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Abstract The presence of rich ENSO variability in the

long unforced simulation of GFDL’s CM2.1 motivates the

use of tools from dynamical systems theory to study vari-

ability in ENSO predictability, and its connections to

ENSO magnitude, frequency, and physical evolution.

Local Lyapunov exponents (LLEs) estimated from the

monthly NINO3 SSTa model output are used to charac-

terize periods of increased or decreased predictability. The

LLEs describe the growth of infinitesimal perturbations

due to internal variability, and are a measure of the

immediate predictive uncertainty at any given point in the

system phase-space. The LLE-derived predictability esti-

mates are compared with those obtained from the error

growth in a set of re-forecast experiments with CM2.1. It is

shown that the LLEs underestimate the error growth for

short forecast lead times (less than 8 months), while they

overestimate it for longer lead times. The departure of

LLE-derived error growth rates from the re-forecast rates is

a linear function of forecast lead time, and is also sensitive

to the length of the time series used for the LLE calcula-

tion. The LLE-derived error growth rate is closer to that

estimated from the re-forecasts for a lead time of 4 months.

In the 2,000-year long simulation, the LLE-derived pre-

dictability at the 4-month lead time varies (multi)decadally

only by 9–18 %. Active ENSO periods are more predict-

able than inactive ones, while epochs with regular peri-

odicity and moderate magnitude are classified as the most

predictable by the LLEs. Events with a deeper thermocline

in the west Pacific up to five years prior to their peak, along

with an earlier deepening of the thermocline in the east

Pacific in the months preceding the peak, are classified as

more predictable. Also, the GCM is found to be less pre-

dictable than nature under this measure of predictability.

Keywords ENSO � Predictability � Local Lyapunov

exponents

1 Introduction

The limits of predictability of the state of the tropical

Pacific are still not known, and the accuracy and range of

ENSO predictions in dynamical, statistical, or hybrid

models have not improved substantially since the first

dynamical forecast by Cane et al. (1986) (Barnston et al.

1999, 2011). The skill of models used at present for

operational ENSO forecasting varies with forecast lead-

times (Landsea and Knaff 2000): depending on the event,

models have provided skillful short-range (0–3 months

lead), medium-range (6–9 months lead) and long-range

(12–22 months lead) forecasts (e.g. Ruiz et al. 2005;

Drosdowsky 2006; Lima et al. 2009). It has been shown

that model skill depends on the amplitude of interannual

ENSO variability, with active ENSO periods tending to be
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better predicted than weaker ones (Kirtman and Schopf

1998). In addition, skill varies decadally (Chen et al. 2004)

with decadal variations in tropical Pacific climate, and the

limitations in our understanding of Pacific decadal vari-

ability impose limits on the skill of ENSO predictions (see

Hazeleger et al. 2001; Wittenberg 2002; Karspeck et al.

2004; Power et al. 2006; Penland and Matrosova 2006, and

references therein).

The limits of predictability depend on the mechanisms

responsible for ENSO irregularity and equilibration at

finite amplitude (Sarachik and Cane 2010). The former

have been linked to either chaos (Munnich et al. 1991; Jin

et al. 1994; Tziperman et al. 1994; Timmermann and Jin

2002; Ghil et al. 2008), or noise (Wittenberg 2002; Vecchi

et al. 2006; Gebbie et al. 2007; Zavala-Garay et al. 2008;

Kleeman 2008). Both depend on the stability—or lack of

it—of the atmosphere–ocean interactions. It is possible that

real ENSO behavior emerges from the dialectics of chaos

and noise, with each dominating in any given decade.

Decadal variability of ENSO is present in historical and

paleoclimate records, and has been simulated by a hierar-

chy of dynamical and statistical models (Vecchi and

Wittenberg 2010; Collins et al. 2010; DiNezio et al. 2012;

Emile-Geay et al. 2013a, b). As discussed in Lin (2007),

the representation of the inter-decadal variability of ENSO

in the Coupled GCMs participating in the IPCC AR4

ranges from constant periodicity or amplitude to significant

inter-decadal variability in both period and amplitude.

While long runs of intermediate dynamical models, such as

the ZC model (Zebiak and Cane 1987), that exhibit inter-

decadal and inter-centennial variability have been a subject

of numerous studies, only recently have long runs of cou-

pled GCMs become available. Wittenberg (2009) discusses

the strong inter-decadal and inter-centennial ENSO vari-

ability in the 2,000-year run of the GFDL CM2.1 coupled

GCM with solar irradiance, land cover and atmospheric

composition held constant at 1,860 values (Wittenberg

et al. 2006). The presence of such rich variability in the

absence of variations in solar or volcanic forcing that could

induce persistent regimes (Mann et al. 2005; Emile-Geay

et al. 2007; Guilyardi et al. 2009), along with the length of

the simulation, provides new ground for investigation of

the causes of long-term modulation of ENSO behavior, and

the implications for predictability at time-scales from the

short-range to the decadal. Wittenberg (2009) shows that

beyond 10 years the CM2.1 wait times between moderate-

to-strong warm event peaks are indistinguishable from

those of a Poisson process, thus indicating that ENSO

modulation at inter-decadal and inter-centennial time

scales need not require multi-decadal memory in the

system.

Here, we address questions surrounding the variability

in ENSO predictability in the context of dynamical systems

theory. First, we briefly discuss concepts from the ergodic

theory of dynamical systems used in this study, and some

considerations in applying them to a high-dimensional

model (Sect. 2). We then calculate estimates of local

Lyapunov exponents (LLEs) from the monthly NINO3

SSTa time series of a 2,000-year long simulation from

GFDL’s CM2.1 model (Wittenberg et al. 2006; Wittenberg

2009) as a measure of ENSO predictability (Sect. 3). The

LLEs are particularly useful in characterizing predictability

locally in the attractor of a system that likely passes

through phases of increased or decreased predictability.

They describe the growth of infinitesimal perturbations due

to internal variability over a finite time, and are a measure

of the immediate evolution of predictive uncertainty at any

given point in the system phase-space. However, practical

ENSO forecasting is concerned with the evolution of finite,

and not infinitesimal, uncertainties. In order to assess the

relevance of the LLE-derived estimates of predictability to

actual predictability, we compare error growth rates cal-

culated from the LLEs with that calculated from a set of re-

forecast experiments initialized from the same 2,000-year

long CM2.1 simulation (Sect. 4). We show that the rela-

tionship between LLE-derived and actual predictability is

dependent on the forecast lead time, and is sensitive to the

length of simulation. We test a set of hypotheses to explain

discrepancies between LLE-derived and actual predict-

ability at different lead times, and show that the LLE-

derived error growth rate is closer to actual growth rate at a

lead time of 4-months.

This study then uses the LLE estimates at a lead time of

4 months as a relative measure to study fluctuations in

predictability of this kind in the long 2,000-year simulation

(Sect. 5). We also compare model predictability to pre-

dictability in nature quantified by the same methods (Sect.

6). We find that the loss of information in the GCM is

faster than that inferred from observations, more so in

active periods (post-1960). Finally, we explore the rela-

tionship between predictability and the evolution of SST

and upper-ocean heat content anomalies (Sect. 7). We

show that events with more heat pile-up in the Western

Pacific five years prior to their peak, and with a deepening

of the thermocline 3 months before the onset of the SST

anomalies are more predictable.

To our knowledge, this is the first attempt to use LLEs to

characterize predictability based on the output of a com-

prehensive climate model. Such measures have been pri-

marily used within the lower levels of the hierarchy of

models, and caution is required when one attempts to

generalize these methods to models of higher complexity.

Thus, the present paper serves as an initial assessment of

the applicability of such methods to GCM output. In

addition, the use of a computationally cheap relative

measure of predictability in GCM simulations is interesting
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for intra- and inter-model comparisons: characterizing

relative predictability in a long climate model experiment

could prove useful for identifying periods of the simulation

that warrant further investigation of their dominant

dynamics. Furthermore, a measure of relative predictability

derived from model output can be useful for guiding

classical predictability studies, e.g. for selecting initial

conditions for running re-forecast experiments. Lastly,

local predictability measures offer the possibility for more

detailed comparisons between models and observations

compared to global measures, such as the global Lyapunov

exponents, since the models and the observations are

required to agree at a large number of values rather than

just one estimate of general predictability (Abarbanel et al.

1992).

2 Theory

2.1 Key concepts

We offer here a brief discussion of the key concepts of the

ergodic theory of dynamical systems. The reader is referred

to Abarbanel (1995) for details of the concepts that follow.

A commonly used method in studies of dynamical sys-

tems is phase-space reconstruction by time-delaying of a

single state variable X (Takens 1981; Sauer et al. 1991).

The key concept behind this method is that the time history

of a single variable may act as a proxy for any of the

variables of the system, since all variables are connected in

a dynamical process. The measurement X(t) is a result of

the evolution of the dynamical system from X(t - s) over a

period s during which all dynamical variables affect the

variable X. Thus, the d-dimensional vector fXðtÞ;Xðt � sÞ;
Xðt � 2sÞ; . . .;Xðt � d � sÞg of the time delays of

X(t) stands as a proxy for observing d variables of the

system. The dynamical system evolves over time towards

subsets of the phase space, known as attractors.

To reconstruct the phase space one needs to determine

the appropriate embedding dimension d and time lag s.

The False Nearest Neighbor (FNN) method (Kennel

et al. 1992) determines the sufficient embedding dimension

for unfolding of the attractor in the following way: A vec-

tor x(t) in the d-dimensional phase space has neighboring

vectors, denoted by xNN(t). If a given xNN(t) is a true

neighbor of x(t), then it came to the neighborhood of x(t)

through the evolution of the system dynamics. If, on the

other hand, xNN(t) is a false neighbor, then it has arrived in

the neighborhood of x(t) not due to the dynamics, but by

projection from a higher dimension: The dimension d does

not unfold the attractor, and by moving to the next

dimension d ? 1, the said false neighbor will be removed

from the neighborhood of x(t). Consequently, the sufficient

embedding dimension to unfold the attractor may be

defined as the dimension above which no more false

neighbors can be found.

Abarbanel et al (1993) tested the robustness of the FNN

method by examining the effect of adding noise to a signal

from the Lorenz attractor. They showed that until a ratio N/

R = 0.5, where R is the RMS of the signal, and noise is

uniform in [-N, N], the FNN technique is able to defini-

tively detect low-dimensional signals, and the residual

percentage of false neighbors gives an indication of the

noise level (see their figure 17).

In order to determine the appropriate time lag for the

embedding, it is best to use a nonlinear measure, such as

the Average Mutual Information (Shannon 1948). The

Average Mutual Information (AMI) is defined as the

information contained in X(t ? s) about X(t) (Moon et al.

1995):

AMIðXðtÞ;Xðtþ sÞÞ

¼
X

XðtÞ;XðtþsÞ
PðXðtÞ;Xðtþ sÞÞlog

PðXðtÞ;Xðtþ sÞÞ
PðXðtÞÞPðXðtþ sÞÞ

ð1Þ

The lag s that corresponds to the first minimum of the AMI

can be chosen as the optimal lag for the embedding. An

additional, but linear, criterion is the first zero crossing of

the autocorrelation function, which is usually at the same

order of the first minimum of AMI (Abarbanel et al. 1993).

The rate at which the nearby trajectories separate

(diverge) in the phase space is described by the Lyapunov

exponents, introduced by Oseledec (1968). Lyapunov

exponents are metric invariants, in that they are insensitive

to initial conditions or small perturbations of an orbit in the

phase space. For a system to possess chaos, positive

Lyapunov exponents have to exist, and their sum is equal

to the Kolmogorov-Sinai entropy (Pesin 1977). In a

dynamical system with positive entropy h(X), two points

that are unresolvable at t = 0 will follow after some time s
separate trajectories. The possible number of separable

trajectories generated by the system after time s is mea-

sured by 2h(X)s (Gallager 1968; Rabinovich 1978). For

sP & h(X)-1, this number approaches the total number of

trajectories available for the system, so that all knowledge

of the evolution of a specific orbit is lost; i.e. predictability

is lost after time sP, although statistical information about

the system is retained (Abarbanel et al. 1993). The Kol-

mogorov-Sinai entropy h(X) is approximately equal to the

largest global Lyapunov exponent k1(X), therefore sP &
k1(X)-1. This limit has been considered as a measure of

predictability in the context of weather forecasting, in the

sense that no new information to the climatology is added

by the forecast.

The average prediction error in the system at time t, E(t)

grows exponentially from the initial error E(0) as follows:
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EðtÞ ¼ Eð0Þ � ek1t ð2Þ

While global Lyapunov exponents characterize the average

predictability of the attractor, the local behavior of insta-

bilities is also of interest, in particular in the neighborhood

of stable and unstable manifolds, where predictability

varies dramatically relative to the global behavior. Such

changes in predictability are of great interest with regard to

the regime-like behavior of ENSO since they speak to the

character of the underlying manifold in phase space. Note

that the evolution of an initial uncertainty need not be

uniform even in a uniform linear system due to the role of

non-orthogonal eigen-bases on uncertainty growth (Smith

et al. 1999). Local Lyapunov exponents k(x, L) measure

the growth or decay over L time steps of a perturbation

made around a specific point x of the attractor (Kennel

et al. 1994).

As L!1, the local LLE estimates tend toward

asymptotic values corresponding to the global exponent,

i.e. kðx; LÞ ! k. Abarbanel et al. (1992) argue that the

largest average LLE will approach the global exponent

from above, i.e. that finite-time predictability will, on

average, be worse than the global Lyapunov exponent

indicates. The local Lyapunov exponents, and thus local

predictability, may vary significantly on the attractor

indicating times of enhanced or reduced predictability

(Abarbanel et al. 1991; Legras and Ghil 1985; Nese 1989;

Nese and Dutton 1989; Siqueira and Kirtman 2012).

In general, the methods used in nonlinear time series

analysis are burdened by the finite size of the dataset, the

presence of stochastic noise, and the fractal nature of the

attractor (Bryant et al. 1990). The sensitivity of the LLE

estimates to the size of the dataset is discussed in detail in

Sects. 4 and 6, where we present results from sub-sampling

of the dataset. Here, we treat the model output in a perfect-

model and noise-free sense, applying no smoothing.

2.2 Interpretation for ENSO

We next apply these methods to 2,000 years of monthly-

mean NINO3 SSTs, simulated by the GFDL CM2.1 cou-

pled GCM with its solar irradiance, land cover and atmo-

spheric composition held constant at 1860 values

(Wittenberg 2009). Numerous studies have shown the

CM2.1 model to produce a reasonable simulation of trop-

ical climate and variability, as one of the best models in the

CMIP3 intercomparison (Delworth et al. 2006; Gnanade-

sikan et al. 2006; Wittenberg et al. 2006; Capotondi et al.

2006; Kug et al. 2010). The model is also highly relevant

to ENSO predictions, since it is used routinely at GFDL

for ocean-atmosphere data assimilation and seasonal-to-

decadal forecasts (Zhang et al. 2004, 2005, 2007; Sun et al.

2007; Yang et al. 2013). In addition, CM2.1 remains close

to the state-of-the-art in climate modeling, as the parent of

all of the new models developed at GFDL for the CMIP5

intercomparison (Donner et al. 2011; Griffies et al. 2011;

Galbraith et al. 2011; Delworth et al. 2012; Dunne et al.

2012, 2013).

The GCM is a high-dimensional dynamical system. In

principle, at any time it has a set of LLEs (i.e the eigen-

values of the linear tangent model at that point in phase

space) that are a function of the model equations and the

system state. These exponents are not calculated directly;

rather, they are estimated from a long time series, which in

our case is the model output (monthly NINO3 SSTa, upper-

ocean heat content etc.) over a restricted domain. Hence,

the LLEs reflect the dominant dynamics of processes in this

restricted domain as they evolve in the global domain. In

reconstructing the phase-space of the model we find that

the optimal embedding dimension is d = 5 (see Sect. 3 for

details): therefore, we are reducing the dimensionality of

the system from O(108) dimensions to five dimensions.

Much of this reduction comes from considering only the

ENSO subsystem in the tropical Pacific. A final reduction

to five dimensions is consistent with Tziperman et al.

(1994), who found that the Zebiak-Cane model, which has

O(105) variables and simulates only the ENSO subsystem,

could be reduced to a dimension less than 8.

The LLEs describe the growth of infinitesimal pertur-

bations due to internal variability. The local e-folding time

of small perturbations in the system is shorter when the

LLEs are large and the system less predictable. If one

interprets the NINO3-derived LLEs in the context of ENSO

being a weakly damped oscillator sustained by wind per-

turbations (e.g. Neelin et al. 1998; Kirtman and Schopf

1998; Thompson and Battisti 2000, 2001; Fedorov and

Philander 2001), then the derived LLEs would describe the

capacity of wind perturbations, which slightly alter the

initial conditions, to grow and thus hinder predictability.

As was noted in Fedorov (2002) and Fedorov et al. (2003),

the initial conditions are important for the influence of the

westerly wind bursts: during the initiation of a warm event

a westerly wind burst can accelerate the development of the

event, while one after the peak of El Niño will simply

prolong its duration. Therefore, it could be reasonable to

treat them as possible slight perturbations of the monthly

NINO3 index, on which our LLE calculations are per-

formed. Note that these wind perturbations need not be

external to the system (Eisenman et al. 2005; Vecchi et al.

2006; Tziperman and Yu 2007; Gebbie et al. 2007). In any

case, whether these perturbations be external weather

noise, or modulated by the ENSO state, the SST-derived

LLEs that we examine here could describe the initial rate

of error growth following such perturbations, as long as the

main assumption of the embedding theorem, that the single

variable, NINO3 SST, is sufficient to reflect underlying
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system variables, holds. It is our expectation that this is true

for modes that grow to be the substantial errors that matter

for ENSO forecasting, though it is unlikely to be true for all

the fast-growing but short-lived perturbations that the

GCM allows (as for example in Lengaigne et al. 2004).

3 Reconstruction of the phase space

Figure 1 shows the NINO3 SST anomalies in the 2,000-

year GFDL CM2.1 pre-industrial simulation. Color coding

indicates terciles of predictability as inferred by the LLEs:

green periods have small LLEs and are the most predictable,

orange periods are of intermediate predictability, and red

periods are the least predictable. These terciles of predict-

ability will be discussed in detail in Sect. 5 of the paper.

Applying the False Nearest Neighbor (FNN) method

described by Kennel et al. (1992) to the unsmoothed

monthly time series of NINO3 SSTa, we estimate the

optimal global embedding dimension as d = 5. Both the

Average Mutual Information and the autocorrelation func-

tion, suggest a time lag s of 11 months for the embedding.

Consequently, the 5-dimensional reconstructed phase space

spans approximately 5 years (55 months). To avoid the

influence of seasonality in our analyses, we exclude points

within 12 months of a target point in the search for nearest

neighbors. We thus avoid considering sequentially-adja-

cent, serially-correlated vectors as neighbors.

At each point of the reconstructed phase-space, six

nearest neighbors are found, and the average rate of

divergence in the phase space of their trajectories from the

reference trajectory over a window of length L is calcu-

lated, where L is the time scale of integration (hereafter

referred to as lead time L). The LLEs are approximated via

the local Jacobian matrix derived from a Taylor expansion

in the small deviations from the center of the neighbor-

hood. Thus, the local Lyapunov spectrum consists of one

exponent for each local dimension and for each lead time

L. The local dimension must be equal to or less than the

global dimension (d = 5). While we have chosen the local

dimension to be three, we have also computed the LLEs

with local dimension equal to the global dimension d = 5

and the results are not substantially different. The number

of neighbors found for each reference point in the

embedding is chosen to be twice the order of the polyno-

mial fit used to form the local Jacobians (equal to 3) for

numerical stability. The average distance in the 5-D phase

space of the closest nearest neighbor from the reference

Fig. 1 The NINO3 Index times series in the 2,000-year unforced

simulation of GFDL’s CM2.1. Colors indicate terciles of predictabil-

ity, as determined by the LLEs at lead time L = 4 months, with red

being the least predictable tercile, orange intermediate, and green the

most predictable. Predictability decreases by about 9 % on average

from tercile to tercile. The shaded regions indicate epochs of distinct

ENSO variability, as per Wittenberg (2009). The lack of LLE data at

the end of the time series, is due to the integration for the calculation

of LLEs being done forward in time
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point is 0.75 �C, while the average difference in NINO3

SSTa between the closest neighbor and the reference point

is 0.15 �C.

Figure 2 shows an example of events and their nearest

neighbors at a lead time L = 4 months. In Fig. 2a, we

show the NINO3 SSTa of the nearest neighbors found in

phase-space for the event of year 1722 (in thick black line).

Since the lead time we use is L = 4 months, the neighbors

are identified by their proximity in the reconstructed-phase

space 4 months before the peak of the event, i.e. by the

proximity to the reference point NINO3(t - L, t - L ? s,

t - L ? 2s, t - L ? 3s, t - L ? 4s, t - L ? 5s), where

t is peak month, L is the lead time, and s is the embedding

lag (11 months). This proximity is also reflected in the

actual timeline as seen in the figure (note the convergence

of trajectories at months 4, 7, 18). As mentioned above, in

the search for nearest neighbors we exclude points in the

phase space that are within 12 months from the reference

point; thus, we avoid selecting the same—but slightly

lagged—event as a neighbor of the reference event. The

LLE at the peak of the event characterizes, within the

reconstructed phase-space, the divergence of the trajecto-

ries of the neighbors from their reference trajectory in the

4-month window prior its peak. In this case, the LLE is

small, i.e. the event is within our ’green tercile’ of more-

predictable events (see Sect. 5). The trajectories in phase-

space do not diverge very fast in this 4-month window,

which is reflected in the actual timeline as well. In contrast,

Fig. 2b shows the evolution of the NINO3 SSTa for the

nearest neighbors of the event of year 1733, which is

characterized by its LLE as a lower predictability event

(it belongs to our ‘red tercile’). In the 4 months prior to the

peak, the divergence of trajectories in the phase-space is

higher, as is also reflected in the evolution of NINO3 SSTa

in time.

For the main analyses presented in Sects. 5, 6, and 7 we

chose a lead time of L = 4 months. It appears to be a

generic property of dynamical systems, including low

dimensional examples such as the Lorenz equations or the

Ikeda map, to have rapid initial growth in the rate of

divergence (i.e. the size of the LLE), which then slows with

time and ultimately approaches an asymptotic limit set by

the size of the entire attractor (e.g. Kennel et al. 1994).

Very short lead times L put us in the rapid growth regime

so the LLE(x, L) overestimates the dispersion growth rate

relevant to predictability. At long lead times the expo-

nential assumption (Eq. 2) made in defining the LLE no

longer holds, and the estimation procedure is no longer

valid. Hence, we choose an intermediate lead time

L = 4 months. This choice was also supported by the

comparison between the LLE-derived error growth rates

and those derived from a set of re-forecast experiments

using CM2.1 (Sect. 4).

4 LLEs and actual predictability

In this section we explore the relationship of the LLEs

calculated via reconstruction of the phase-space by time-

delaying of the monthly NINO3 SSTa with the predict-

ability estimates from a series of re-forecasts experiments

performed with CM2.1.

The CM2.1 re-forecast experiments are described in

detail in Wittenberg, in prep. Briefly, 11 different 1-Janu-

ary initial conditions were selected from the CM2.1 control

run, each at least a decade apart and sampling epochs with

a diverse range of ENSO amplitudes and ENSO regularity/

irregularity. For each initial condition, the model trajectory

is perturbed by adding an effectively infinitesimal (order of

10-4 �C) increment to the ocean surface temperature at a

single gridpoint in the central equatorial Pacific. Forty such

perturbations are made for each initial condition. These

forty ensemble members are then integrated forward in

time for 10 years, using the same CM2.1 model that gen-

erated the control run itself. The ensemble root-mean-

square (RMS) difference of the monthly-mean NINO3-

averaged SST from the ensemble mean is then computed at

each re-forecast lead time, as a measure of the ensemble

spread. Denoting this RMS difference by D(t), we then

compute the ratio D(t)/D(0) as a measure of the dispersion

Fig. 2 a An event characterized

as more predictable (green in

Fig. 1, year 1722) and its nearest

neighbors. b A least predictable

event (red, year 1733) and its

nearest neighbors. The nearest

neighbors are found based on

their distance from the reference

event in the phase space,

4 months before its peak (see

Sect. 3)
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rate of the ensemble, where t = 0 corresponds to the cen-

tral (16-January) time of the first monthly-mean.

To compute the e-folding time, we consider an expo-

nential growth model, where:

DðtÞ ¼ Dð0Þ � e t
se ð3Þ

where D(t) is RMS ensemble spread at time t, and se is the

e-folding time. It follows that the error-growth rate, or Re-

forecast LLE Equivalent (RLE) at lead time t is:

RLEðtÞ ¼ 1

se

¼
ln

DðtÞ
Dð0Þ
t

ð4Þ

Figure 3a shows boxplots of LLEs versus lead time; as the

lead time increases, the LLE estimates, and therefore the

error-growth rate, decreases. Saturation occurs after

approximately 64 months. At that time, the local exponents

asymptotically approach the global estimate. Figure 3b

shows the RLEs, defined as in Eq. 4; as the ensemble

disperses, the growth rate slows. Saturation in the

re-forecasts occurs at approximately 64 months also. At

short lead times the spread among experiments is large.

Figure 4a presents the LLE-derived growth rate (LLE)

versus the one calculated from the 11 re-forecast experi-

ments (RLE). Colors indicate the forecast lead time, or

scale of LLE integration, and the gray line denotes a one-

to-one relationship. Over short lead times, i.e. 4 months

and less, the LLEs underestimate the error growth rates, i.e.

overestimate the e-folding time se. On the contrary, over

longer lead times, the LLEs overestimate the true rates, i.e.

underestimate se. Interestingly, the relationship between

LLEs and RLEs is a linear function across lead times:

LLEðtÞ ¼ 0:56þ 0:25 � RLEðtÞ ð5Þ

4.1 Short lead times

One possible explanation for the underestimation of error

dispersion over short lead times is that the LLE estimation

is based on neighbors in the phase space that are farther

apart than in the case of the re-forecasts, where the initial

perturbation is truly infinitesimal. The exponential growth

model for errors is only a linear tangent approximation, and

if the initial separation is large this approximation is

compromised by the difference-based derivative approxi-

mations. This hypothesis would imply that, given a long-

enough CM2.1 simulation, the neighbors based on which

the LLE approximation is done would be closer because

they are drawn from a larger sample. Hence the approxi-

mation to true LLEs would be better. Indeed, when the

LLE calculation is performed on half the time series, for

short lead times the approximation is worse, as seen in the

diamond-shaped points in Fig. 4.

To further test this hypothesis, we consider the average

difference in NINO3 SSTa between the closest neighbor

and the reference point, which was found to be 0.15 �C

(see Sect. 3). Figure 5 (left panel) shows the growth of the

re-forecast spread versus lead time in the first 10 months of

the re-forecast. As was also seen in Fig. 3, the growth rate

slows as the ensemble disperses. The 0.15 �C RMS of the

nearest-neighbor distance is analogous to the spread of the

second monthly-mean of the re-forecasts, as shown by

the red line in Fig. 5. The subsequent growth rate for this

spread, evaluated via a forward difference between the

second and third-month mean, is approximately one

e-folding per month, as seen in the right panel of Fig. 5.

In order to test whether the initial distance of the nearest

neighbors is the culprit for the discrepancy between LLE

estimates and RLEs, we replace in Eq. 4 the RMS spread of

the first monthly-mean D(0) with that of the second

monthly-mean, D(1). Figure 4b shows the LLEs versus

RLE for the second monthly-mean growth rate. The LLEs

now overestimate the second monthly-mean growth rate at

all lead times. This could be expected, since the new

estimate of actual error growth is aligned in the direction of

the modes that grow fastest between t = 0 and t = 1 (and

were originally underestimated by the LLEs). These modes

do not grow as fast from t = 1 to the next time steps as the

ones that grew from random seeds at t = 0. But, the LLE

estimate still assumes a random seed, so it should now be

larger than the RLE of the second montly-mean spread.

Fig. 3 a Boxplots of a LLEs versus lead time; saturation occurs after

64 months. b Re-forecast LLE equivalents (RLEs) versus lead time,

calculated from 11 re-forecast experiments. The RLEs are defined by

Eq. 4
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The relation between LLEs and the RLEs of the second

montly-mean spread is now:

LLEðtÞ ¼ 0:53þ 0:75RLEðtÞ ð6Þ

In conclusion, the underestimation of error-growth by

the LLEs for short lead times is attributed to the fact that in

a finite time series the nearest neighbors based on which

the error-growth is calculated are not close enough for the

approximation to capture the more rapid initial growth

characteristic of dynamical systems.

4.2 Long lead times

If the nearest-neighbor growth rate of approximately ‘one

e-folding per month’ were to continue, the spread would

saturate at the climatological value in just over 3 months

(green line in Fig. 5). But for the actual re-forecasts, this

growth rate is not sustained, and it takes more than

7 months to first reach that climatological level. As the

scale increases, the actual growth rate slows down (also see

Fig. 3b); the RLE and the LLE-approximated growth rates

approach each other at lead time L = 4, as seen in Fig. 4a.

For lead times over 8 months, the LLEs greatly overesti-

mate error growth. This could be a consequence of the

saturation of error growth near the size of the attractor

(Kennel et al. 1994; Boffetta et al. 1998), and of the

assumption that error growth is exponential until a finite

limit (i.e. the global LE). It is clear, however, that expo-

nential growth of errors does not hold for long lead times,

and that finite-size perturbations and prediction errors

cannot grow indefinitely. If the actual error has stopped

growing and the LLE still assumes exponential growth,

then the discrepancy in growth rates will increase linearly

with lead time L, as found in Fig. 4a.

To constrain error growth at long lead times, Kennel

et al. (1994) introduce a limiting factor q = lnR, where R

is the ratio of the geometric mean over uncorrelated pairs

of attractor points to the geometric mean of the initial

perturbation magnitude. To introduce an analogous cor-

rection, we consider the limiting factor to be the ratio of the

final RMS (standard deviation of NINO3 for the 2,000-year

simulation, i.e. 1.25 �C) to the initial RMS, i.e. the initial

distance of the neighbors (0.15 �C). We constrain the LLE

estimate as follows:

Fig. 4 LLE- versus RLE-

derived growth rate 1/se

a before any correction, b after

correcting for the initial distance

of nearest neighbors (Sect. 4.1),

c after introducing a threshold

for error growth at long lead

times (Sect. 4.2), and d after

both corrections b and c are

applied. Colors indicate the

forecast lead time, and the gray

line denotes a one-to-one

relationship. The blue line is the

best fit from a linear regression

model (the equation is shown).

Diamond-shaped points denote

the average values for

calculations performed on the

first half and second half of the

time series
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LLE0ðx; LÞ ¼ min LLEðx; LÞ; q
L

� �
;

where q ¼ ln
sdðNINO3Þ

Dð0Þ

� � ð7Þ

Figure 4c shows the LLE versus RLEs after the correction

of Eq. 7. The estimates are now very close to the one-to-

one line, especially at long lead times. Note that this cor-

rection has no effect at short lead times. Figure 4d shows

the same LLE’s as Fig. 4c, but as in Fig. 4b the re-forecast

equivalents are calculated using the second monthly-mean

spread as an initial value.

To conclude, error growth is characterized by an initial

rapid growth, followed by a regime of exponential growth,

leading to a saturation for long lead times. The LLE esti-

mates computed here cannot capture the initial rapid

growth possibly because they are approximated based on

an initial distance of neighbors that is much larger than

infinitesimal and is analogous to the spread of the second

monthly-mean of actual re-forecasts. For the longer lead

time of 4 months, where the exponential error growth is

more relevant, the LLE estimate and actual growth rate are

very close to each other. For lead times beyond 8 months,

the LLEs greatly overestimate the error growth, since they

cannot distinguish between the fast modes and the slow

modes that extent predictability beyond these lead times

(e.g. as in Goswami and Shukla 1991; Blumenthal 1991;

Goswami et al. 1991).

For the remainder of the paper, we choose to focus on

LLEs at the intermediate scale of 4 months.

5 Variability in predictability in the GFDL

CM2.1-1860 simulation

At a lead time of L = 4 months, we calculate two positive

and one negative LLE with [mean, standard deviation]

equal to [0.77, 0.068], [0.233, 0.068], and [-0.728, 0.109].

To test whether the calculated LLEs as significantly dif-

ferent from the ones calculated from an AR(2) process, we

fitted an AR(2) model to the 2,000-year time series, gen-

erated samples from this process, and calculated their

LLEs. A Kolmogorov-Smirnov test confirms that the LLEs

calculated from CM2.1 could not have come from such an

autoregressive process at the 95 % significance level.

In order to quantify variability in predictability over the

long simulation, we define terciles of predictability based

on the 33rd and 67th percentile of the largest positive LLE.

The mean and standard deviation of the LLEs for each

level is equal to [0.85, 0.048], [0.77, 0.015] and [0.70,

0.032], respectively. On average, predictability increases

by approximately 9 % from one tercile to the next lower

one.

The variations in predictability in the 2,000-year run are

shown in Fig. 1. Red color (first tercile) indicates periods

Fig. 5 Growth of the monthly-mean re-forecast spread versus lead

time for the first 10 months in 11 re-forecast experiments (left panel).

The right panel shares the same ordinate but shows the growth rate on

the abscissa, which is calculated via a forward difference between

month t and month t ? 1. The red line indicates the logarithm of the

initial distance of nearest neighbors for the LLE calculation (0.15 �C).

The green line shows the climatological spread of randomly selected

NINO3 SSTa monthly means (1.5 �C)
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with the least predictability; orange periods (second tercile)

are intermediate, and green periods (third tercile) are in the

most predictable tercile. The difference in predictability

between the most (green) and least (red) periods is

approximately 18 %.

Wittenberg (2009) noted distinct periods of ENSO

behavior, shown in the shaded regions in Fig. 1. Some of

these epochs correspond to distinct periods of ENSO pre-

dictability. Epoch M1, whose ENSO variability mimics

pre-1960 observations is marked by decadal variations in

predictability. The decades with stronger variability and

persistence of events, such as years 330–350 belong to the

first tercile (red), indicating decreased predictability. Epoch

M6 agrees well with the post-1960 observed variability,

characterized by weak, biennial oscillations, followed by a

large warm event, then several smaller events, another

large warm event, and then a long quiet period. This

irregularity seems reflected in predictability, as shown in

Fig. 1.

On the other hand, epoch M2 with moderate ENSO

events which exhibit regular periodicity, is marked as a

period with constantly enhanced predictability. Epoch M3,

a period of consistently strong variability, has long periods

of enhanced predictability. The quiet epoch M5 is char-

acterized by more La Niña events; in this epoch, predict-

ability is decreased, as indicated by the prominence of red

periods. Epoch M7 with strong warm events is also clas-

sified as less predictable by the LLEs, while the irregularity

of ENSO in epoch M6 is accompanied by irregularity in

predictability.

Is there correspondence between the decadal variability

in ENSO magnitude and frequency and the decadal vari-

ability in ENSO predictability? Figure 6 shows scatterplots

of NINO3 standard deviation, period and mean e-folding

time for epochs M1 to M7, and for consecutive 50-year

periods (open circles). The mean period for each 50-year

period is defined from the peak of the wavelet power

spectrum. In this model, higher variance is associated with

larger period, i.e. the stronger the events the longer it takes

for the Pacific to ’recharge’ to give another event so the

longer the wait-time between events (Fig. 6a). The rela-

tionships of the e-folding time with period and standard

deviation are not statistically significant (see best linear fit

line in Fig. 6b, c). Only if one excludes the consecutive

50-year periods and the mega-ENSO period M7 is there a

correlation of e-folding time with period and standard

deviation (see gray best linear fit lines for M1–M6 in

Fig. 6). Note that the ’inactive’ period M4 has shorter

Fig. 6 Scatterplots of ENSO standard deviation (in degrees C),

period (in years), and the e-folding time (in months) for each epoch of

distinct ENSO behavior. Open circles indicate consecutive 50-year

periods. The shaded area indicates the 95 % confidence intervals for

the linear regression fit. The relationship is statistically significant at

the 5 % level only for standard deviation versus period (a). Gray lines

indicate the best linear regression fit for epochs M1–M6. The

e-folding time is calculated from LLEs at L = 4 months

b
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e-folding time than the ’active’ period M3; the latter is

characterized by longer periodicity and higher variance.

Epoch M2, which is the most predictable has the longer

period and highest variance.

Is there is a relationship between the magnitude of

individual events and their classification in terms of pre-

dictability? There seems to be no such relationship over the

whole 2,000-year run. However, such relationships arise

when one looks within the epochs whose spectral charac-

teristics resemble observed ENSO periods. Figure 7 shows

the probability density function that an event of certain

magnitude be associated with each of the three levels of

predictability. In epoch M1, which mimics the pre-1960

observed record, strong warm events are deemed less

predictable, in contrast to strong cold events (Fig. 7a). For

example, strong warm events of magnitude 2.5 �C have a

Fig. 7 The probability that an

event of certain magnitude be

associated with a certain tercile

of predictability, in epoch a M1,

which mimics the pre-1960

observations, b M6, which

agrees well with the post-1960

observations, c ’active’ period

M3, and d ’inactive’ period M4.

To show the number of events

that belong to each tercile, the

bottom panel of each subfigure

shows stacked histograms of the

events. Strong El Niño events

are more predictable in epoch

M6. El Niño predictability is

enhanced during the ’active’

period M3 compared to the

’inactive’ one (M4). Terciles of

predictability are based on LLEs

at L = 4 months, as in Fig. 1
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63 % probability of being less predictable (level 1). Strong

cold events of magnitude -2 have 40 % probability of

belonging to level 1, and 60 % probability of belonging to

one of the other two categories of enhanced predictability.

The picture is quite different during active epoch M6,

which agrees with the post-1960 observed ENSO vari-

ability, as seen in Fig. 7b. This epoch has stronger warm

ENSO events (note the abscissa). The majority of the

2.5 �C events here are deemed more predictable (levels 2

and 3). This result suggests that caution should be exer-

cised when one infers relationships between predictability

and magnitude of ENSO events based on the short record:

conclusions are epoch-dependent, and no such relation-

ships would be inferred from our examination of the full

2,000-year long simulation.

Finally, we compare one active and one inactive period.

During active epoch M3 very strong warm events are more

predictable in contrast to strong cold events (Fig. 7c).

During the inactive period M4 strong warm events are less

predictable, and, on average, the whole inactive period M4

is less predictable than the active period M3 (compare

Fig. 7c, d). The same conclusion can be drawn from Fig. 6.

This result is consistent with the finding of Kirtman and

Schopf (1998) that forecast skill is higher in periods of high

amplitude interannual variability.

6 Predictability in CM2.1 versus observations

In this section, we compare the LLE characteristics in

epochs M1 and M6 to the LLEs computed from the

observed record.

We compute the LLEs at lead time L = 4 months from

the NOAA Extended Reconstructed SST ERSST.v3 record;

Fig. 8 shows the NINO3 time series, with colors indicat-

ing terciles of predictability, as in previous sections.

Fig. 8 The NINO3 Index from the ERSST.v3 dataset. Colors

indicate terciles of predictability based on LLEs at L = 4 months,

with red being the least predictable, orange the immediately more

predictable (by 27 %), and green the most predictable (by 44 %

compared to red). The shaded regions approximate epochs R1 and R2

(pre- and post-1960, respectively), as per Wittenberg (2009)

Fig. 9 The pdf’s of the mean e-folding time for a pre-1960

observations and their corresponding model period M1, and b post-

1960 observations and the corresponding epoch M6. In general, the

model seems less predictable than nature. The gray lines refer to the

full 2,000-year long CM2.1 simulation (dashed) and the full 100-year

record (solid). The dark green dotted line refers to randomly selected

100-year samples from an unforced 150,000-year long ZC simulation.

Thin lines refer to consecutive 100-year periods from the GCM (blue)

and the ZC model (green)
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The shaded regions R10 and R20 are the two periods dis-

cussed in Wittenberg (2009), corresponding qualitatively to

model epochs M1 and M6, respectively.

Figure 9 shows the probability density function of the

e-folding time for (a) epoch M1 and its corresponding

period 1900–1960 in the observed record, and (b) epoch

M6 and its corresponding period 1961–2000. Note that for

a consistent comparison with the 100-year long observa-

tional record, the LLEs are computed here using 100-year

periods (M1 and the period 1501–1600 containing epoch

M6). The gray dashed line shows the probability density

function estimated for the full 2,000-year long run, while

the gray solid line shows the pdf estimated from the

100-year long observational record. The green dotted line

delineates the pdf of the e-folding time computed from

randomly selected 100-year long periods from an unforced

150,000-year long simulation from the Zebiak–Cane (ZC)

model (Zebiak and Cane 1987).

In general, the mean e-folding time in the model is

smaller than in the observed record, indicating that the rate

of information loss in the model is faster than in nature.

The median e-folding time for epochs M1 and M6 is 1.67

and 1.61 months, respectively, compared to 2.3 and

2.1 months in the pre- and post-1960 observed periods. The

lower variance in the model pdf, especially in epoch M6,

indicates less variability in predictability compared to

observations. The model also has on average less predict-

ability in the more active epoch M6 (Fig. 9b). The proba-

bility mass of the e-folding time from observations is

shifted to lower values in the active post-1960 period (the

median value shifts from 2.3 to 2.1), and median predict-

ability is reduced by 8.5 %. However, the tails of the dis-

tribution are heavier and extend up to 4 months in the

active 1961–2000 period. In CM2.1, the shift in median

values is of the order of 4 %. The e-folding time in the ZC

model is similar to that of CM2.1 (with median value 1.7),

but has larger variance and heavier tails in better accor-

dance with the observed record.

It could be argued from Fig. 9 that real-world predict-

ability is an upper bound for model predictability, since the

probability mass of the e-folding time from observations

lies above that of the model. In an informal poll we found

that most people expected nature to be less predictable than

any model, contrary to our finding here. Some reflection

may persuade the reader that there is no necessary order-

ing. For example, the pdf of e-folding time for the ZC

model has heavier tails, so its predictability could rank

higher or lower than CM2.1 and observations, depending

on the region of the attractor (or the time of initialization of

a re-forecast). In addition, changing a parameter (e.g. to

increase the strength of ocean-atmosphere coupling and

introduce more noise in the model) could make it less

predictable and could result in its pdf being more similar to

that of CM2.1. Our findings are consistent with the results

of Schneider et al. (2003), who found that tropical SST

anomalies in coupled models tend to be less persistent than

in observations, and argued that initial shocks in the cou-

pled models can be transmitted rapidly to remote locations

by oceanic wave propagation and lead to degradation of the

forecasts through coupled interactions. Finally, the dis-

crepancy between between real-world and GCM predict-

ability could be arising from the external radiative forcings

present in the historical reconstruction, which could lend

apparent predictability to the record.

The reduction in variance between the 2,000-year sam-

ple and the 100-year sample, seen in Fig. 9, gives a sense

of the uncertainty due to sampling when considering only a

short record period or model run. This suggests that phase-

space reconstruction based on only a century of data may

not suffice to capture the system’s dynamics; this concern

is similar to the concern of Wittenberg (2009) about

whether the available ENSO record suffices to constrain

ENSO simulations. As we showed in Sect. 4, the finite

nature of the time series used for the LLE estimation has an

important effect on the accuracy of the derived error

growth rates, especially at short lead times.

7 Relationship of NINO3 predictability and underlying

ENSO variables

As explained in Sect. 2, the fundamental idea of phase

space reconstruction by time-delay embedding of a single

variable is that the delay coordinates constituting the

embedding contain information about state variables that

are not explicitly sampled, and are thus able to capture the

dynamics of the underlying high-dimensional system. The

LLEs measure the rate of divergence of nearby trajectories

in this reconstructed phase space. Typically, the number of

delay coordinates needed is less than or equal to 2d ? 1,

where d is the ‘‘true’’ dimension of the underlying phase

space if all relevant variables were sampled and available

to form the phase space. It is of interest, then, to examine

the capacity of the phase-space reconstruction based

solely on the NINO3 Index to capture underlying ENSO

dynamics.

Subsequent analyses are based on the phase space

reconstruction from the first 500 years of simulations, the

period for which we had access to upper-ocean heat content

data. We composite the 120-month Hovmöller diagrams of

SST and upper-ocean heat content anomalies (0–300 m,

10�S–10�N) for the warm events classified as more (green)

and less (red) predictable. An event is considered when the

NINO3 SSTa exceeds 1 �C, and the classification in green

and red terciles is based on the LLE estimates at lead

time 4 months (shown in Fig. 1). Figure 10 shows the
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difference of the composite diagrams (green minus red).

Stippled areas denote statistical significance at the 95 %

level based on bootstrapping. The SST difference plot is

also field-significant at the 75 % level, while the heat-

content difference plot is field-significant at the 97 %

level.1 The most notable difference is the heat pile-up in

the west Pacific five years prior to the event, and the

associated cold anomalies in the east Pacific. The least

predictable events are stronger, which accounts for the

larger SST anomalies in the central Pacific at the peak of

the event (t = 0), so a claim cannot be made on the basis of

these results that central Pacific El Niños are more pre-

dictable. Also, the predictability classification is done here

on the basis of the NINO3 Index; Kim et al. (2009) show

that the NINO4 Index is more predictable than the NINO3

Index and conclude that central Pacific El Niños are more

predictable than eastern Pacific ones.

Figure 11 shows the SST and thermocline depth

anomaly within 48 months of the peak of the events. Light

green and red lines show individual events, while thick

lines are their composite. While the onset of the SST

(a) (b)

Fig. 10 The difference of the composite 120-month Hovmöller

diagrams of SST and upper ocean heat content anomalies for the

events classified as more (green) or less (red) predictable. Stippled

areas denote statistical significance based on bootstrapping. The SST

difference plot is also field-significant at the 75 % level, while the

heat-content difference plot is field-significant at the 97 % level. Note

the heat pile-up in the west Pacific five years prior to the event, and

the associated cold anomalies in the east Pacific

Fig. 11 a SST and

b thermocline depth anomaly

within 24 months of the peak of

the green (most predictable) and

red (least predicable) events.

Light green and red lines show

individual events, while thick

lines are their composite

1 In order to test field-significance we used bootstrapping to create

1,000 pseudo-difference maps; these maps exhibit contiguous areas of

significant differences, due to spatio-temporal correlations between

gridpoints. The percentage of grid-points that has significant values in

the original map is at the 75th and 97th percentile of the percentage in

the 1,000 pseudo-difference maps for SST and heat content,

respectively.
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anomalies is almost simultaneous for both groups, the

thermocline starts deepening approximately 4 months ear-

lier in the most predictable events. Thus, the LLEs seem to

be reflecting a reduced uncertainty regarding the onset of

an event given a thermocline that starts depending early on.

The difference in thermocline between the most and least

predictable events might also be reflecting a succession of

wind events, that could alter subsequent predictability. The

amplitude of the earlier thermocline anomaly in the most

predictable events -almost five meters- can be captured by

satellites. The results hint towards the notion that the

thermocline depth contains more information than the SST

anomaly, i.e. that the slower variable of the system has

more predictability than the faster one (also see Lima et al.

2009).

8 Summary and discussion

The presence of rich ENSO variability in the long unforced

simulation of GFDL’s CM2.1 motivated the use of tools

from the ergodic theory of dynamical systems to study

variability in ENSO predictability, and its possible con-

nections to ENSO magnitude, frequency, and physical

evolution at the epochal and individual-event levels. To

that end, this paper uses local Lyapunov exponents com-

puted from time-delaying of the monthly NINO3 SSTa

model output. The local Lyapunov exponents computed

here describe the growth of perturbations due to internal

variability; as such they are a measure of the predictive

uncertainty at any given point along the system trajectory.

We first studied the relevance of LLE-derived local

predictability estimates to predictability estimates derived

from a set of re-forecast experiments. To the authors’

knowledge this paper is the first to discuss such relation-

ships using long simulations and an extensive set of re-

forecasts from a fully coupled GCM. The comparison of

LLE-derived predictability to error growth from the set of

re-forecast experiments yielded the following main results:

1. The LLEs underestimate the error growth rates for

short forecast lead times (less than 8 months), while

they overestimate it for longer lead times.

2. The underestimation of error growth at short lead times

is attributed to the fact that in a finite time series the

nearest neighbors in the phase space, based on which

the error-growth is calculated, are not close enough for

the approximation to be optimal.

3. Longer model simulations would provide a larger

sample from which to find nearest neighbors. A better

set of nearest neighbors should reduce the departure of

LLE-derived predictability from ‘actual predictability’

(e.g. as derived from re-forecasts).

4. The overestimation of error-growth at long lead times

is attributed to the fact that finite sized perturbations

cannot grow exponentially and indefinitely. Adding a

threshold for error growth brings the LLE-derived

estimate closer to the actual error growth rates.

5. The departure of LLE-derived error growth rates

(proportional to 1/se) from the actual re-forecast rates

is a linear function of forecast lead time.

6. The growth-rate saturation derived from LLEs occurs

at approximately 5 years, which is broadly consistent

with the re-forecast results.

As shown above, the relationship between LLE-derived

predictability and ’actual predictability’ as inferred from

the re-forecast experiments is lead-time dependent, and

sensitive to the length of simulation. Measures like finite-

size (Boffetta et al. 1998) or scale-dependent (Gao et al.

2007) Lyapunov exponents could be better suited to char-

acterize the multi-scale nature of ENSO predictability.

Nevertheless, our study of the relationship between LLE

estimates and predictability from re-forecast experiments

in a high-complexity GCM contributes to the investigation

whether exponential growth of errors (as in Eq. 2) is rel-

evant for quantifying error scaling at both small and sub-

stantially larger levels of error in these systems (see Kennel

et al. 1994; Boffetta et al. 1998; Smith et al. 1999, for

discussion of these issues).

We found good agreement between the LLE-derived

and the actual error growth at lead times near 4 months.

This is beyond the lead times dominated by initial rapid

error growth and before the exponential growth assumption

underlying the LLE construct becomes inapplicable. Thus,

in the remainder of the paper, we focused on the 4-month

LLEs to characterize periods of increased or decreased

seasonal predictability in the long CM2.1 simulation.

Our main findings can be summarized as follows:

1. Predictability as measured by local Lyapunov expo-

nents varies (multi)decadally by 9–18 %.

2. ‘Active’ ENSO periods are slightly more predictable

than ‘inactive’ ones. Also, epochs with regular peri-

odicity and moderate ENSO magnitude are classified

as the most predictable by the local Lyapunov

exponents.

3. The e-folding time is linearly related to ENSO

frequency and standard deviation during epochs of

distinct ENSO variability. However, the linear rela-

tionship between predictability and standard deviation

does not hold for all 50-year periods of the simulation.

4. The ERSST.v3 reconstruction appears to lose infor-

mation less rapidly than the unforced CM2.1 GCM.

This could be revealing a discrepancy between real-

world and GCM predictability: The GCM could

be more ’chaotic’ than the real world, due to an
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overactive thermocline feedback, and deficient damp-

ing from evaporation and cloud-shading, likely related

to an equatorial cold tongue bias. Or, the noise level,

associated with atmospheric weather, could be higher

in the GCM than in nature. Finally, this discrepancy

may arise from and external radiative forcings present

in the historical reconstruction.

5. Events with more west Pacific heat pile-up 5 years

prior to the El Niño events are found to be slightly

more predictable. Also, the thermocline starts deepen-

ing approximately 4 months earlier than the onset of

the SST anomalies in the most predictable events.

The variation in predictability reported here is not large

(9–18 %). It is possible then that changes in atmospheric

noise (in the tropics or in the extratropics) at decadal time-

scales could produce such (multi)decadal variations in

ENSO short-term predictability. Changes in the coupling

strength between the ocean and the atmosphere could also

produce these variations. Preliminary results using the

methods employed here suggest that the stochasticity of

winds play a role in determining predictability variations.

Further investigation using the intermediate ZC model, and

using measures of noise and ENSO stability in the GCM

simulation might provide some explanation for the vari-

ability in predictability that is measured here by the LLEs.

Our investigation also answered the following

questions:

1. Are century-long data sufficient to draw conclusions in

terms of variability in ENSO predictability? In a

related context, are century-long simulations or obser-

vations sufficient to capture key aspects of the ENSO

dynamics?

2. Is the NINO3 SSTa variable sufficient to capture

underlying ENSO dynamics?

With regard to the first question, we have shown that the

relationship between predictability and ENSO variance and

magnitude varies with epoch. It is not obvious that such a

relationship exists when one studies the full 2,000-year

simulation. This result suggests that caution be exercised

when interpreting the ENSO predictability-magnitude

relationships based on limited records. Moreover, the

reduction in the variance of the local Lyapunov exponents

computed from the 100-year versus the 2,000-year sample

gives a sense of the uncertainty of predictability estimates

due to sampling, and suggests that long model simulations

are useful for putting the predictability inferred from the

100-year long record into perspective.

The second question was approached by assessing the

capacity of the reconstructed phase-space of the NINO3

Index to reflect underlying ENSO dynamics. It was shown

that the classification in terms of predictability on the basis

of this phase-space reconstruction is in reasonable agree-

ment with expectations from our physical understanding of

the ENSO system. Heat-pile up in the west Pacific five

years before the event, as well as a deepening of the

thermocline four months earlier than the onset of the SST

anomalies, are precursors of strong El Niño events. It

seems that the tools we have used here provide a usable

reflection of some dynamical system characteristics related

to predictability, the limitations of the Takens embedding

theorem and the use of a single state variable to represent a

complex system notwithstanding. However, further analy-

sis is required to ascertain these initial conclusions.

Second, the heat content anomaly (or the thermocline depth

anomaly) may be a better variable for phase-space recon-

struction than the NINO3 Index, which is contaminated by

weather noise. Therefore, the real issue here is associated

with the predictability gain in a ’slow’ versus a ’fast’

variable, and with the predictability gain associated with

spatial and temporal averaging.

The present paper is an early assessment of the appli-

cability to GCM output of methods from dynamical sys-

tems theory that use observed data. The use of a

computationally cheap relative measure of predictability in

GCM simulations is of interest for intra- and inter-model

comparisons. Characterizing relative predictability in a

long climate model experiment could prove useful for

identifying periods of the simulation that warrant further

investigation of their dominant dynamics, or for guiding

classical predictability studies, e.g. for selecting initial

conditions for running re-forecast experiments.
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