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Fig. 7.2. Intramodel differences in the percent change in precipitation 
(Pr) and snowfall (Sf) between MD and PI in western South Dakota 
over a 30-day period centered on October 4. Differences are shown for 
annual extreme (1-yr max), 1-in-10 year annual extreme (10-yr max), 
and overall means. Statistically significant differences are denoted by 
red triangles; open triangles denote the eight-model average.  A list of 
the models used is provided in Supplementary Table S7.1. Increased 
PW in MD runs relative to PI was found consistently across the study 
area and was consistent with overall increases in temperature and 
potential water holding capacity scaling with the Clausius–Clapeyron 
relationship. These findings also held for differences in early autumn 
maximum series of PW, with a multimodel increase of around 7% for 
the study area (not shown).

CMIP5 simulations suggest that the extremely warm year observed over Australia and the far western Pacific during 
2013 was largely attributable to human forcing of the climate system.

shift towards a reduction in the 
magnitude of extremes in MD runs 
with a multimodel mean decrease 
of around one-third (Fig. 7.2). Like-
wise, while two models showed a 
nonsignificant increase for a 90th 
percentile early autumn maximum 
daily SWE, the MD runs primarily 
tended toward reduced magnitude 
(mean decrease of 20%) relative to 
PI runs. However, the changes for 
both metrics were only significant 
for a single model and were not 
considered a robust change. These 
results largely mirrored projected 
changes in early autumn SWE that 
showed intermodel agreement of re-
duced SWE relative to PI runs (mean 
decrease of 35%). By contrast, simu-
lated differences in early autumn 
maximum daily precipitation and 
the 90th percentile early autumn 
daily precipitation showed nominal 
and mixed changes. Increased PW 
in MD runs relative to PI was found 
consistently across the study area and was consistent 
with overall increases in temperature and potential 
water holding capacity scaling with the Clausius–Cla-
peyron relationship. 

Conclusions. The record-setting early season blizzard 
of October 2013 had significant impact on the agri-
culture, infrastructure, and economy of western SD. 
This event was associated with highly anomalous 

(95th to 99th percentile) atmospheric water vapor for 
early autumn and anomalous, but not unprecedented, 
500-hPa heights for any time of year.

While several climate models are consistent with 
the observations in showing an increase in PW, there 
is no apparent model agreement regarding changes in 
extreme precipitation or snowfall in the early autumn 
season for western SD under modern conditions rela-
tive to preindustrial conditions.

8. MULTIMODEL ASSESSMENT OF EXTREME ANNUAL-MEAN 
WARM ANOMALIES DURING 2013 OVER REGIONS OF 
AUSTRALIA AND THE WESTERN TROPICAL PACIFIC

Thomas R. Knutson, Fanrong Zeng, and Andrew T. Wittenberg

Introduction. A global survey of surface temperature 
anomalies occurring during 2013 (Fig. 8.1a; Supple-

mentary Fig. S8.1) in the HadCRUT4 observations 
(Morice et al. 2012) reveals pronounced warm an-
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Fig. 8.1. (a) Annual-mean surface air temperature anomalies (°C ) for 2013 (1961–1990 
base period) from the HadCRUT4 data set. (b) Colors identify grid boxes with an-
nual-mean warm anomalies that rank first (dark red), second (orange-red), or third 
(yellow-orange) in the available observed record. Gray areas did not have sufficiently 
long records, defined here as containing at least 100 available annual means, with a 
seasonal mean requiring at least one of three months to be available, and an annual 
mean requiring at least three of four seasons to be available. (c) Fraction of available 
global area by year where the given year’s annual mean anomalies for that area rank 
in the top three highest (red curve) or lowest (blue curve) in the available record 
to that date. Available area restricted to those regions having at least 100 years of 
available data through 2013. (d) As in (c) but comparing each year’s annual anomalies 
to the entire record through 2013 (i.e., at least 100 years of data) for that gridpoint.

nual and seasonal mean anomalies. Two regions with 
prominent record or near-record annual mean warm 
anomalies include large regions of Australia and a re-
gion in the far western tropical Pacific encompassing 
the Philippines and part of the Maritime Continent 
(Fig. 8.1b). The 2013 anomalies appear particularly 
extreme during austral fall and winter (MAM, JJA) 
in Australia and during MAM in the far western 
Pacific (Supplementary Fig. S8.1). Temperatures in 
these two regions are further assessed in this report 
for the causes of this extreme warmth. Twenty-three 
All-Forcing (anthropogenic plus natural) models and 
control runs and 10 Natural-Forcing models were 
used from the Coupled Model Intercomparison Proj-
ect phase 5 (CMIP5; Taylor et al. 2012). See Knutson 
et al. (2013a,b) for background on our methodology 
and a global assessment of low-frequency variability 
and trends.

Global occurrence rates of record or near-record annual 
mean surface temperatures. Figure 8.1c,d shows the 
fraction of available global area with record or near-
record (ranked in the top/bottom three with at least 
100 years of record) annual mean positive or negative 
anomalies. In 2013, the fraction of area with record 
or near-record annual anomalies was very skewed 
toward warm occurrences, with 10.4% of the analyzed 
area having annual mean warmth that was first, sec-
ond, or third highest on record, compared with 0% 
coverage of record or near-record cold. This continues 
a feature seen in recent decades, with similar rates 
for positive extreme occurrences since about 2000 
and very little analyzed area with annual mean near-
record negative temperature anomalies since about 
1990. The large occurrence rates of record or near-
record annual mean temperature anomalies is high in 
the early parts of the record as an artifact of the short 
record lengths, so the focus should be on the latter 

parts of the record. 
Figure 8.1d shows the 
annual rates using the 
full record to assess 
each year, including 
the early years, and 
shows the preference 
for cold mean an-
nual extremes prior 
to about 1920 and 
the increasing pref-
erence for warm an-
nual mean extremes 
since about 1990. Al-
though global mean 
temperature has ex-
perienced a “hiatus” 
or pause since around 
2000 (e.g.,  Fy fe et 
al. 2013), this pause 
has occurred at high 
overall temperature 
levels relative to the 
late 1800s, resulting 
in a much more com-
mon occurrence of 
regional seasonal and 
annual warm tem-
perature records (or 
near records) around 
the globe compared 
to cold records (Fig. 
8.1c,d). Seneviratne 
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et al. (2014) have similarly found that there has been 
a continued increase in warm daily temperature ex-
tremes over global land regions during the “hiatus” 
period.

Is there a significant long-term anthropogenic warming 
trend in the Australian and far western Pacific regions? 
Annual-mean temperature anomaly time series 
extending back to the late 1800s for Australia and 
western tropical Pacific regions are shown in Fig. 
8.2a,b. Both observed series (black curves) show a 
pronounced long-term warming, which has been 
more rapid since ~1970. This general behavior is well 
captured by the CMIP5 All-Forcing ensemble (red 
curves), though not by the Natural-Forcing ensemble 
(blue curves). The western tropical Pacific region has 
warmed slightly less than the global mean since the 
1881–1920 base period, while the Australia region 
warming has been roughly comparable to that of the 
global mean (e.g., green curve in Fig. 8.2b).

To assess the causes of the observed long-term 
warming, we use a “sliding trend” analysis (Knutson 
et al. 2013a,b), incorporating multimodel samples 
from CMIP5 control runs and ensemble mean forced 
trends (Fig. 8.2c,d). The plots compare linear trends 
in the observations (black lines) with models, for 
trends ending in 2013 and beginning with a range 
of start years from the late 1800s to very recent. The 
pink region represents the “All-Forcing hypoth-
esis”—the 5th–95th percentile range of trends from 
the All-Forcing runs. It is constructed as an ensemble 
distribution, aggregating the distributions of trends 
from the 23 individual CMIP5 models. Each model’s 
ensemble-mean All-Forcing trend is combined with 
randomly sampled internally generated trends from 
that model’s control run. These 23 distributions are 
aggregated to form the full distribution whose 5th–
95th percentile range is depicted by the pink region, 
which thus reflects uncertainty in both the forced 
response and the influence of internal variability. The 
alternative “Internal-Variability-Only hypothesis” is 
shown by the green region on the plot. For compari-
son, Supplementary Fig. S8.2 shows an “All-Forcing 
hypothesis” versus a “Natural Forcing-Only” hypoth-
esis version of the “sliding trend” analysis, in this case, 
for trends ending in 2012 (as a sensitivity test) and 
based on a 10-model subset of CMIP5 models with 
available Natural-Forcing runs through 2012.

The trend assessments in Fig. 8.2c,d and Supple-
mentary Fig. S8.2 show that in both focus regions the 
observed long-term warming is generally detectable 
(outside the green band, i.e., significantly larger than 

simulated internal or natural climate variability), 
at least for trends beginning earlier than the 1970s. 
Moreover, the observed trends are generally consis-
tent with the “All-Forcing” hypothesis (pink region) 
for trends beginning in these periods. Using the 
CMIP5 models’ simulated variability and responses 
to natural forcings to estimate real-world natural 
variability (see internal variability assessments in 
Knutson et al. 2013a), we conclude that the long-
term observed trends in both regions are very likely 
inconsistent with natural variability but generally 
consistent with anthropogenic and natural forcing 
combined. Therefore, the model results suggest that 
the long-term observed warming in both regions 
is very likely attributable in part to anthropogenic 
forcing.

To what extent are the 2013 extreme annual mean tem-
peratures attributable to anthropogenic forcing? We next 
assess the 2013 annual mean temperature anomalies 
in the two regions using All-Forcing and Natural-
Forcing scenarios (Fig. 8.2e,f). For the All-Forcing 
runs (red), the CMIP5 historical runs are extended 
as necessary through 2013 using the RCP4.5 forcing 
scenario. However, the Natural-Forcing runs (blue) 
cannot be extended in this manner, and so the Natu-
ral-Forcing ensemble response for 2013 is estimated 
by using the 2012 ensemble mean of the models along 
with high and low sensitivity tests (Fig. 8.2a,b; see 
Supplemental Material). Using the 2012 Natural Forc-
ing estimate, the observed 2013 anomalies (compared 
to a baseline for 1881–1920) are well outside the range 
of CMIP5 model-estimated natural climate variabil-
ity for both regions (Fig. 8.2e,f). We use 1881–1920 
as a reference value for the 2013 anomaly, as we are 
attempting to estimate anthropogenic contributions 
and so have chosen a relatively early baseline pe-
riod to be closer to preindustrial conditions. Further 
discussion of the baseline period and observational 
uncertainties is contained in the Supplemental Mate-
rial. According to our analysis, the Australia region 
2013 anomaly of 1.72°C had contributions of 0.81°C 
(anthropogenic forcing), 0.23°C (natural forcing), and 
0.68°C (natural internal variability). The observed 
1.72°C anomaly was at the 99.3 percentile of the 
CMIP5 All-Forcing distribution and was much larger 
than the ensemble mean of the All-Forcing distribu-
tion (1.04°C). This suggests that either internal vari-
ability played a significant role (in addition to external 
forcing) in producing the 2013 anomaly (estimated 
as 0.68°C), or the net climate forcing or the response 
to climate forcing in the CMIP5 models could be too 
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Fig. 8.2. (a,b) Time series of annual averaged surface temperature anomalies (°C) averaged over regions of 
(a) Australia, left column, and (b) the far western tropical Pacific, right column . The black curves depict the 
observed (HadCRUT4) anomalies; the dark red (dark blue) curves depict the multi-model ensemble anomalies 
from the CMIP5 All-Forcing (Natural Forcing-only) runs, with each of the 23 (10) available models weighted 
equally; the orange curves are individual All-Forcing ensemble members. The green curve in (b) is the 7-yr 
running mean observed global mean temperature anomaly. The three blue circles labelled “Sensitivity Tests” 
depict low, medium, and high estimates of the Natural Forcing-only response for 2013 (see Supplemental 
Material). The All-Forcing simulations for these regions included both anthropogenic and natural forcings 
from about 1860 to the present, with data from RCP4.5 runs used to extend the time series through 2013 
where necessary. Only 10 models had Natural Forcing runs available to us through 2012. All time series shown 
are adjusted to have zero mean over the period 1881–1920. (c,d) Trends [°C (100 yr-1)] in the area-averaged 
annual-mean surface temperature series in (a,b) as a function of starting year, with all trends ending in 2013. 
The black curves show trends from observations (HadCRUT4), with the black shading depicting the 5th–95th 
percentile range for the 100-member HadCRUT4 observed ensemble (Morice et al. 2012), giving one indica-
tion of the observational uncertainty in these results. The red curves show the inter-model mean of ensemble 
mean trends from the 23-member CMIP5 All-Forcing ensemble. The pink region represents the ‘All Forcing’ 
hypothesis—the 5th–95th percentile range of trends from the All-Forcing runs. The green-shaded region shows 
the 5th to 95th percentile range of the alternative “Internal Variability Only” hypothesis estimated from the 
pre-industrial control runs. Purple shading indicates where the pink- and green-shaded regions overlap. The 
white spaces in the curves denote years where the initial “start year” was missing due to inadequate spatial 
or temporal coverage. Temporal coverage was assessed as in Fig. 8.1, and the spatial coverage was assessed 
for each year by requiring at least 33% non-missing annual means for the region. (e,f) Distribution of annual 
mean anomalies in the CMIP5 Natural Forcing-only runs (blue) and for the All Forcing runs (red) for 2013. The 
observed temperature anomalies for 2013 are depicted as dark black vertical lines, with anomalies for another 
recent similarly extreme year shown by the gray vertical lines.
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weak. Since an anomaly as large as observed was also 
outside the estimated range of the natural variability 
(natural forcing plus internal variability) distribution 
from the CMIP5 models, our analysis shows that the 
CMIP5 modeled fraction (or percent) of risk of the 
event that is attributable to anthropogenic forcing 
is essentially 100%. The second highest anomaly in 
the Australia region series (1.17°C in 2009) occurs 
very rarely if at all in the modeled Natural-Forcing 
distribution, depending on assumptions on the 2012 
natural forcing response (Supplementary Table S8.1). 
We again conclude that the modeled fraction of risk 
attributable to anthropogenic forcing is near 100% 
for this alternative threshold value.

Lewis and Karoly (2013) performed a similar 
analysis on the full Australia region for summer 
2013 (December 2012–February 2013). They find a 
significant anthropogenic contribution to extreme 
warmth, with about a seven-fold increase in risk of 
an event like 2013 for an RCP8.5 scenario centered on 
the year 2013 (2006–20). The increase in risk that we 
find is even higher than their estimate, presumably 
because we analyze only that subset of the Australian 
region having the most unusual 2013 temperatures 
and we assess annual means rather than summer 
mean temperatures. Both of these analysis choices 
would tend to enhance the signal-to-noise ratio for 
an anthropogenic warming signal (or relative risk); 
on the other hand, by analyzing the summer season, 
Lewis and Karoly (2013) were focused on the season 
with presumably the maximum heat-stress impact. 
Our findings are also generally consistent with those 
of two similar analyses of Australian 2013 annual 
temperature (“The role of anthropogenic forcing in 
the record 2013 Australia-wide annual and spring 
temperatures” and “Climate change turns Australia’s 
2013 big dry into a year of record-breaking heat” in 
this report). 

For the western tropical Pacific region, the 2013 
annual mean anomaly was 0.97°C, or slightly less 
than the 1998 anomaly of 1.02°C. The estimated con-
tributions to the 2013 anomaly, based on the CMIP5 
models, were 0.76°C (anthropogenic forcing), 0.11°C 
(natural forcing), and 0.09°C (natural internal vari-
ability). Both of these observed anomalies (relative to 
an 1881–1920 baseline) are outside of, or very rarely 
occurring in, our estimated distribution of natural 
variability. Thus, the modeled fraction of event risk 
attributable to anthropogenic forcing is close to 
100%. The 2013 anomaly is at the 75.8 percentile 
of the All-Forcing distribution, indicating either a 
likely role for natural variability as estimated above 

or perhaps an underestimated forcing response in 
this region.

A simple variance consistency test was also done 
(Supplemental Material) to assess the adequacy of 
the control runs’ internal variability as an estimate of 
the internal variability of the actual climate system. 
The latter was estimated by subtracting the CMIP5 
models’ ensemble-mean All-Forcing response from 
the observed temperature series. For the Australia 
region, the residual variability so derived agrees 
well with the model control run ensemble. For the 
far western Pacific region, the standard deviation 
of the observed residual variability is about 16% 
higher than the control run ensemble, but adjusting 
the model control run variability upward by over 
20% does not impact the main conclusions of our 
study. Similarly, our attribution conclusions remain 
robust in light of our assessment of the impact of 
baseline reference period and other observational 
uncertainties and related issues as discussed in the 
Supplemental Material.

Summary. Seasonal and annual temperature anoma-
lies around the globe were highly skewed toward 
positive (warm) extremes in 2013, as in the recent 
few decades. Although global warming has been de-
scribed as “pausing” since 2000, global temperatures 
remain at anomalously high levels, and warm annual 
and seasonal temperature extremes continue to far 
outpace the occurrence of cold annual extremes. 
Two examples of regions with extreme (record or 
near-record) annual warmth during 2013 include 
much of Australia and a region of the far western 
tropical Pacific. In both regions, a contribution of 
anthropogenic forcing to an observed long-term 
warming trend was detected. The annual mean 
anomalies for 2013 were either completely outside 
of, or extremely rare in, the distributions of modeled 
natural variability. Thus, the fraction of risk of these 
extreme events attributable to anthropogenic forcing 
was 100% or close to 100%, according to the CMIP5 
models. These results reinforce the notion of a po-
tentially high signal-to-noise ratio for anthropogenic 
warming signals for seasonal and annual anoma-
lies—even at the subcontinental scale in some cases. 
They further suggest that even if the global warming 
“hiatus” continues, further extreme (record or near-
record) seasonal or annual mean warm anomalies 
at the regional scale can be anticipated, though the 
particular regions with such extremes change from 
year to year (e.g., comparing the present study with 
our 2012 analysis, Knutson et al. 2013b).
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S8. MULTIMODEL ASSESSMENT OF EXTREME 
ANNUAL-MEAN WARM ANOMALIES DURING 
2013 OVER REGIONS OF AUSTRALIA AND THE 

WESTERN TROPICAL PACIFIC

Thomas R. Knutson, Fanrong Zeng, and Andrew Wittenberg

We present here several auxiliary analyzes 
and figures relevant to our study, which 
were not possible to include in the main 

report due to space limits. In Fig. S8.1, we show for 
reference the seasonal mean anomaly maps and 
seasonal-mean extreme occurrence maps for tem-
perature, which are analogous to Fig. 8.1 in the main 
text but for the individual seasons. We also present 
“sliding trend” analyzes like those in Fig. 8.2 in the 
main report (c,d) but comparing 10-model Natural 
Forcing ensembles with 10-model All-Forcing en-
semble subsets of the CMIP5 models. We describe 
some background on our method and rationale for 
estimating a Natural-Forcing-only ensemble mean 
model response for 2013, and the sensitivity of our 
results to this estimate. We assess the adequacy of 
simulated internal climate variability in the model 
for the focus regions in our study. Finally, we assess 
certain observational issues. 

‘Sliding trend’ analysis of Natural Forcing vs. All-Forcing 
Ensemble. In Fig. S8.2 we present ‘sliding trend’ analy-
sis of trends of varying lengths, all ending in 2012, 
for the Australian and far western tropical Pacific 
regions. These analysis are similar to those in Fig. 8.2 
in the main report, but compare the All-Forcing trend 
distributions from a 10-model subset of the CMIP5 
models to the Natural-Forcing trend distributions 
from the same 10 models. The trend analysis are done 
through 2012 instead of 2013 (as in the main text) 
because the Natural Forcing runs generally ended 
in 2012 and we could also test the sensitivity of our 
trend analysis to leaving out the highly anomalous 
2013 values for the observations.

The results show that for all start dates up until 
about the late 1970s, the trends (to 2012) in the two 
regions are detectable compared to the multi-model 
Natural Forcing trend distributions (i.e., outside of 
the blue envelope). The trends in the Australia re-
gion are consistent with the All-Forcing 10-member 
ensemble (i.e., within the pink envelope) for virtually 
all start dates examined up to 2000. The trends for 
the far western Pacific region are consistent with the 
All-Forcing 10-member ensemble for start dates up 
to about the late 1970s. 

Thus for most start dates beginning in the late 
1800s and extending until at least as late as the late 
1970s, the CMIP5 model simulations indicate that 
there is a detectable anthropogenic inf luence on 
temperature trends to 2012 in these two regions, ac-
cording to our testing methodology. 

Estimating the Natural-Forcing-only response for 2013. 
Since the CMIP5 models typically ended their 
Natural-Forcing runs between 2005 and 2012, we did 
not have a readily available 23-model estimate of the 
Natural Forcing ensemble mean response for 2013. 
However, 10 models had Natural Forcing runs avail-
able through 2012. Inspection of the Natural Forcing 
ensemble time series from those 10 models, in Fig. 8.2 
a,b in the main report, suggests that an approximate 
Natural Forcing ensemble mean component for 2013 
would be to reuse the value simulated for 2012 (“Mid 
Natural”). As sensitivity tests, we also performed our 
relative risk and fraction of attributable risk calcula-
tions assuming a “Low Natural” case of zero Natural 
Forcing contribution and a “High Natural” case using 
the maximum of the ensemble mean Natural Forcing 
response occurring at any point in the time series 
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from around 1880 to 2012 as the estimate for 2013. 
A “Low Natural” (and not conservative) estimate is 
equivalent in this case to comparing the observed 
2013 anomaly (relative to 1881–1920 baseline) against 

model control run variability 
alone. The various estimates 
used are shown as blue circles 
on Fig. 8.2a,b in the main re-
port and listed in the first col-
umn of Table S8.1.

The results in Table S8.1 
suggest that for all cases ex-
amined and for both regions 
examined, essentially all of 
the risk of the 2013 events is 
attributable to anthropogenic 
forcing, since anomalies as 
large as those observed in 2013 
are either completely outside 
of the modeled distribution 
for the Natural Forcing only 
scenario or are an extremely 
rare event within that distribu-
tion. The analysis is repeated 
for a threshold temperature 
anomaly based on an alterna-
tive year (1998 for the western 
tropical Pacific region, which 
was slightly warmer than 2013, 
and 2009 for the Australia 
region, which was essentially 
tied for second-ranked year 
but substantially below 2013’s 
anomaly in magnitude). The 
results (Table S8.1) are robust 
in suggesting that essentially 
all of the risk of warm anoma-
lies the size of those during 
these years is attributable to 
anthropogenic forcing. 

Variance consistency test and 
robustness of f indings to stan-
dard deviation adjustment. We 
evaluated the models’ control 
run interannual variability 
for the two focus regions for 
consistency with the internal 
variability estimated from the 
observations. The latter was 
estimated by subtracting the 
intermodel mean ensemble 
mean All-Forcing time se-

ries from the observations, to produce an estimate 
of the unforced observed residual. The standard 
deviation, σ, of this “observed” residual for the 
Australia region is 0.272°C for observations com-

Fig. S8.1. Left column: Annual (a) or seasonal (c,e,g,i) mean surface air 
temperature anomalies (°C ) for 2013 (1961–90 base period) from the Had-
CRUT4 data set. The seasons are DJF (December 2012–February 2013); 
MAM (March–May); JJA (June–August); and SON (September–Novem-
ber). Right column: Colors identify grid boxes with annual (b) or seasonal 
(d,f,h,j) mean warm anomalies that rank 1st (dark red), 2nd (orange-red), 
or 3rd (yellow-orange) in the available observed record. Gray areas did 
not have sufficiently long records, defined here as containing at least 100 
available annual or seasonal means, with a seasonal mean requiring at 
least one of three months to be available, and an annual mean requiring 
at least three of four seasons to be available. The percent values (right 
side of figures in right column) denote the percent of analyzed area for 
each category.
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Table S8.1. Estimates of observed and modeled temperature anomaly characteristics for 2013 and an 
alternative similar year (e.g., 1st or 2nd highest) for the two focus regions. See text for description of 
cases and the column entries. Anomalies for 2013 are relative to a baseline of 1881–1920. “Inf.” indi-
cates cases where the observed anomaly is completely outside of the simulated distribution, so that 
the relative risk ratio is undefined.  

Region/Case  
(Natural Forc-
ing Estimate 

in °C)

Observed 
Anomaly °C 
for 2013 or 

Alt. yr.

Observed 
Percentile in 
Natural Dist. 

[%] (2013; 
Alt. yr)

Observed 
Percentile in All-
Forcing Dist. [%] 

(2013; Alt. yr.)

Fraction of At-
tributable Risk 
(2013; Alt. yr)

Relative Risk 
(2013; Alt yr)

Australia Region (unadjusted )

High Natural 
(0.304)

1.72; 1.17 Inf.; 99.9 99.3; 68.4 1.00; 1.00 Inf.; 376

Medium Natural 
(0.232)

Inf.; 100.0. 99.3; 68.4 1.00; 1.00 Inf.; 1330.

Low Natural 
(0.000 )

Inf.; Inf. 99.3; 68.4 1.00; 1.00 Inf.; Inf.

Western Tropical Pacific Region (unadjusted)

High Natural 
(0.212)

0.97; 1.02 100.0; Inf 75.8; 84.1 1.00; 1.00 5130; Inf.

Medium Natural 
(0.115)

Inf.; Inf. 75.8; 84.1 1.00; 1.00 Inf.; Inf.

Low Natural 
(0.000)

Inf.; Inf. 75.8; 84.1 1.00; 1.00 Inf.; Inf.

Western Tropical Pacific Region (adjusted std dev)

High Natural 
(0.212)

0.97; 1.02 99.9; 100.0 72.1; 79.9 1.00; 1.00 227; 582

Medium Natural 
(0.118)

100.0; 100.0 72.1; 79.9 1.00; 1.00 1370; 2790

Low Natural 
(0.000)

Inf.; Inf. 72.1; 79.9 1.00; 1.00 Inf; Inf.

pared with 0.266°C for the multimodel sample 
of control runs, indicating good agreement. The 
standard deviation of the full observed time series 
is 0.421°C. Thus, while the observed 2013 anomaly 
of 1.72°C is about a 4σ event in the observed record  
(σ = 0.421°C), it represents an estimated 6σ event 
compared to modeled internal variability. 

For the far western tropical Pacific region, the 
estimated interannual standard deviation from the 
observed residuals is 0.172°C or 16% higher than the 
interannual standard deviation of the control runs. 
The observed 2013 anomaly of 0.97°C is almost a 4σ 
event in the total observed distribution of annual 
temperatures but a 6σ event compared to the esti-
mated internal variability. As a sensitivity test, we 
scaled the western Pacific region modeled (control 
run) anomalies up by a factor of 1.22, which slightly 
exceeds the amount necessary to adjust for the es-
timated low variability bias. The results shown in 
Table S8.1 (adjusted) do not change the basic conclu-

sion that according to the models, the 2013 annual 
warm anomaly in this region is essentially entirely 
attributable to anthropogenic forcing in terms of its 
risk of occurrence. 

Assessment of observational uncertainties. Here we 
consider some observational uncertainty issues. 
Our sliding trend analyses (e.g., Fig. 8.2c,d in the 
main report; Fig. S8.2) show via the black shading 
the 5th–95th percentile range of trends obtained us-
ing the 100-member HadCRUT4 observed ensemble 
(Morice et al. 2012), giving one indication of the 
observational uncertainty in these trend results. 
These indicate that our basic findings are robust to 
this estimate of observational uncertainty. A related 
issue is whether our results could depend on the use 
of the HadCRUT4 data, as opposed to an alternative 
dataset from the Australian Bureau of Meteorology 
(BOM) that is available for the relatively well-sampled 
period 1910–2013. We downloaded an all-Australia 
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index of temperature anomalies from the BOM 
data at: http://www.bom.gov.au/climate/change/
index.shtml#tabs=Tracker&tracker=timeseries.

First, we compare the BOM time series cited 
above (1910–2013) to the HadCRUT4 data aver-
aged over roughly the same Australia region (not 
the identical region because the HadCRUT4 is 
available on a 5° x 5° grid). Figure S8.3 shows a 
comparison of the seven-year running mean time 
series derived from the BOM and HadCRUT4 
data (reference period 1961–90). This shows that 
the anomalies in these two datasets are very simi-
lar when averaged over the Australian region as a 
whole. Our main analysis focuses on a sub-region 
of Australia based on those areas with extreme 
annual means as identified in Fig. 8.1 in the main 
report, and for this, we use the HadCRUT4 data, 
which seems appropriate based on the above 
comparison.

Another observational issue is the use of dif-
ferent reference periods for estimating the magni-
tude of the 2013 anomaly relative to preindustrial 
levels. In general, we would prefer to use as early 
a reference period as is practical, since earlier 
periods are closer to preindustrial conditions 
and we are trying to estimate the anthropogeni-
cally forced departure from such conditions. We 
find, using the HadCRUT4 data averaged over 
the Australia sub-region in our study, that the 
anomaly for the available years in 1881–1920 is 
about 0.2°C lower than that for 1910–49. This 
difference is much smaller than the 2013 anomaly 
of 1.72°C. Even adjusting the 2013 anomaly down 
by 0.2°C (i.e., using the years 1910–49 as the base 
period), the resulting anomaly for 2013 (1.52°C) 
remains outside of the range of anomalies in the 
Natural Forcing distribution shown in Fig. 8.2e in 
the main report. In addition, the Natural Forcing 
response (for 2013, if assumed to be equivalent 
to that simulated for 2012) is about 0.1°C smaller 
using the 1910–49 base period than using the 
1881–1920 base period (since the 1881–1920 
period featured cooler temperature in the Natu-
ral Forcing runs). Taking this adjustment into 
account implies that the required adjustments 
for the observations versus the Natural Forcing 
distribution is a net reduction in their separation 
by only about 0.1°C. Again, we conclude that the 
observed anomaly is not simulated in the large 
multimodel sample of annual means for 2013 
Natural Forcing conditions. In short, our find-
ing that the 2013 observed anomaly is outside of 
the range of model simulated natural variability 

Fig. S8.2. Trends [°C (100 yr-1)] in the area-averaged annual-
mean surface temperature series in Fig. S8.2 (a,b) as a 
function of starting year, with all trends ending in 2012. 
The black curves show trends from observations (Had-
CRUT4), indicating the 5th–95th percentile range for the 
HadCRUT4 observed ensemble (Morice et al. 2012). The red 
curves show the inter-model mean ensemble mean trends 
from the 10-member subset of the CMIP5 All-Forcing en-
semble that provided natural forcing runs. The pink region 
represents the ‘All-Forcing’ hypothesis–ie. the 5th–95th 
percentile range of trends from the All-Forcing runs. The 
blue-shaded region shows the 5th–95th percentile range 
of the alternative 'Natural-Forcing-Only' hypothesis using 
the same 10 models. Purple shading indicates where the 
pink- and blue-shaded regions overlap. The white spaces in 
the curves denote years where the initial “start year” was 
missing due to inadequate spatial or temporal coverage. 
Temporal coverage was assessed as in Fig. S8.1, and the 
spatial coverage was assessed for each year by requiring at 
least 33% non-missing annual means for the region.
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(including Natural Forcing) remains robust to this 
reference period issue as well.

Considering the far western tropical Pacific region, 
the use of a later period (1910–49) versus an earlier pe-
riod (1881–1920) results in a lower observed anomaly 
magnitude in 2013 by 0.12°C but also, coincidentally, 
a lower estimated magnitude of the Natural Forcing 
response in 2012 by almost the same magnitude 

 Fig. S8.3. Comparison of all-Australia timeseries of temperature 
anomalies (relative to 1961–90 base period) for the HadCRUT4 vs. 
Australian Bureau of Meteorology data set. See text for details. A 
seven-year running mean was applied to all data sets. The green 
dashed curve shows the HadCRUT4 data for the sub-region of Austra-
lia with near-record high annual-mean temperature anomalies during 
2013 (see Figs. 8.1, 8.2 in the main report for region description).

(0.12°C). Thus, the estimated occurrence rate of 
the 2013 anomaly in the Natural Forcing distribu-
tion would be essentially the same for the 1910–49 
base period as for the 1881–1920 base period, due to 
these offsetting effects, and our conclusions about 
exceptional nature of the 2013 anomaly compared to 
Natural Forcing simulations remain robust.
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