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independent days among the 184, i.e., a de-correlation 
time of about 10 days, which might, however, be a 
strong hypothesis in the case of persisting hot events 
involving long-memory processes such as soil mois-
ture deficit.

Conclusions. In conclusion, the record hot spring of 
2012 over the eastern United States can be mainly ex-
plained by atmospheric dynamics. Conversely, while 
large-scale circulations were favorable to anomalously 
high temperatures over this region in summer, other 
local factors, possibly linked to the exceptionally 
hot spring and the persisting drought throughout 
summer, shaped the spatial pattern of the following 
summer heat wave. In a long-term climate perspec-
tive, Fig. 4.2b reveals a positive trend over the last 20 
years (1993–2012) in spring maximum temperatures 

over the eastern United States, which is found to be 
statistically significant at the 5% level and consistent 
with the flow-analogue temperature reconstruction. 
By contrast, no significant trend is found in summer 
for maximum temperatures (Fig. 4.2c), albeit ad-
ditional observations show a significant increase of 
0.5 σ per decade over the past 40 years (1973–2012) 
for minimum temperatures, partially explained by 
f low-analogues (not shown). This trend analysis, 
nevertheless, reaches the limits of daily unadjusted 
GHCN temperatures, since homogenized USHCN 
monthly temperatures exhibit a one-to-two times 
larger warming over recent years (but still not sig-
nificant for summer maximum temperatures). The 
contribution of potential changes in circulation to 
the recent long-term warming in the United States, 
therefore, requires further research.

5. THE EXTREME MARCH–MAY 2012 WARM ANOMALY 
OVER THE EASTERN UNITED STATES: GLOBAL CONTEXT 

AND MULTIMODEL TREND ANALYSIS
THOMAS R. KNUTSON, FANRONG ZENG, AND ANDREW T. WITTENBERG

Introduction. We survey the globe for seasonal and 
annual mean surface temperature extremes that oc-
curred during 2012. We define an extreme seasonal 
mean anomaly as one that ranks first, second, or 
third in the period of record, using the HadCRUT4 
observations (Morice et al. 2012). Anomalous warmth 
over the eastern United States during March–May 
(MAM) is found to be particularly extreme and 
spatially extensive. To place this seasonal extreme 
warmth in the context of long-term climate change, 
we analyze the time series for this region, comparing 
observed trends with model simulations of internal 
climate variability and modeled responses to both 
anthropogenic and natural forcings using 23 Coupled 
Model Intercomparison Project phase 5 (CMIP5) 
models (Taylor et al. 2012).

Where did record or near-record seasonal mean surface 
temperatures occur in 2012? Global maps of the sea-
sonal- and annual-mean temperature anomalies for 
2012 are shown in Fig. 5.1 (left column). Maps in the 
right column depict where the anomalies were the 
first, second, or third most extreme in the record—
either warm (red colors) or cold (blue colors). The 
results show a predominance of warm versus cold 

extreme occurrences. For extreme annual means, the 
percent of global analyzed area with first, second, or 
third warmest in the record, starting as early as 1851, 
was 15.3% compared with zero cold extremes. The ra-
tios of warm-extreme-to-cold-extreme percent areas 
were 6.2% : 0.1% for December–February (DJF); 7.7% 
: 0.2 % for MAM; 11.4% : 0.7 % for June–August (JJA); 
and 12.5% : 0.1 % for September–November (SON). 

A pronounced broader-scale feature in the ex-
tremes maps is the record MAM warmth over the 
eastern continental United States, which was also 
highly anomalous for the annual means. Much of 
the Mediterranean region experienced record or 
near-record JJA and SON warm anomalies. The SON 
map also shows near-record Atlantic Ocean warmth 
off the east coast of the United States, which spanned 
the time of occurrence and extratropical transition 
of Hurricane Sandy in this region. Other extreme 
seasonal warmth occurred near the Somali current 
(western Indian Ocean) during SON and other scat-
tered locations around the globe. 

How much did anthropogenic forcing contribute to the 
extreme eastern U.S. warm anomalies during MAM 
2012? Having established where extreme seasonal 
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and annual mean temperatures occurred in 2012, we 
now examine the extensive warm anomalies over the 
eastern United States during MAM in more detail. 

Using the Hegerl et al. (2009) guidance paper on 
detection and attribution methods, we first explore 

a “multistep attribution” approach. This 
involves, in general, assessments that at-
tribute an observed change in a variable of 
interest (in this case, seasonal mean tem-
perature extremes) to a change in climate 
and/or environmental conditions (in this 
case, century-long trends in seasonal mean 
temperatures), plus separate assessments 
that attribute the change in climate and/or 
environmental conditions to external driv-
ers and external forcings. We first posit that 
it is likely that increases in seasonal mean 
temperatures caused by anthropogenic 
warming will eventually lead to increases 
in the extremes (e.g., record or near-record 
values) of seasonal mean temperatures, but 
that it may take a substantial record length 
for this signal to be apparent in the data.

The next step is to assess whether there 
is detectable warming that is attributable to 
anthropogenic forcing in the MAM mean 
temperatures for the eastern U.S. region. 
For this, we rely on a more extensive trend 
assessment study that provides further 
details on our methods and evaluation of 
model internal variability (Knutson et al. 
2013). 

Figure 5.2a shows the MAM time series 
averaged over the region of the eastern 
United States and southern Canada where 
the MAM 2012 anomalies were warm-
est in the record (dark red colors in Fig. 
5.1f). The HadCRUT4 observations show a 
gradual rising trend, with a distinct positive 
anomaly in 2012 that was nearly twice as 
warm as the previous record season. The 
observations lay within the range of the 
CMIP5 ensemble members, although 2012 
is near the upper edge of this range.

Figure 5.2b summarizes a trend analysis 
for the MAM eastern U.S. time series in Fig. 
5.2a, comparing models and observations. 
Each of the models contributes equally to 
the multimodel distribution from which the 
percentiles are derived. The distribution of 
trends broadens for later start dates, because 
these represent shorter randomly sampled 

trends in the control runs, and models can produce 
larger trend rates by chance for smaller trend lengths. 
The spread of the All-Forcing (anthropogenic and 
natural combined) multimodel ensemble (pink) is 
slightly wider than that of the control run ensemble 

FIG. 5.1. (Left column) Annual (a) or seasonal (c), (e), (g), (i) 
mean surface air temperature anomalies (°C) for 2012 (1961–90 
base period) from the HadCRUT4 dataset. The seasons are DJF 
(Dec 2011–Feb 2012), MAM (Mar–May), JJA (Jun–Aug), and SON 
(Sep–Nov). (Right column) Colors identify grid boxes with annual 
(b) or seasonal (d), (f), (h), (j) mean warm anomalies that rank 
first (dark red), second (orange-red), or third (yellow-orange) 
warmest in the available observed record, with blue colors for 
cold extremes. Gray areas did not have sufficiently long re-
cords, defined here as containing at least 100 available annual 
or seasonal means, with an annual mean requiring at least four 
available months and a seasonal mean requiring at least two of 
three months to be available. 



S15SEPTEMBER 2013AMERICAN METEOROLOGICAL SOCIETY |

FIG. 5.2. (a) Time series of Mar–May (MAM) averaged surface air temperature anomalies (°C) averaged over 
the region in Fig. 5.1f of record MAM warmth in the eastern United States and southern Canada during 2012. 
The black line depicts the observed (HadCRUT4) anomalies; the dark red line depicts the multimodel ensemble 
anomalies from the CMIP5 All-Forcing runs, with each of the 23 models weighted equally; and the orange lines 
are individual ensemble members making up the CMIP5 multimodel ensemble. The All-Forcing simulations for 
this region included both anthropogenic and natural forcings from about 1860 to the present, with data from 
RCP4.5 runs used to extend the time series through 2012 where necessary. All time series shown are adjusted 
to have zero mean over the period 1881–1920. (b) Trends (°C 100 yr-1) in the area-averaged MAM mean surface 
temperature series in (a) as a function of starting year, with all trends ending in 2012. The black curve shows 
trends from observations (HadCRUT4). The thick red curve shows the ensemble mean trends from the 23-mem-
ber CMIP5 All-Forcing ensemble. The pink shading shows the 5th–95th percentile range of the distribution of 
trends obtained by combining random samples from each of the 23 CMIP5 model control runs together with 
the corresponding model’s ensemble-mean forced trend (All-Forcing runs) to create a multimodel distribution 
of total trends that reflects uncertainty in both the forced response and the influence of internal climate vari-
ability. The green-shaded region shows the 5th–95th percentile range of the trends from the 23 model control 
runs. Purple shading indicates where the pink- and green-shaded regions overlap. 
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(green) because it also includes the uncertainty due 
to the different ensemble mean responses of the in-
dividual models. See Knutson et al. (2013) for more 
discussion and details.

The observed trends in Fig. 5.2b (black line) gener-
ally lie outside of the control run 5th–95th percentile 
range, indicating that (according to the model-gener-
ated variability) the observed trends are inconsistent 
with internal climate variability alone. The observed 
trend also lies within the pink- or purple-shaded re-
gion for all start dates, indicating that the observed 
MAM trends for the region are consistent with the 
CMIP5 All-Forcing multimodel ensemble. Using 
the control run internal variability as a surrogate for 
natural variability (generally a good assumption for 
relatively long trend lengths; see Knutson et al. 2013), 
we conclude that the observed trend is both incon-
sistent with natural variability and consistent with 
anthropogenic plus natural forcing runs, meaning 
that the warming in the observations is very likely 
attributable in part to anthropogenic forcing. 

Since the anomalous warmth of MAM 2012 oc-
curred in a region with detectable long-term anthro-
pogenic warming, we conclude that anthropogenic 
forcing also likely contributed significantly to the 
observed anomalies of MAM 2012 over the eastern 
United States. A rough estimate of the anthropogenic 
contribution based on Fig. 5.2a would be about 35% 
(based on the modeled value of ~1.3°C near 2012 and 
the 2012 observed anomaly of ~3.7°C). Under the 
assumption that the real-world uncertainty is well 
represented by the multimodel ensemble mean plus 
aggregated control-run distribution (i.e., that there 
is no change in the variability about the mean) and 
interpreting the difference between the All-Forcing 
and control-run distributions as the anthropogenic 
influence, we can conclude the following regarding 
the 2012 MAM eastern U.S. anomaly. This 3.7°C 
event was 2.8 times stronger than the expected 
ensemble-mean contribution of 1.3°C due to an-
thropogenic forcing in 2012—so, internal variability 
almost certainly played a substantial role. Based on 
the model ensemble, an event this warm or warmer 
would occur with probability 0.07% (unforced) or 
0.85% (forced)—a factor of 12 increase in risk. Under 
the forced scenario, the fraction of risk of such an 
extreme warm event that is attributable to the forcing 
is (0.0085 - 0.0007) / 0.0085 = 92%. These estimates 
of change in risk are sensitive to the baseline period 
assumed. Here we use the period 1881–1920 as the 
baseline; if we use 1861–2012 as the baseline period, 
the risk of the event increases by about a factor of 5 

rather than 12, and the fraction of attributable risk 
is estimated as 78%. As a further sensitivity test, we 
examined the occurrence of anomalies larger than an 
alternative threshold equivalent to the second warm-
est MAM anomaly in the observed series (2.04°C in 
1991). Anomalies exceeding this level occur about 11 
times more often in the forced simulations than in 
the unforced runs. 

Discussion and conclusions. From the viewpoint of 
seasonal or annual mean extreme temperatures, 2012 
was characterized by a much greater occurrence glob-
ally of warm extremes than cold extremes. Notable 
large-scale regions with extreme seasonal warmth 
included the United States east of the Rocky Moun-
tains during MAM and much of the Mediterranean 
region during July–November. The extreme warmth 
over the eastern United States occurred in a region 
where there has also been longer-term warming that 
our model-based assessment attributes at least in part 
to anthropogenic forcing. 

Although the long-term warming during MAM 
over the eastern U.S. region of record 2012 warmth 
in Fig. 5.1f was assessed as detectable, a number 
of caveats apply. For example, when we tested the 
warming trends since 1901 for individual grid points 
around the globe, a number of grid points in the 
eastern U.S. region did not have significant trends 
(Supplementary Fig. S5.1i). Previous studies have 
suggested a lack of statistically significant long-term 
warming over the eastern United States; in particular, 
Portmann et al. (2009) discussed possible physical 
explanations for this feature and showed that there is 
a statistical relationship between the trends in daily 
maximum temperatures across the United States and 
the climatological mean precipitation. However, our 
results illustrate the potential effects of spatial aver-
aging for this type of detection/attribution analysis. 
After averaging over the entire region of anomalous 
record warmth in the eastern United States, we do 
find a detectable trend-to-2012 across a wide range of 
possible start dates. Differences between our results 
and previous studies may also be due to the averaging 
area or season chosen and the inclusion of the very 
warm 2012 anomalies. Our region definition tends to 
enhance the influence of the very warm anomalies 
occurring in MAM 2012. 

Other caveats to our analysis include remaining 
uncertainties in estimates of internal variability of 
the climate system, in climate forcing agents, and 
in model sensitivity to the forcings. We have found 
that the models’ low-frequency (>10 yr) internal 
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climate variability in this region is larger than our 
current best estimate of the real climate system’s low 
frequency internal variability (e.g., Fig. 2 of Knutson 
et al. 2013). If internal climate variability were in 
fact overestimated by the models, this would make 
it overly difficult for a climate signal to be detected 
above internal variability noise in our analysis, so the 
detection result would be robust to such a bias. Such 
a bias would also widen the envelope of the forced 
simulations, possibly obscuring an underestimate of 
the warming by the forced models.

The anthropogenic contribution to the extreme 
seasonal (MAM) warmth over the eastern United 
States can be estimated as about 35%, or in terms 
of risk, anthropogenic forcing leads to a factor of 12 

increase in the risk of such an event according to our 
calculations. An important issue for future studies 
is to explore potential changes in the shape of the 
temperature distributions under climate change and 
its effect on the risk estimates for extreme events in 
the tails of the distribution.

The much larger fraction of global analyzed area 
with extreme warm seasonal-mean anomalies in Fig. 
5.1 (right column), compared to the fraction of area 
with extreme cold seasonal-mean anomalies, suggests 
another future approach to multistep attribution. For 
example, we plan to further explore the rates of oc-
currence of seasonal warm and cold extremes in the 
observations and compare the observed changes with 
those simulated in the All-Forcing runs.

6. HURRICANE SANDY INUNDATION PROBABILITIES TODAY 
AND TOMORROW

WILLIAM SWEET, CHRIS ZERVAS, STEPHEN GILL, AND JOSEPH PARK

Introduction. Hurricane Sandy slammed into the 
U.S. mid-Atlantic seaboard on 29–30 October 2012 
causing widespread damage and functional disrup-
tion to critical infrastructure resulting in repair and 
mitigation expenditures funded at $60.2 billion U.S. 
dollars (GPO 2013). Sandy’s impacts exposed many 
unrealized sector-specific thresholds and general-
public vulnerabilities across a region generally ac-
customed to Nor’easters (Hirsch et al. 2001; Colle et 
al. 2010; Sweet and Zervas 2011), but not hurricane 
strikes. As rebuilding occurs, concerns remain as to 
how sea level rise (SLR) will change probabilities of 
future events leading to recurring economic losses 
within an increasingly crowded coastal zone (http://
stateofthecoast.noaa.gov/population). Here, we sum-
marize tide gauge water level statistics from Sandy and 
discuss how the probabilities of exceeding its peak 
impact elevations (relative to today’s reference frame) 
have changed since the mid-20th century from rela-
tive SLR (SLRrel) and provide future estimates based 
upon SLRrel scenarios. 

Data and methods. Peak water level measurements 
during Sandy were recorded by National Oceanic and 
Atmospheric Administration (NOAA) tide gauges 
(Fig. 6.1; http://tidesandcurrents.noaa.gov). In the 
case of the Sandy Hook gauge, which was destroyed 
before reaching its peak, an average of two high-
water marks at the adjacent U.S. Coast Guard base 

(McCallum et al. 2012) were used instead of the last 
value recorded. Exceedance probabilities are quanti-
fied by a generalized extreme value (GEV) model of 
annual maxima whose cumulative distribution is 
described by location (centering), scale (dispersion), 
and shape (distribution tail) parameters (Coles 2001). 

We provide time-dependent return intervals (ex-
pected time between recurring events and the inverse 
of the exceedance probability) associated with peak 
Sandy storm tide levels (tide + surge; referred to as 
impact levels) based upon GEV models shown with 
95% confidence intervals at http://tidesandcurrents.
noaa.gov/est. The return curves are based upon re-
cords through 2010 (Fig. 6.1a), except for the Battery, 
Bridgeport, and Sandy Hook where impacts from 
Sandy warranted a recomputation of the stations’ 
probability models through 2012 since GEV models 
are sensitive to outlier influences (Fig. 6.1a). The GEV 
models are also sensitive to record length, implying 
that if Sandy Hook’s record was as long as the Bat-
tery’s, its return interval for Sandy would be longer 
(Fig. 6.2a). All levels are relative to 1983–2001 epoch 
mean higher high-water (MHHW; http://tidesand-
currents.noaa.gov/datum_options) tidal datum to 
normalize for varying tidal ranges.

Current (2012) and historical (1950) return inter-
vals for Sandy’s impact levels are obtained by raising 
or lowering, respectively, a station’s GEV model by its 
long-term relative mean sea level (MSL) trend (http://
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S5. THE EXTREME MARCH–MAY 2012 WARM 
ANOMALY OVER THE EASTERN UNITED STATES: 
GLOBAL CONTEXT AND MULTIMODEL TREND 

ANALYSIS

THOMAS R. KNUTSON, FANRONG ZENG, AND ANDREW T. WITTENBERG

The analysis in Fig. 5.2 of the main paper shows 
how observed and simulated trends from model 
All-Forcing runs, control runs, and observations 

can be compared quantitatively, using control-run 
variability to estimate confidence intervals on the 
modeled trends. This same methodology (which is 
described in greater detail in Knutson et al. 2013) 
can be applied in a similar manner to time series at 
individual grid points around the globe. Locations 
where warming trends are inconsistent with the 
control runs (detectable) and either consistent with 
or greater than the All-Forcing runs according to the 
methodology described in the main text are assessed 
as having a detectable anthropogenic contribution to 
the long-term trend.

The red-orange or dark red areas on the maps 
in Fig S5.1 (right column) depict grid points in the 
HadCRUT4 dataset that have some detectable warm-
ing due to anthropogenic forcing according to this 
criterion. We find that about 80% of the analyzed 
global area for March–May (MAM) seasonal means 
meets these criteria, with similar percentages for 
other seasons or the annual means. 

The white regions in the maps (right column) 
show where the observed trend is classified as not 
detectable compared with model control run vari-
ability. Interestingly, the region of the eastern United 

States that had such anomalously warm (record) 
MAM anomalies in 2012 is also a region that does 
not have a detectable warming trend during MAM 
for a number of the individual grid points in this 
region over 1901–2012 according to this analysis (Fig. 
S5.1i). However, after spatial averaging over the entire 
region of record MAM warmth, the trend since 1901 
assessed as significant (Fig. 5.2 in the report). In ad-
dition, parts of the eastern tropical and subtropical 
Pacific and much of the extratropical North Atlantic 
also do not exhibit detectable (distinguishable from 
natural variability) long-term warming trends in any 
season at the gridpoint scale (Fig. S5.1f,i,l,o). We con-
clude that there is only marginal significance for an 
anthropogenic contribution to the extreme seasonal 
warmth during MAM 2012 over the eastern United 
States at the gridpoint scale based on this assessment. 

Most of the other larger features in the seasonal 
extremes maps shown in the middle column of Fig. 
S5.1—e.g., June–August (JJA) warm anomalies in the 
Mediterranean region, in the Somali Current region 
off the east coast of Africa in JJA and September–No-
vember (SON), and the warming off the northeast 
coast of the United States and Canadian maritime 
provinces in JJA and SON—tend to occur in regions 
that have some detectable anthropogenic contribution 
to the 1901–2012 trends, according to our assessment. 
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FIG. S5.1.  (Left column) Annual- (a) or seasonal- (d,g,j,m) mean surface air temperature anomalies for 2012 
(1961–90 base period) from the HadCRUT4 dataset (unit: °C). The seasons are DJF (Dec 2011–Feb 2012), MAM 
(Mar–May), JJA (Jun–Aug), and SON (Sep–Nov). (Middle column) Colors identify grid boxes with annual- (b) 
or seasonal- (e,h,k,n) mean anomalies that rank first (dark red), second (red-orange), or third (yellow-orange) 
warmest or first (dark blue), second (medium blue), or third (light blue) coolest in the available record. Gray 
areas did not have sufficiently long records, defined here as containing at least 100 available annual or seasonal 
means, with an annual mean requiring at least four available months and a seasonal mean requiring at least 
two of three months to be available. Left and middle columns are repeated from Fig. 5.1 in the report for ease 
of comparison. (Right column) Colors identify categories of trend assessment results for annual means (c) and 
various seasons (f,i,l,o), which were assessed by comparing the observed trends over the period 1901–2012 with 
modeled trends in either the All-Forcing (anthropogenic and natural combined) or the Control runs. Locations 
where no detectable observed trend was found are white (i.e., consistent with Control-run variability). Locations 
where observed trends are detectable and consistent with All Forcing runs are red-orange. Locations where 
observed trends are detectable and significantly greater than the All-Forcing run trends are dark red. Locations 
where observed trends are detectable but significantly less than the All-Forcing runs trends are yellow-orange. 
Consistent here means that the observed trend lies within the multimodel distribution (5th–95th percentiles) 
for a given forcing scenario (i.e., All-Forcing scenario or Control run with no external forcing), where the All-
Forcing model distribution incorporates the uncertainty from the models due to both differences in response 
to forcing between the different models and the spread due to internal variability in the model control runs. 
See Knutson et al. (2013) for further details.
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