the value simulated for 2012 (“Mid Natural”). As sensitivity tests, we also performed our relative risk and fraction of attributable risk calculations assuming a “Low Natural” case of zero Natural Forcing contribution and a “High Natural” case using the maximum of the ensemble mean Natural Forcing response occurring at any point in the time series
from around 1880 to 2012 as the estimate for 2013. A “Low Natural” (and not conservative) estimate is equivalent in this case to comparing the observed 2013 anomaly (relative to 1881–1920 baseline) against model control run variability alone. The various estimates used are shown as blue circles on Fig. 8.2a,b in the main report and listed in the first column of Table S8.1.

The results in Table S8.1 suggest that for all cases examined and for both regions examined, essentially all of the risk of the 2013 events is attributable to anthropogenic forcing, since anomalies as large as those observed in 2013 are either completely outside of the modeled distribution for the Natural Forcing only scenario or are an extremely rare event within that distribution. The analysis is repeated for a threshold temperature anomaly based on an alternative year (1998 for the western tropical Pacific region, which was slightly warmer than 2013, and 2009 for the Australia region, which was essentially tied for second-ranked year but substantially below 2013’s anomaly in magnitude). The results (Table S8.1) are robust in suggesting that essentially all of the risk of warm anomalies the size of those during these years is attributable to anthropogenic forcing.

Variance consistency test and robustness of findings to standard deviation adjustment. We evaluated the models’ control run interannual variability for the two focus regions for consistency with the internal variability estimated from the observations. The latter was estimated by subtracting the intermodel mean ensemble mean All-Forcing time series from the observations, to produce an estimate of the unforced observed residual. The standard deviation, σ, of this “observed” residual for the Australia region is 0.272°C for observations com-

![Fig. S8.1. Left column: Annual (a) or seasonal (c,e,g,i) mean surface air temperature anomalies (°C) for 2013 (1961–90 base period) from the HadCRUT4 data set. The seasons are DJF (December 2012–February 2013); MAM (March–May); JJA (June–August); and SON (September–November). Right column: Colors identify grid boxes with annual (b) or seasonal (d,f,h,j) mean warm anomalies that rank 1st (dark red), 2nd (orange-red), or 3rd (yellow-orange) in the available observed record. Gray areas did not have sufficiently long records, defined here as containing at least 100 available annual or seasonal means, with a seasonal mean requiring at least one of three months to be available, and an annual mean requiring at least three of four seasons to be available. The percent values (right side of figures in right column) denote the percent of analyzed area for each category.](image-url)
Table S8.1. Estimates of observed and modeled temperature anomaly characteristics for 2013 and an alternative similar year (e.g., 1st or 2nd highest) for the two focus regions. See text for description of cases and the column entries. Anomalies for 2013 are relative to a baseline of 1881–1920. “Inf.” indicates cases where the observed anomaly is completely outside of the simulated distribution, so that the relative risk ratio is undefined.

<table>
<thead>
<tr>
<th>Region/Case (Natural Forcing Estimate in °C)</th>
<th>Observed Anomaly °C for 2013 or Alt. yr.</th>
<th>Observed Percentile in Natural Dist. [%] (2013; Alt. yr)</th>
<th>Observed Percentile in All-Forcing Dist. [%] (2013; Alt. yr)</th>
<th>Fraction of Attributable Risk (2013; Alt. yr)</th>
<th>Relative Risk (2013; Alt yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia Region (unadjusted)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Natural (0.304)</td>
<td>1.72; 1.17</td>
<td>Inf.; 99.9</td>
<td>99.3; 68.4</td>
<td>1.00; 1.00</td>
<td>Inf.; 376</td>
</tr>
<tr>
<td>Medium Natural (0.232)</td>
<td></td>
<td>Inf.; 100.0.</td>
<td>99.3; 68.4</td>
<td>1.00; 1.00</td>
<td>Inf.; 1330.</td>
</tr>
<tr>
<td>Low Natural (0.000)</td>
<td></td>
<td>Inf.; Inf.</td>
<td>99.3; 68.4</td>
<td>1.00; 1.00</td>
<td>Inf.; Inf.</td>
</tr>
<tr>
<td>Western Tropical Pacific Region (unadjusted)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Natural (0.212)</td>
<td>0.97; 1.02</td>
<td>100.0 Inf.</td>
<td>75.8; 84.1</td>
<td>1.00; 1.00</td>
<td>5130; Inf.</td>
</tr>
<tr>
<td>Medium Natural (0.115)</td>
<td></td>
<td>Inf.; Inf.</td>
<td>75.8; 84.1</td>
<td>1.00; 1.00</td>
<td>Inf.; Inf.</td>
</tr>
<tr>
<td>Low Natural (0.000)</td>
<td></td>
<td>Inf.; Inf.</td>
<td>75.8; 84.1</td>
<td>1.00; 1.00</td>
<td>Inf.; Inf.</td>
</tr>
<tr>
<td>Western Tropical Pacific Region (adjusted std dev)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Natural (0.212)</td>
<td>0.97; 1.02</td>
<td>99.9; 100.0</td>
<td>72.1; 79.9</td>
<td>1.00; 1.00</td>
<td>227; 582</td>
</tr>
<tr>
<td>Medium Natural (0.118)</td>
<td></td>
<td>100.0; 100.0</td>
<td>72.1; 79.9</td>
<td>1.00; 1.00</td>
<td>1370; 2790</td>
</tr>
<tr>
<td>Low Natural (0.000)</td>
<td></td>
<td>Inf.; Inf.</td>
<td>72.1; 79.9</td>
<td>1.00; 1.00</td>
<td>Inf.; Inf.</td>
</tr>
</tbody>
</table>

pared with 0.266°C for the multimodel sample of control runs, indicating good agreement. The standard deviation of the full observed time series is 0.421°C. Thus, while the observed 2013 anomaly of 1.72°C is about a 4σ event in the observed record (σ = 0.421°C), it represents an estimated 6σ event compared to modeled internal variability.

For the far western tropical Pacific region, the estimated interannual standard deviation from the observed residuals is 0.172°C or 16% higher than the interannual standard deviation of the control runs. The observed 2013 anomaly of 0.97°C is almost a 4σ event in the total observed distribution of annual temperatures but a 6σ event compared to the estimated internal variability. As a sensitivity test, we scaled the western Pacific region modeled (control run) anomalies up by a factor of 1.22, which slightly exceeds the amount necessary to adjust for the estimated low variability bias. The results shown in Table S8.1 (adjusted) do not change the basic conclusion that according to the models, the 2013 annual warm anomaly in this region is essentially entirely attributable to anthropogenic forcing in terms of its risk of occurrence.

Assessment of observational uncertainties. Here we consider some observational uncertainty issues. Our sliding trend analyses (e.g., Fig. 8.2c,d in the main report; Fig. S8.2) show via the black shading the 5th–95th percentile range of trends obtained using the 100-member HadCRUT4 observed ensemble (Morice et al. 2012), giving one indication of the observational uncertainty in these trend results. These indicate that our basic findings are robust to this estimate of observational uncertainty. A related issue is whether our results could depend on the use of the HadCRUT4 data, as opposed to an alternative dataset from the Australian Bureau of Meteorology (BOM) that is available for the relatively well-sampled period 1910–2013. We downloaded an all-Australia...
First, we compare the BOM time series cited above (1910–2013) to the HadCRUT4 data averaged over roughly the same Australia region (not the identical region because the HadCRUT4 is available on a 5° x 5° grid). Figure S8.3 shows a comparison of the seven-year running mean time series derived from the BOM and HadCRUT4 data (reference period 1961–90). This shows that the anomalies in these two datasets are very similar when averaged over the Australian region as a whole. Our main analysis focuses on a sub-region of Australia based on those areas with extreme annual means as identified in Fig. 8.1 in the main report, and for this, we use the HadCRUT4 data, which seems appropriate based on the above comparison.

Another observational issue is the use of different reference periods for estimating the magnitude of the 2013 anomaly relative to preindustrial levels. In general, we would prefer to use as early a reference period as is practical, since earlier periods are closer to preindustrial conditions and we are trying to estimate the anthropogenically forced departure from such conditions. We find, using the HadCRUT4 data averaged over the Australia sub-region in our study, that the anomaly for the available years in 1881–1920 is about 0.2°C lower than that for 1910–49. This difference is much smaller than the 2013 anomaly of 1.72°C. Even adjusting the 2013 anomaly down by 0.2°C (i.e., using the years 1910–49 as the base period), the resulting anomaly for 2013 (1.52°C) remains outside of the range of anomalies in the Natural Forcing distribution shown in Fig. 8.2e in the main report. In addition, the Natural Forcing response (for 2013, if assumed to be equivalent to that simulated for 2012) is about 0.1°C smaller using the 1910–49 base period than using the 1881–1920 base period (since the 1881–1920 period featured cooler temperature in the Natural Forcing runs). Taking this adjustment into account implies that the required adjustments for the observations versus the Natural Forcing distribution is a net reduction in their separation by only about 0.1°C. Again, we conclude that the observed anomaly is not simulated in the large multimodel sample of annual means for 2013 Natural Forcing conditions. In short, our finding that the 2013 observed anomaly is outside of the range of model simulated natural variability

Fig. S8.2. Trends [°C (100 yr⁻¹)] in the area-averaged annual-mean surface temperature series in Fig. S8.2 (a,b) as a function of starting year, with all trends ending in 2012. The black curves show trends from observations (HadCRUT4), indicating the 5th–95th percentile range for the HadCRUT4 observed ensemble (Morice et al. 2012). The red curves show the inter-model mean ensemble mean trends from the 10-member subset of the CMIP5 All-Forcing ensemble that provided natural forcing runs. The pink region represents the ‘All-Forcing’ hypothesis—i.e. the 5th–95th percentile range of trends from the All-Forcing runs. The blue-shaded region shows the 5th–95th percentile range of the alternative ‘Natural-Forcing-Only’ hypothesis using the same 10 models. Purple shading indicates where the pink- and blue-shaded regions overlap. The white spaces in the curves denote years where the initial “start year” was missing due to inadequate spatial or temporal coverage. Temporal coverage was assessed as in Fig. S8.1, and the spatial coverage was assessed for each year by requiring at least 33% non-missing annual means for the region.
(including Natural Forcing) remains robust to this reference period issue as well.

Considering the far western tropical Pacific region, the use of a later period (1910–49) versus an earlier period (1881–1920) results in a lower observed anomaly magnitude in 2013 by 0.12°C but also, coincidentally, a lower estimated magnitude of the Natural Forcing response in 2012 by almost the same magnitude (0.12°C). Thus, the estimated occurrence rate of the 2013 anomaly in the Natural Forcing distribution would be essentially the same for the 1910–49 base period as for the 1881–1920 base period, due to these offsetting effects, and our conclusions about exceptional nature of the 2013 anomaly compared to Natural Forcing simulations remain robust.

Fig. S8.3. Comparison of all-Australia timeseries of temperature anomalies (relative to 1961–90 base period) for the HadCRUT4 vs. Australian Bureau of Meteorology data set. See text for details. A seven-year running mean was applied to all data sets. The green dashed curve shows the HadCRUT4 data for the sub-region of Australia with near-record high annual-mean temperature anomalies during 2013 (see Figs. 8.1, 8.2 in the main report for region description).
REFERENCES

VegDRI, cited 2014: Vegetation drought response index. [Available online at http://vegdri.unl.edu/]

REFERENCES FOR SUPPLEMENTAL MATERIAL

Christiansen, B., 2013: Changes in temperature records and extremes: are they statistically significant? J. Climate, 26, 7863–7875.

Christidis, N., and P. A. Stott, 2014: Change in the odds of warm years and seasons due to anthropogenic influence on the climate. J. Climate, 27, 2607–2621.

