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ABSTRACT

Constraining the low-frequency (LF) behavior of general circulation models (GCMs) requires reliable

observational estimates of LF variability. This two-part paper presents multiproxy reconstructions of Niño-

3.4 sea surface temperature over the last millennium, applying two techniques [composite plus scale (CPS)

and hybrid regularized expectation maximization (RegEM) truncated total least squares (TTLS)] to a net-

work of tropical, high-resolution proxy records. This first part presents the data and methodology before

evaluating their predictive skill using frozen network analysis (FNA) and pseudoproxy experiments. The

FNA results suggest that about half of the Niño-3.4 variance can be reconstructed back to A.D. 1000, but they

show little LF skill during certain intervals.More variance can be reconstructed in the interannual bandwhere

climate signals are strongest, but this band is affected by dating uncertainties (which are not formally ad-

dressed here). The CPS reliably estimates interannual variability, while LF fluctuations are more faithfully

reconstructed with RegEM, albeit with inevitable variance loss. The RegEM approach is also tested on

representative pseudoproxy networks derived from twomillennium-long integrations of a coupledGCM. The

pseudoproxy study confirms that reconstruction skill is significant in both the interannual and LF bands,

provided that sufficient variance is exhibited in the target Niño-3.4 index. It also suggests that FNA severely

underestimates LF skill, even when LF variability is strong, resulting in overly pessimistic performance as-

sessments. The centennial-scale variance of the historical Niño-3.4 index falls somewhere between the two

model simulations, suggesting that the network andmethodology presented here would be able to capture the

leading LF variations in Niño-3.4 for much of the past millennium, with the caveats noted above.

1. Introduction

The tropical Pacific Ocean is the stage for powerful

air–sea interactions, whose oceanic expression ripples

through the climate system on a variety of time scales

(e.g., Dijkstra and Neelin 1995; Cane 2005; Emile-Geay

2006). The epitome of such interactions is the El Niño–

Southern Oscillation (ENSO) in the interannual range,

although variability exists on decadal (Graham 1994),

interdecadal (Deser et al. 2004), centennial (Cobb et al.

2003), and longer time scales (Tudhope et al. 2001). The

nature of future tropical Pacific trends in sea surface

temperature (SST) will shape the response of the large-

scale atmospheric circulation to global warming, with

profound implications for regional hydroclimate re-

gimes (Seager et al. 2009; Seager and Vecchi 2010).
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Despite its importance, the evolution of tropical Pacific

SST under continued anthropogenic forcing is still sub-

ject to considerable uncertainties (Meehl et al. 2007;

DiNezio et al. 2009; Collins et al. 2010; Vecchi and

Wittenberg 2010). Constraining the tropical Pacific’s

sensitivity to greenhouse forcing requires knowledge of

its response to natural (solar and volcanic) radiative

perturbations on decadal to centennial time scales. This

type of problem is well posed for general circulation

models (GCMs; Meehl et al. 2003), provided that their

output can be validated against some estimate of natural

climate variability. Because nonlinearities in the climate

system complicate the separation of responses to natural

and anthropogenic forcing, estimating the envelope of

natural climate variability compels the investigator to

look beyond the onset of the anthropogenic era, which

corresponds to the best-observed interval in Earth’s

history. In the tropical Pacific, the sparse network of

instrumental climate observations rarely extends before

1900 and is marked by considerable discrepancies

between SST datasets (Vecchi et al. 2008; Deser et al.

2010). Adding to this challenge, there exist very few

long, high-resolution paleoclimate records from the area.

Published records from the circum-Pacific region paint

a coarse and heterogeneous picture of its climate of the

past millennium (Moy et al. 2002; Graham et al. 2007;

Conroy et al. 2009; Sachs et al. 2009; Tierney et al. 2010),

illustrating the difficulty of extrapolating large-scale

climate patterns from a select handful of individual

proxy records, and highlighting the need for a unifying

mathematical framework in which all the relevant proxy

data can be synthesized.

Multiproxy reconstructions of tropical Pacific SST

aim to combine the common signals contained in a

comprehensive network of proxy records to provide

continuous, quantitative reconstructions that can be

rigorously compared against radiative forcing histories

and climate model output. Despite several papers pub-

lished to date, there is little consistency among re-

constructions (Gergis et al. 2006). As recently reviewed

by Wilson et al. (2010, hereafter W10), the earliest

attempt combined a dozen annually resolved ENSO-

sensitive proxy records, mostly corals and tree rings,

to reconstruct ENSO variability over the last 300 years

(Stahle et al. 1998). Using a more comprehensive net-

work of 112 annually resolved proxy records (both trop-

ical and extratropical), Mann et al. (2000) produced

Niño-31 reconstructions for the past four centuries, quite

highly correlated to that of Stahle et al. (1998) over their

period of overlap, as expected from the number of

common series (Adams et al. 2003). Evans et al. (2002)

used a network of tropical Pacific coral records to re-

construct the first two modes of tropical Pacific SST,

with limited reliability prior to A.D. 1800 or so. Other

attempts focused on interannual oscillations obtained

from long, replicated tree-ring chronologies (D’Arrigo

et al. 2005) and other records (Braganza et al. 2009;

Gergis et al. 2006; Gergis and Fowler 2009), in lieu of

reconstructing low-frequency (LF) variations. W10 ex-

pand on previous work by considering several carefully

chosen networks of high-resolution tropical records to

reconstruct ENSO using three statistical methods.

However, they explicitly filtered out LF signals from

corals to focus on interannual variations, representing

a limitation with regard to the assessment of LF vari-

ability. Their reconstructions stopped approximately A.

D. 1600, but they report little consistency among the

three methodologies they implemented before A.D.

1800 or so, even with identical proxy networks. This

highlights the need for improved statistical methodolo-

gies and/or more proxies located from the central trop-

ical Pacific to extract robust signals from such networks.

Using a global multiproxy database and a climate field

reconstruction technique, Mann et al. (2009, hereafter

M09) were able to extend a near-global surface tem-

perature field back to A.D. 500, yielding the most

comprehensive picture to date of the climate of the past

millennium. In the tropical Pacific, they found the Niño-3

index to exhibit a slow, millennial-scale warming trend

characterized by a relative cooling during the Medieval

Climate Anomaly (MCA) compared to the Little Ice

Age (LIA), which was absent from the numerical sim-

ulations performed with two coupled GCMs [Goddard

Institute for Space Studies Model E-R (GISS-ER) and

the National Center for Atmospheric Research (NCAR)

Climate System Model, version 1.4 (CSM1.4)]. Because

the method was global and contained a modest number

of records from the tropical Pacific, the Niño-3 signal

depends substantially on large-scale teleconnections

that, in principle, might not be stationary. Its strict re-

liance on continuous records also precludes the use of

some valuable ENSO records (e.g., Cobb et al. 2003).

Indeed, most efforts to date have focused on annually

resolved, continuous proxy records, resulting in a bias

toward tree rings from the extratropics.

In this study, we use a complementary approach to

reconstruct tropical Pacific SST variability over the

past millennium. By focusing on tropical records from

circum-Pacific regions, and by relaxing the requirement

of continuous, annually resolved proxies, we explicitly

target LF tropical Pacific variability, as well as inter-

mittent interannual signals over the past millennium.

1 Defined as the average SST anomaly in the region 58N–58S,
1508–908W.
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We apply the samemethod asMann et al. (2008)—hybrid

regularized expectation maximization (RegEM) trun-

cated total least squares (TTLS), described in section

3b—to reconstruct a widely used ENSO index on annual

to multicentennial time scales. This differs from the

M09 methodology in that we target a single index, not

a climate field. The focus on a single index, although

eliminating spatial information, yields a simpler esti-

mate that better lends itself to sensitivity analyses. It also

allows the simpler composite-plus-scale (CPS) method

(Bradley and Jones 1993; Jones and Mann 2004) to be

used as a point of comparison. In the first part of this

two-part paper, we extensively evaluate both methods

using frozen network and pseudoproxy tests, assessing

the reliability of the reconstructed indices. In the second

part (Emile-Geay et al. 2013, hereafter Part II), we apply

these methods to extend three instrumental datasets

[Extended Reconstructed SST, version 3 (ERSSTv3),

the Second Hadley Centre SST dataset (HadSST2), and

Kaplan SST] over the past millennium. It will be shown

that, to some extent, details of the statistical methodol-

ogy are secondary, and that much of the uncertainty

between these preinstrumental tropical SST reconstruc-

tions stems from discrepancies among the historical SST

analysis products themselves. Nonetheless, they enable

robust conclusions that challenge our current under-

standing of LF tropical Pacific variability, with impor-

tant implications for climate prediction beyond the

interannual scale.

The paper is structured as follows: we start with a de-

scription of the proxy database (section 2) and statistical

methodology (section 3); we then validate both methods

over the historical interval via frozen network analysis

(section 4) and pseudoproxy experiments (section 5).

Results are discussed in section 6, providing an out-

look toward Part II, in which several reconstructions

of Niño-3.4 are analyzed and implications for GCM

representations of the tropical Pacific climate response

to radiative forcing are discussed.

2. Data

a. Target temperature data

To alleviate computational complexity, we focus on

a simple measure of ENSO (the Niño-3.4 index, defined

as the average SST anomaly in the region 58N–58S, 1708–
1208W; e.g., Trenberth 1997). The Niño-3.4 index is

closely related to the first principal component (PC1) of

monthly SST in all three major historical SST analyses:

HadSST2 (Rayner et al. 2006), Kaplan SST (Kaplan

et al. 1998), and ERSSTv3 (Smith et al. 2008). Both

Kaplan and ERSSTv3 use some form of interpolation to

impute missing values when they are missing. Because

HadSST2 does not, we performed the imputation via

the RegEM algorithm (Schneider 2001) with individual

ridge regressions.2 We refer to the resulting dataset as

HadSST2i. Niño-3.4 indices calculated from the three

datasets are plotted in Fig. 1.

Since ENSO reaches its peak amplitude and dis-

plays most pronounced teleconnections during North-

ern Hemisphere winter (Bjerknes 1969; Horel and

Wallace 1981; Ropelewski and Halpert 1987), we an-

nualized datasets by computing December–February

(DJF) averages, where it is understood that January

and February belong to year 0 while December belongs

to year 21, in the terminology of Rasmussen and

Carpenter (1982). To account for the strong decrease

in proxy availability after 1995, our historical period

ends that year. Although the three datasets share a large

fraction of measurements [from the International Com-

prehensive Ocean–Atmosphere Data Set (ICOADS);

Worley et al. 2005], it is clear that the various quality-

control and interpolation strategies lead to significant

discrepancies before approximately A.D. 1950, with

ERSSTv3 displaying notably less variance compared to

the other two datasets, especially before 1877. This is at

odds with documentary accounts (Quinn 1993; Ortlieb

and Macharé 1993; Whetton and Rutherfurd 1994;

DeVries et al. 1997; Davis 2001) and annually banded

coral data (Urban et al. 2000; Evans et al. 2000; Ault

et al. 2009), which depict intense ENSO activity during

that period. TheKaplan SST analysis, on the other hand,

was designed to retain variance of the leading (large

scale) eigenmodes, which sometimes requires over-

writing data entries (Kaplan et al. 2003), and it exhibits

the largest decadal variability before approximately

1875. However, Kaplan et al. (1997) warn that a caveat

of their methodology is to artificially redden the result-

ing SST field; that is, increasing LF variability at the ex-

pense of high-frequency (HF) variability. The HadSST2i

data go back farthest in time (A.D. 1850), albeit with

large amounts of missing values before approximately

A.D. 1950, whose imputation did not overwrite existing

data. Its late-nineteenth-century variability falls be-

tween Kaplan and ERSSTv3 (Fig. 1a).

A look at LF instrumental variability (Fig. 1b) reveals

large discrepancies among Niño-3.4 trends, whose mag-

nitudes vary by more than a factor of 2: the smallest

trend is found for Kaplan SST (0.188C century21),

2 Ridge regression with a data-adaptive choice of regularization

parameter was shown by Schneider (2001) to outperform truncated

total least squares for monthly SST imputations. Such is not the

case with paleoclimate reconstructions, as we shall see shortly.
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followed by HadSST2i (0.388C century21) and ERSSTv3

(0.448C century21). These discrepancies are well docu-

mented (Vecchi et al. 2008; Karnauskas et al. 2009) and

are known to be principally due to differing inter-

polation methods, treatments of satellite-derived data,

and instrumental bias adjustments (Deser et al. 2010;

Yasunaka and Hanawa 2010). Such discrepancies be-

tween instrumental SST data products will prove to be

crucial sources of uncertainty in our estimates ofNiño-3.4

variability before the historical era. However, when-

ever illustration is warranted we use HadSST2i as our

target, as a middle-of-the-road estimate of the histori-

cal Niño-3.4 trajectory.

b. Proxy network

Our network gathers paleoclimate archives from

ENSO-teleconnected regions (Horel and Wallace 1981;

Ropelewski and Halpert 1987; Trenberth et al. 1998)

using the following criteria: (i) located equatorward of

358, (ii) temporal resolution of 5 yr or finer, (iii) absolute

dating uncertainties of less than65 yr, (iv) documented

sensitivity to surface temperature and/or precipitation,

and (v) availability before A.D. 1851 and after A.D. 1974

(though not necessarily continuously). These criteria

being arguably subjective, we screened the network for

significant correlation with the raw Niño-3.4 index (section

3a), providing an objective measure of a proxy series’ rel-

evance to a tropical Pacific climate reconstruction. (The full

proxy database is available online at http://hurricane.

ncdc.noaa.gov/pls/paleox/f?p=519:1:4253936273493430::::

P1_STUDY_ID:13684 and is catalogued in the appendix

in Table A1, with boldface indicating those records that

are significantly correlated with the HadSST2i Niño-3.4

index.) All records are publicly available from the

National Climatic Data Center (NCDC), with one ex-

ception (updated Palmyra record; K. M. Cobb et al. 2013,

unpublished manuscript). The results of the screening

differ slightly for each of the three target SST datasets

used (by at most one series retained).

Our database differs significantly from that con-

structed by M09 in pursuit of global temperature

reconstructions and W10 in pursuit of multiproxy

reconstructions of tropical Pacific climate. M09 consider

records that are continuous and without latitudinal

limits; some sedimentary or speleothem records have

resolutions lower than 5 yr. In contrast, the W10 study

uses continuous, annually or better-resolved tropical

records (corals, tree rings, and ice cores) to reconstruct

Niño-3.4 since A.D. 1650. In loosening the requirement

for continuous, annually resolved tropical proxy data,

FIG. 1. (a) Niño-3.4 index in three major datasets: ERSSTv3 (Smith et al. 2008; red),

HadSST2i (Rayner et al. 2006; blue), and Kaplan SST (Kaplan et al. 1998; purple). Results

shown are DJF averages of monthly data. (b) The 10-yr low-pass-filtered time series; linear

trends are shown in dashed lines of the respective color, with magnitudes given in the figure

legend.
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we seek to provide a more accurate view of decadal- to

centennial-scale tropical Pacific climate variability back

through the MCA. Ours is also the first ENSO recon-

struction effort to incorporate discontinuous series (the

Palmyra and Mafia Island coral and Lake Challa re-

cords) and comprises the latest available data.

Figure 2a displays the geographical distribution of the

proxy database by proxy type. Coral sites are distributed

throughout tropical oceans, mainly the Pacific. Tree-ring

records are mostly confined to areas outside the tropics

where seasonality is large enough for visible annual rings

to enable construction of absolute annual chronologies.

Speleothems are available from caves in several tropical

sites, but none of these records passed the screening test

(section 3a). Tropical ice cores and lake records are lo-

cated farthest from the ENSO center of action, and are

therefore more vulnerable to shifting teleconnections

and/or climate variability not endogenous to the tropical

Pacific. Only one marine sediment core (Black et al. 2007)

contains sufficiently high-resolution data to be included

in our database. After screening for significant Niño-3.4

correlations, only one ice core record (Quelccaya;

Thompson et al. 2006a) is included in the screened proxy

network, which is therefore mostly composed of coral

and tree-ring records (all annually resolved).

The temporal coverage of our proxy network is dis-

played in Fig. 2b. The reader will note the steep decline

in the availability of coral records over time, with vir-

tually no series available prior to A.D. 1650, with the

notable exception of the Palmyra fossil coral chronology

(Cobb et al. 2003), which extends back to A.D. 932, albeit

discontinuously, covering about 600 of the past 1000

years (K. M. Cobb et al. 2013, unpublished manuscript).

3. Methodology

a. Preprocessing

All series were preprocessed according to the following

protocol:

FIG. 2. Proxy database of spatiotemporal characteristics. (a) Location of proxy archives. The Niño-3.4 region is indicated by the black box.

(b) Temporal distribution of proxies.
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d Annualization: Series with subannual resolution were

annualized by extracting the December–March months,

corresponding to the season of most pronounced

ENSO teleconnections. Proxies with a time resolution

coarser than one year were linearly interpolated to

an annual time scale.
d Filtering: We applied a spline filter (Cook and Peters

1981; Weinert 2009) with a 10-yr low-pass cutoff to

generateLF (periods longer than 10 yr) andHF (periods

shorter than 10 yr) proxy networks.
d Completeness: Only proxies available before A.D.

1850 and at least until A.D. 1975 were included, to

ensure a long enough calibration.
d Power transform: Those series that deviated from

Gaussianity were subjected to a power transform

(Box and Cox 1964), a classical way to render them

approximately Gaussian so they can be incorporated

into this parametric statistical framework.
d Screening: Following Mann et al. (2008), we per-

formed reconstructions on both unscreened and

screened predictor networks. Predictors retained by

the screening procedure were those that exhibited a

significant linear correlation with the raw Niño-3.4

index over the calibration period. To gauge signifi-

cance, we performed Monte Carlo tests with an

ensemble of 1000 first-order autoregressive [AR(1)]

processes with identical lag-1 autocorrelation g as the

proxy of interest. The absolute value of the correla-

tion between Niño-3.4 and each red-noise series is

set aside; the 90th quantile of their distribution then

defines an approximate 90% confidence bound against

the null hypothesis that the absolute correlation is

zero.

The effect of screening further reduces the number of

proxy predictors: with a HadSST2i target, the number

goes from 57 to 36 series (see Fig. 2 of Part II). Of those

33 time series, only 3 go back to A.D. 1000. The first is

the PC1 of the Palmer Drought Severity Index (PDSI)

reconstruction from the North American Drought Atlas

(NADA; Cook 2008), including only grid points equa-

torward of 358N.3 The second is derived from a network

of drought-sensitive trees from Chile (Le Quesne et al.

2006). The third is the Lake Challa varve thickness re-

cord of Wolff et al. (2011).

b. Reconstruction methods

There is now a rich history of climate reconstruction

techniques from proxy records; we refer to Jones et al.

(2009) for a recent and comprehensive review. While

few records are available from the tropical Pacific

(strictly defined), one can take advantage of the large-

scale teleconnectivity of tropical climate to observe

ENSO behavior from remote locations (Evans et al.

2002). Indeed, historical use of the term ‘‘teleconnec-

tion’’ itself is intimately tied to the discovery of the

ENSO phenomenon (Walker and Bliss 1932; Bjerknes

1969; Wallace and Gutzler 1981; Horel and Wallace

1981) and its physical basis is well understood (e.g.,

Hoskins and Karoly 1981; Sardeshmukh and Hoskins

1988; Ting and Held 1990; Trenberth et al. 1998; Liu and

Alexander 2007; Seager et al. 2003, 2005). The tropics

(particularly in the circum-Pacific region) are dotted

with ENSO-sensitive sites (Ropelewski and Halpert

1987) where paleoclimate archives can be successfully

used to monitor past ENSO conditions (Evans et al.

2000, 2002). This was also the approach taken in early

ENSO reconstructions (Quinn 1993; Whetton and

Rutherfurd 1994), as well as more recent attempts

(Gergis and Fowler 2009; Braganza et al. 2009), albeit in

a more qualitative sense. Climate reconstruction tech-

niques make use of the same physical relationships but

allow climate anomalies to be quantitatively assessed

from paleoclimate proxies, together with an estimate

of uncertainty. They rest on the assumption that each

proxy records some aspect of tropical Pacific SSTs in an

approximately linear manner, and with a stationary co-

variance structure. These assumptions are testable and

seem to hold to first order (Evans et al. 2000; Sterl et al.

2007; Furtado et al. 2009).

1) HYBRID REGEM RECONSTRUCTION

Following recent work (Mann et al. 2007b, 2008;

M09), we use the RegEM technique (Schneider 2001) in

a hybrid context, that is, reconstructing separately the

high- and low-pass-filtered data (with a frequency split

fs 5 0.1 yr21). RegEM is a variant of the expectation

maximization (EM) algorithm (Dempster et al. 1977;

Little and Rubin 2002) designed for the imputation of

missing values in spatiotemporal datasets typically en-

countered in climatology. It consists of regressingmissing

values over available ones using maximum-likelihood

estimates of themean and covariance matrix of the data.

Its central assumptions are that (i) the data are missing

at random, in the sense that the probability of a data

point being missing is conditionally independent of the

value of the measurement, and (ii) the data are normally

distributed.

The RegEM algorithm has been widely applied to

paleoclimate reconstructions (Mann andRutherford 2002;

Rutherford et al. 2003; Mann et al. 2005; Rutherford

et al. 2005; Mann et al. 2007b, 2008; Riedwyl et al. 2008;

3 This series is closely related to the NADA PDSI PC1 series

used by Li et al. (2011) to reconstruct ENSO variance over time,

the only difference being the latitudinal restriction.
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M09; W10). Smerdon and Kaplan (2007) note that LF

variability is poorly preserved in RegEM when using

Tikhonov regularization [also known as ‘‘ridge re-

gression’’; Tikhonov andArsenin (1977)] but it was shown

that regularization by TTLS (Fierro et al. 1997) is more

robust in this regard (Mann et al. 2007a). A downside to

TTLS is that, unlike ridge regression, a discrete truncation

number—the number of modes retained in the singular-

value decomposition of the augmented data matrix—

must be a priori specified for the proxy network and time

interval at hand. Truncation parameters for both high-

and low-frequency networks were assigned for each

100-yr interval (A.D. 1000–99, A.D. 1100–99, . . . , A.D.

1800–50 based on the criteria of Mann et al. (2008). The

HF truncation level is chosen as the number of ‘‘signif-

icant’’ principal components of the proxy data matrix in

each 100-yr interval (estimated as the number of sin-

gular values of the proxy data matrix that lie above

a least squares fit to the trailing singular values in a log-

linear scree plot). The LF truncation level is chosen so as

to retain at least 33% of the variance in this spectral

range.4 Hence the truncation choice is broadly adaptive

and reflects the need for increased regularization back in

time, when imposed by data sparsity (see Fig. 2b). Just as

minor departures from Gaussianity do not invalidate

normal statistics altogether, the fact that the missing-at-

random assumption is not strictly satisfied in the paleo-

climate context (Smerdon et al. 2008; Tingley et al. 2012)

has been shown by the pseudoproxy studies cited above,

and this study (section 5), to yield reasonable re-

constructions nonetheless.

2) COMPOSITE-PLUS-SCALE RECONSTRUCTION

We also apply the relatively simple CPS methodology

(Bradley and Jones 1993; Esper et al. 2002; Jones and

Mann 2004; D’Arrigo et al. 2005; Wilson et al. 2006;

D’Arrigo et al. 2009) to our proxy network, following

W10,who underscored the value of CPS in reconstructing

ENSO. They restored the mean and variance of each

nest5 to those of themost replicated proxy nest, resulting

in built-in homoskedasticity (maintenance of variance

through time). This was done to avoid the loss of vari-

ance associated with the declining number of proxy

predictors further back in time, but this artificial in-

flation of variance also increases reconstruction bias.

Nevertheless CPS serves as a straightforward counter-

part to RegEM, and will prove to provide comparable

estimates of decadal variability. To ensure meaningful

averaging, we require that at least four proxy series

be available at any given time. This is only the case

after A.D. 1146, so our CPS reconstructions are zero

beforehand.

4. Validation using frozen network analysis

A common way to assess the quality of statistical

predictions is cross-validation (e.g., Hastie et al. 2008).

In our context, it consists of estimating the instrumental

target (here the historical Niño-3.4 index) using proxy

data, when some of the instrumental data is withheld

from the calibration period to compute out-of-sample

prediction error (Wilks 1995). When the diminishing

availability of data with time is taken into account, this

validation exercise is called a frozen network analysis

(FNA; see, e.g., Mann et al. 2007b). Following McShane

and Wyner (2011), we selected contiguous, sliding

holdout blocks as verification sets. The blocks are

45 years long and were slid in 2-yr steps, resulting in

48 blocks covering the A.D. 1857–1995 interval (the

instrumental interval available in all three SST data-

sets). Calibration sets are defined as the complement

of the verification set in the instrumental set; for exam-

ple, an A.D. 1931–75 verification interval corresponds

to a [A.D. 1857–1930]<[A.D. 1976–95] calibration in-

terval. Compared to traditional calibration/verification

exercises (which consider at most two disjoint intervals),

this allows the estimation of a distribution of verifications

scores for each network. We note that only about three

truly independent 45-yr blocks can cover a 145-yr in-

terval, so the effective sample size is lower than 48. We

consider nine time segments to define the networks:

A.D. 1000–99, A.D. 1100–99, . . . , A.D. 1700–99, and

A.D. 1800–50.

To ensure that no information from the verification

sets enters the prediction of Niño-3.4, the proxy

screening process is repeated separately for each block,

using calibration data only. Following standard prac-

tice, we report three statistics as an objective measure

of quality 1) the reduction of error (RE), 2) the ‘‘co-

efficient of efficiency’’ (CE; Briffa et al. 1988; Cook

et al. 1994),6 and 3) the coefficient of determination R2

(e.g., Wilks 1995) (the square of Pearson’s product

moment correlation). For observed and estimated time

series z and ẑ,

4 Mann et al. (2008) actually used a 50% cutoff, but our tests and

those of M09 proved 33% to yield more robust reconstructions.
5 Defined as an interval over which proxy availability stays

constant.

6 As noted by Bürger (2007), this statistic is not in fact the ‘‘co-

efficient of efficiency’’ proposed by Nash and Sutcliffe (1970), but

has nevertheless become known under this name in dendrochro-

nology and paleoclimatology.
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RE5 12

�
N

i51

(z2 ẑ)2

�
N

i51

(z2mc)
2

and (1)

CE5 12

�
N

i51

(z2 ẑ)2

�
N

i51

(z2my)
2

, (2)

where mc and my are the means of z over the calibration

and verification intervals, respectively. A perfect re-

construction will exhibit unit scores, but there is debate

as to which scores delineate a ‘‘skillful’’ reconstruction.

Ammann and Wahl (2007) point out that R2 is often

an inadequate metric of LF skill, being overly prone to

false negatives and false positives, so its results should

be viewed with caution. The most stringent of the three

metrics is CE, which by definition is always less than

RE. Bürger (2007) showed that CE, which rewards

reconstructions tracking shifts in the mean with appro-

priate amplitude, derives from a skill score (Wilks 1995).

RE does not, but has a more natural interpretation as

the amount of variance captured by a reconstruction,

with the caveat that stationary stochastic processes

can produce positive RE scores by chance alone.

To gauge the influence of persistence on validation

scores, we perform 1000 Monte Carlo simulations with

random time series fitted to the instrumental target (at

both high and low frequencies). The chosen model is a

second-order autoregressive [AR(2)] method, chosen

using the ‘‘ARfit’’ algorithm (Schneider and Neumaier

2001). From these distributions we extract the 95%

quantile, yielding the critical values REcrit, CEcrit, and

R2
crit (Table 1).

a. RegEM validation

Distributions of RE scores for the frozen network

analysis are shown in Fig. 3 for a HadSST2i target. Total

scores are seen to remain relatively constant over time,

in the vicinity of 0.5. This is primarily explained by the

TABLE 1. Results of the FNA: median scores. The reconstructions were performed on all three instrumental targets using screened

networks. Header indicates a nest’s starting year. Critical values (‘‘Crit’’) reported here are the 95% quantiles of distributions obtained

with AR(2) predictors fit to each instrumental target.

Case Metric 1800 1700 1600 1500 1400 1300 1200 1100 1000 Crit

High frequency

ERSSTv3, TTLS RE 10.73 10.69 10.59 10.52 10.58 10.61 10.67 10.64 10.48 20.22

CE 10.73 10.69 10.59 10.52 10.58 10.61 10.67 10.64 10.48 20.22

R2 10.73 10.69 10.61 10.56 10.62 10.62 10.69 10.67 10.53 10.15

HadSST2i, TTLS RE 10.73 10.69 10.60 10.52 10.59 10.67 10.65 10.65 10.47 20.24

CE 10.73 10.69 10.60 10.52 10.59 10.67 10.65 10.65 10.47 20.25

R2 10.73 10.70 10.61 10.54 10.62 10.67 10.69 10.67 10.54 10.15

Kaplan, TTLS RE 10.73 10.73 10.65 10.54 10.61 10.66 10.68 10.66 10.44 20.22

CE 10.73 10.73 10.65 10.54 10.61 10.66 10.68 10.65 10.44 20.22

R2 10.75 10.74 10.69 10.57 10.62 10.67 10.73 10.71 10.53 10.15

Low frequency

ERSSTv3, TTLS RE 20.24 20.09 10.17 20.46 20.41 20.33 10.16 20.13 20.57 10.20

CE 20.31 20.22 20.14 21.36 21.25 21.05 10.03 20.33 21.20 10.02

R2 10.13 10.20 10.36 10.23 10.18 10.29 10.39 10.29 10.24 10.54

HadSST2i, TTLS RE 20.08 20.01 10.42 20.27 20.24 20.08 10.34 10.07 20.32 10.16

CE 20.15 20.14 10.29 20.46 20.41 20.17 10.27 10.02 20.44 10.06

R2 10.19 10.32 10.48 10.32 10.22 10.35 10.49 10.43 10.34 10.52

Kaplan, TTLS RE 10.08 10.12 10.24 10.26 10.16 10.27 10.18 10.23 10.04 10.23

CE 20.15 20.19 10.08 10.14 10.04 10.12 10.11 10.12 20.22 10.11

R2 10.35 10.37 10.37 10.34 10.30 10.37 10.48 10.49 10.36 10.53

Total

ERSSTv3, TTLS RE 10.66 10.60 10.56 10.41 10.47 10.54 10.63 10.57 10.34 20.28

CE 10.65 10.60 10.54 10.39 10.46 10.50 10.62 10.54 10.31 20.31

R2 10.70 10.67 10.58 10.51 10.55 10.62 10.66 10.64 10.49 10.13

HadSST2i, TTLS RE 10.69 10.66 10.60 10.46 10.52 10.58 10.65 10.61 10.38 20.31

CE 10.68 10.65 10.60 10.46 10.51 10.57 10.64 10.60 10.38 20.32

R2 10.73 10.70 10.61 10.49 10.57 10.64 10.68 10.65 10.53 10.14

Kaplan, TTLS RE 10.69 10.67 10.62 10.51 10.54 10.60 10.64 10.61 10.43 20.31

CE 10.69 10.67 10.61 10.50 10.53 10.59 10.63 10.61 10.41 20.34

R2 10.73 10.73 10.66 10.53 10.56 10.62 10.69 10.67 10.50 10.13
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large HF scores, while LF scores fluctuate widely. The

fact that median RE scores do not increase monoton-

ically as proxy networks grow denser may be due to

several factors: colinearity (redundancy) between prox-

ies, overfitting to noise, or an overly simplistic statistical

model—we cannot distinguish among these possibilities.

Solid lines represent scores obtained with screened

proxy networks, and generally show more skill in the

post-A.D. 1600 period, whichmeans that these problems

are partially mitigated by the screening procedure. Still,

screened-network LF RE scores only breach zero for

three networks: A.D. 1100, A.D. 1200, and A.D. 1600. A

potential problem in the assessment of LF skill by FNA is

the shorter calibration period, reduced from 145 to 100 yr

(ERSSTv3 and HadSST2i) and from 139 to 94 yr (Ka-

plan) compared to a real reconstruction. This questionwill

be explored using pseudoproxy experiments in section 5c,

where it will be argued that LF scores are systematically

underestimated by FNA compared to what would be

obtained from longer calibration and verification periods,

and the uncertainties are thereby increased.

A more comprehensive picture is offered in Fig. 4,

which assesses screened reconstructions for all three

targets. Since R2 often fails to discriminate between

good and poor reconstructions, only the median RE

and CE scores are reported here for conciseness, al-

though all three statistics are reported in Table 1.

Sensitivity tests (not shown) demonstrate that the re-

sults are not sensitive to small (5–10 yr) variations in

the length of the verification period or the overlap

between blocks, as long as a few decades are available

for verification.

Several results are noteworthy:

d Critical values of RE and CE are usually negative,

except at low frequencies, where they reach up 0.23

FIG. 3. The FNA of RE scores of RegEM HadSST2i reconstructions, for century-by-century networks and by spectral band (LF, HF,

and total). Plots represent distributions obtained by kernel density smoothing of the raw histogram, with a bandwidth of 0.1. Solid lines

represent scores obtained with screened proxy networks, while dash–dotted lines correspond to unscreened networks. Vertical dashed

lines depict the median of the LF distributions.
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(Kaplan). Critical R2 scores are on the order of 0.5 for

LF, and 0.13 for total scores.
d Consistent with previous work, verification scores do

not necessarily improve as denser networks of pre-

dictors are used, confirming the impression gleaned

from Fig. 3. The RE or CE scores do not increase

monotonically over time with any target.
d The HF verification scores considerably exceed the

critical values for all metrics for all networks. This

generally good performance is due to the fact that

Niño-3.4 displays most of its variance in the interan-

nual band, which is also where the signal-to-noise ratio

is highest in most proxy measurements. Accordingly,

we find that total scores are always above critical

values even when LF scores are not, which may

overstate our true confidence in the reconstructions’

quality given the presence of age uncertainties in the

preinstrumental era.

As a consistency check, we analyzed regression re-

siduals for randomly selected verification periods. Re-

siduals were tested for Gaussianity via the Spiegelhalter

test (Spiegelhalter 1983) and for autocorrelation via

the Durbin–Watson test (Durbin and Watson 1951;

Kanzler 1998) (not shown). Skillful reconstructions

generally exhibit test p values exceeding 0.05, indi-

cating that residuals are statistically indistinguishable

from uncorrelated, Gaussian residuals at the 95% level.

Conversely, reconstructions that do not pass the CE or

RE thresholds consistently exhibit non-Gaussian and

autocorrelated residuals, confirming the poor quality of

such predictions.

b. CPS validation

In Fig. 5 we plot the RE score for the CPS recon-

structions. By design, CPS rescales the composite in

each nest (which changes every time a proxy drops in

FIG. 4. The FNAof median verification scores for all three targets. Solid bars represent the RE statistic, and open bars represent the CE

statistic. The REcrit is depicted by the dashed lines, driven by the persistence of eachNiño-3.4 index. Because CEcrit is always negative, it is

not shown. Any score above the critical value indicates a skillful reconstruction by this metric.
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or out of the network), so an RE value is computed for

each such nest (sometimes as short as a few decades).

The reconstructions display consistently positiveHFRE

scores (about 0.6, like RegEM reconstructions) for all

times after A.D. 1150. In contrast, LF RE scores are

mostly insignificant, indicative of skill-less re-

constructions—a result found to stem from poor esti-

mates of the mean in each nest. That CPS should fail to

reconstruct centennial variability is not surprising given

that it centers composites at every nest, thereby erasing

the previous nest’s memory with regard to the mean.

Therefore, one can only expect CPS to perform well on

time scales shorter than the average nest size. For cen-

tennial variability to be skillfully reconstructed with

CPS, one would need to employ proxy series available

continuously through several centuries, not on a network

characterized by a progressive dropout of proxy series

back in time, such as ours (Fig. 2). Furthermore, CPS

implicitly assumes that each proxy has an equal say in

the final reconstruction, and that the central limit theo-

rem will take care of reducing errors. Since every proxy

expresses Niño-3.4 variability in different ways, the very

structure of the regression framework enables it to cap-

ture such differences, unlike CPS. These limitations lead

us to favor RegEM for LF reconstructions, though CPS

reconstructions will provide a useful reference point in

Part II.

c. Synthesis

Overall, we derive four major conclusions from this

exercise:

1) In the absence of dating errors, our network enables

the skillful reconstruction of Niño-3.4 interannual

variance with RegEM and CPS, typically around

60% thereof. In accordance with previous studies, we

find LF variability relatively more difficult to re-

construct because most of the signal is in the inter-

annual (ENSO) band.

FIG. 5. As in Fig. 4, but using FNA of Niño-3.4 CPS reconstructions for RE only.
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2) The RegEM solutions capture LF variability more

skillfully than CPS in all cases, but LF scores vary

strongly with the target SST dataset.

3) For all three targets, screened networks generally

improve prediction skill.

Differences in median total RE scores are overall

fairly minor (Fig. 4, rightmost column), and one may ask

whether they are statistically significant given the width

of the distributions (illustrated in Fig. 3). A caveat of

frozen network approaches is that the length of the

calibration period is reduced from ;150 to ;100 yr,

which affects both the screening process (tending to

select a slightly different list of proxies than when

screening over the entire historical interval) and the

ability to capture centennial-scale variability. These

considerations may result in overly conservative con-

clusions in regards to LF skill. Conversely, neglecting

the dating errors likely leads to an overly optimistic

assessment of HF skill. We now turn to pseudoproxy

experiments for a complementary appraisal of our

methodology.

5. Validation using pseudoproxy experiments

a. Experimental design

Although the previous analysis constitutes an impor-

tant crosscheck of the methodology, it only evaluates its

performance vis-à-vis the decreasing number of pre-

dictors back in time (i.e., the network depopulation).

Pseudoproxy experiments (PPEs; Smerdon 2012) offer

another useful benchmark: the numerical laboratory

provided by long integrations of coupled general circu-

lation models (CGCMs), wherein the effects of sto-

chasticity, varying proxy quality, and frequency-specific

calibrations can be investigated (Mann and Rutherford

2002; von Storch et al. 2004; Mann et al. 2005, 2007b;

Hegerl et al. 2007; Küttel et al. 2007; Riedwyl et al. 2008;

Smerdon et al. 2010b, 2011).7

Here we use the pseudoproxy framework to test the

robustness of the hybrid RegEM reconstruction of

Niño-3.4, using the output of two 1156-yr-long GCM

simulations with the NCAR Community Climate Sys-

tem Model, version 4.0 (CCSM4.0), CGCM:8

1) LM: A simulation of the last millennium forced with

estimates of volcanic and solar forcing, covering the

A.D. 850–2005 period.

2) PI:Anunforced simulation of the lastmillennium, using

fixed A.D. 1850 top-of-the-atmosphere conditions.

These components follow phase three of the Paleo-

climate Modelling Intercomparison Project (PMIP3)

protocols for last millennium experiments described in

Schmidt et al. (2012). Their implementation in CCSM4.0

is documented by Landrum et al. (2013). The model’s

simulation of tropical Pacific climate is described ex-

tensively in Deser et al. (2012). It is characterized by

a realistic seasonal evolution of atmospheric and oceanic

fields, realistic asymmetry between El Niño and La Niña

events, and a realistic pattern of teleconnections. In-

terannual ENSO amplitude, however, is overestimated

by approximately 30%, while the decadal component is

weaker than observed and displays subdued extra-

tropical linkages. The LF variability in the PI control

simulation must be intrinsically generated by the cou-

pled system, since it is not subjected to changing external

forcings such as greenhouse gas concentration, volcanic

aerosols, or solar irradiance variations. This permits an

assessment of Niño-3.4 reconstruction skill in the face of

intrinsically generated global variability only.

Simulated Niño-3.4 spectra are plotted in Fig. 6,

alongside instrumental Niño-3.4 spectra from the three

historical SST analyses under consideration. In addition

to the points mentioned above, it can be seen that the

three instrumental spectra indeed fall in between the

LM and PI end members at centennial scales, and that

the magnitude of their centennial variability scales like

the linear trends of Fig. 1. The greater multidecadal

variability in the instrumental records could be due in

part to anthropogenic aerosol forcings, which are omit-

ted from the PI control simulation and enter into the LM

simulation only at the end of the time series. The ENSO-

band variability is quite realistic in both simulations, but

overly energetic at the quadrennial scale, particularly in

LM. This greater ratio of HF (interannual) to LF vari-

ability in the simulations must be kept in mind to in-

terpret our results.

In seeking to construct meaningful pseudoproxy ex-

periments to test our methodology, a few points deserve

consideration:

d Contrary to the usual assumption used in PPEs, many

proxies in our network were selected on the basis of

their correlation to Niño-3.4 SST, not local SST. This

is particularly true of coral d18O records, which often

record stronger hydrological than thermal signals

(Gagan et al. 2000) but can nevertheless faithfully

reconstruct large-scale SST patterns by virtue of the

7 We note that an error in model gridbox locations impacted

conclusions of Mann et al. (2005, 2007b) bearing specifically on

Niño-3 reconstructions (Smerdon et al. 2010a), but it left the

overall conclusions of the study unchanged (Rutherford et al.

2013). None of those results are relevant to the present study and so

should not be used as a point of comparison.
8 To be consistent with our reconstruction choices, only theA.D.

1000–1995 period DJF averages will be analyzed here.
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strong coupling between tropical SSTs and rainfall

(Evans et al. 1998). Our network must thus reflect this

diversity of physical controls.
d In the absence of forward models calibrated to each

proxy, a simplifying assumption must be made to con-

struct pseudoproxies P at each location x and time t.

We follow previous studies (e.g., Mann et al. 2007b;

Christiansen et al. 2009; Smerdon et al. 2010b, 2011) in

using a white-noise model:

P(x, t)5V(x, t)1 j(x, t)/SNR, (3)

where V(x, t) is the controlling physical variable,

j(x, t) is a realization of a Gaussian white noise with

zeromean and unit variance, and SNR is the signal-to-

noise ratio (SNR 5 ‘, 1.0, 0.5, and 0.25).
d The V(x, t) was assigned as follows: all corals are

assumed to record local temperature; ice cores and

speleothems are assumed to record (power trans-

formed) precipitation; tree-ring records are assumed

to record drought conditions as described by the

PDSI; Lake Challa varve thickness (Wolff et al. 2011)

is controlled by zonal wind, while Cariaco basin

Mg/Ca (Black et al. 2007) is controlled by local

temperature.
d By consistency with our methodology, we screen each

pseudoproxy for a significant correlation to the target

Niño-3.4.
d Given the rapid decrease in proxy availability over

time (Fig. 2), and the marked temporal dependence

of verification statistics (section 4), it is clear than

any realistic pseudoproxy network should exhibit a

similar pattern of temporal availability. To do this, we

rank the screened pseudoproxies by their correlations

to the simulated Niño-3.4. Similarly, we rank the

screened real proxies by their correlations with

HadSST2i Niño-3.4 SST over the historical epoch.

Then we pair up the pseudo- and real proxies by rank,

and assign the temporalmask from the real proxy to its

rank-partner pseudoproxy. We generate a reconstruc-

tion using the masked pseudoproxies, as we do for real

proxies. This process is repeated 200 times for each

noise level.

These features make our PPEs more realistic than

previous studies in some respects and less so in others.

FIG. 6. Multitaper spectrum of Niño-3.4 index in the CCSM4.0 LM and PI simulations, together with spectra of

the corresponding index derived from historical SST analyses (ERSSTv3, HadSST2i, and Kaplan) over the period

A.D. 1857–1995. The spectra are variance preserving, in the sense that, upon transforming the ordinate to a linear

scale, the area under each curve would sum to the total variance. They were obtained via the multitaper method of

Thomson (1982) with a half-bandwidth of 4. Numbers across the top refer to the period in years.
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On the one hand, the design takes advantage of the fact

that real-world proxies record a range of physical var-

iables (not just temperature) related to Niño-3.4 SST

via teleconnections, which are allowed to evolve with

the model’s climate state. It is also the first (to our

knowledge) to factor in real-world proxy availability.

On the other hand, our setup radically simplifies the

physical controls on each proxy, neglecting the multi-

variate nature of most proxy systems (with attendant

constructive or competing effects between variables),

especially those involving oxygen isotopes. While

this design is far from ideal, it is a step toward a

more comprehensive treatment, whichmust ultimately

involve high-quality GCM simulations coupled to

validated forward models of proxy formation. At

present, biased GCMs and incomplete (or non-

existent) forward proxy models limit our ability to

assess paleoreconstruction skill. However, our study

emphasizes important questions that can help guide

future work.

The synthetic and actual proxies are compared in

Fig. 7, where it is evident that the pseudoproxy design

tends to overestimate true correlations for some proxies

and underestimate them for others. Note also that for

sufficiently low correlations, the addition of noise to the

local climate variable sometimes acts to increase abso-

lute correlations to Niño-3.4 above their noise-free ref-

erence level. Hence, pseudoproxies constructed with

FIG. 7. Observed and simulated correlations with Niño-3.4. Symbols mark the median of the ensemble for pseudoproxies, while

horizontal bars depict 95% confidence intervals about this median. Red symbols mark the absolute value of observed correlations

(Table A1), and the shape of each symbol indicates proxy type. Records are ranked in decreasing order of jr‘j, the correlation of

pseudoproxies to the CCSM LMNiño-3.4 index in the SNR5 ‘ case. Numbers in cyan refer to those proxy records that were retained

by the screening process (boldface numbers in Table A1). The text column on the rhs lists site; measurement type; and controlling

variable. The TRW stands for tree-ring width. Controlling variables are surface air temperature (sat), PDSI, (power transformed)

precipitation (pcp), and zonal wind speed (uwind). Note that pseudoproxy correlations do not correspond in detail to real-world

correlations, although the case SNR 5 1.0 is closest overall to capturing the evolution of absolute correlations through time (Fig. 9,

described below).
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SNR 5 1.0 may exhibit slightly higher correlations than

those constructed with SNR5‘ for proxy indices above

20 or so, although their median value is much lower than

for SNR 5 ‘. In the extreme case where noise-free

correlations are close to nil (index above 45 or so), the

majority of noise realizations for all other SNRs exhibit

higher absolute correlations than for SNR 5 ‘; this is,
however, not sufficient to make them significant, so they

are always screened out of the pseudoproxy pool and so

do not contribute to the reconstructions.

A spatial view of such correlations is presented in

Fig. 8. As expected, the higher the SNR, the more

proxies prove significant in each noise realization. Given

the discrepancies noted above, however, one may ask

which SNR case, if any, constitutes the closest analog to

the observed Niño-3.4 signal strength. Overall, the his-

togram of observed absolute correlations to Niño-3.4

(not shown) is most comparable to the SNR 5 1.0 case.

This notion is confirmed by looking at the effective SNR

over time—that is, the collective ability of the pseudo-

proxy network to capture a relationship to Niño-3.4 over

time in a manner that mimics reality. To quantify this,

we define the partial SNR as

SNR
(i)
Ni~no-3:45

riffiffiffiffiffiffiffiffiffiffiffiffiffi
12 r2i

q , (4)

where ri is the absolute correlation of the ith proxy (or

pseudoproxy) to Niño-3.4. This expression—only valid

for standardized variables—is a direct consequence of

the definition of the pseudoproxies and the linearity of

the correlation operator. The effective SNR is then the

sum of all partial SNRs for all proxies available at

a given point in time. It is plotted in Fig. 9, which shows

the network SNR 5 1.0 to be most comparable to the

observed network.

b. Results: High- and low-frequency performance

We compute the RE and CE statistics for the raw

and low-pass-filtered time series over the A.D. 1001–

1850 verification interval (with respect to an A.D.

1851–1995 calibration), and display the results in

Fig. 10 for the LM simulation and in Fig. 11 for the PI

simulation. As in the previous section, we tested our

results against distributions drawn from an ensemble

of noninformative predictors, taken as 1000 realiza-

tions of an AR(2) process fitted to the target Niño-3.4.

Hence, a good reconstruction should exhibit both

RE . 0 and beat the noninformative prediction (in

the sense that its sampling distribution of RE and CE

scores should be to the right of the noninformative

prediction, with little to no overlap). To account for

the effects of stochasticity, 200 random realizations of

the noise matrix were generated, yielding 200 inde-

pendent pseudoproxy tests. This large ensemble size is

important in order to derive the most general conclu-

sions (Christiansen et al. 2009; see also Rutherford

et al. 2010).

FIG. 8. Correlations of each pseudoproxy with Niño-3.4 for each SNR case (‘, 1.0, 0.5, and 0.25) in the forced (LM)

simulation. The color scale refers to the median absolute correlation. Circles outlined in black denote sites that

exhibit significant correlations in at least 100 of the 200 noise realizations.
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In the LM case, the total and LF RE scores beat

noninformative predictors at reconstructing Niño-3.4

in all cases but SNR5 0.25, and the SNR5 1.0 rivals or

even exceeds the SNR 5 ‘ case (Fig. 10). That per-

formance should increase despite a decrease in SNR

deserves an explanation: it is a consequence of the fact,

discussed above, that sampling variability may at times

increase a noisy pseudoproxy’s correlation to Niño-3.4

above its noise-free value, hence marginally improving

the effective network quality. The case most com-

parable to the real network (SNR 5 1.0) displays

relatively high LF RE scores (median 5 0.75), but

important variance losses are apparent, as is a tendency

for a warm bias confirmed by the negative LFCE scores

(median 5 20.3; not shown). This bias is due to the

presence of a strong trend over the calibration interval,

which is the warmest period of the whole interval.

In the PI case, reconstruction skill is comparable for

the raw Niño-3.4 (Fig. 11b) but drastically lower at LF

(Fig. 11c). This is not surprising, as LF variability is

subdued in the PI simulation, and hence is not detect-

able by a sparse pseudoproxy network. That total RE

scores should be similar to the LM case underscores the

dominance of interannual variability in the CCSM4.0,

with or without forcing. Given than the magnitude of

LF variability in all three instrumental products (Fig. 6)

is bracketed by those two end members, we can expect

the LM case to provide an upper bound, and the PI case

a lower bound, on LF skill.

To visualize performance in frequency space, Fig. 12

shows the multitaper method (MTM) spectra of the

target and reconstructed Niño-3.4 indices for SNR 5
1.0. In the LM case, a large overlap between the 95%

confidence regions indicates that reconstructions ac-

curately depict the target Niño-3.4 spectrum out to

periods of approximately 10 yr. For all lower fre-

quencies, the reconstructions systematically underes-

timate variability, as expected from the ‘‘regression

dilution’’ phenomenon (Frost and Thompson 2000).

This effect is likely to be at play in real-world recon-

structions as well. In the PI case, the lack of substantial

multidecadal to centennial variability is accurately

captured by the reconstructions, albeit generally with

incorrect phase, as attested by the poor reconstruction

statistics (Fig. 11). The reconstructions also correctly

capture the spectral signature of variability at periods

shorter than 10 yr, but slightly underestimate it in the

10–20-yr range.

Extending these results to the real world raises a

few issues. First, the pseudoproxy model used here is a

simplistic representation of how climate information is

incorporated into proxy data. Second, there is no way

of knowing which of the two GCM end members is

closer to the true tropical Pacific climate. The existence

FIG. 9. Effective network quality expressed as the Niño-3.4 SNR [Eq. (4)] for the observed

and four pseudoproxy networks (after infilling the data matrix over the instrumental interval

to ensure homogeneity). For the observed SNR, absolute correlations were computed using

the HadSST2i Niño-3.4 index.
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of important LF variability in many sedimentary re-

cords of ENSO (cf. section1) tends to suggest that

real variability was—regardless of its cause—closer in

character to the LM-forced simulation than the PI

simulation, implying that for realistic SNR values,

RegEM TTLS should yield skillful reconstructions

for both high and low frequencies using the available

proxy network. Finally, dating uncertainties in real

proxy records are expected to deteriorate HF (in-

terannual) skill relative to the pseudoproxy case, but

the effect is expected to be negligible at longer periods

due to our stringent dating control (5 yr or finer).

So while our reconstructions will likely underestimate

the very long-term (millennial) trends, these results

suggest that they should faithfully capture decadal to

centennial oscillations, albeit with inevitable variance

losses (i.e., for RE 5 0.5, the amplitude will be dam-

ped by a factor of
ffiffiffi
2

p
, but the phase will be correctly

estimated). This claim of a faithful reconstruction

of LF signals, however, is at odds with the frozen

network analysis of section 4, a problem to which we

now turn.

c. Results: Accuracy of frozen network analyses

The PPE framework permits an evaluation of how

FNA captures the true distribution of verification

scores in an internally consistent manner. Here we wish

to quantify the ability of calibration/verification exer-

cises to quantify reconstruction skill when the answer

is independently known and many noise realizations

are available. To do this, we repeat the analysis of

section 4 on the LM and PI Niño-3.4 targets, using the

same protocol as above. We assume that only 145

years of ‘‘instrumental’’ data are available, partition them

between 100-yr-long calibration set and 45-yr-long verifi-

cation sets as before, and perform FNA on those sets. We

then compare them to the true distributions of RE scores

obtained with a 145-yr-long calibration and 100-yr-long

verification intervals (A.D. 1000–99, A.D. 1100–99, . . . ,

A.D. 1800–50). Because the two types of distributions are

FIG. 10. Pseudoproxy validation of RegEM TTLS with CCSM4.0 LM target. (a) The 20-yr low-pass-filtered time

series of target Niño-3.4 (red) and reconstructions based on the four proxy networks (SNR 5 ‘, 1.0, 0.5, and 0.25)

corresponding to themedian of the LFREdistribution for each SNR.Numbers in the legend refer to total and LFRE

scores for the plotted reconstruction, respectively. (b) Distribution of total RE scores. (c) As in (b), but for LF RE

scores.
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evaluated from samples of different size, we apply a

kernel density smoothing with a bandwidth of 0.1 to re-

move granularity arising from sampling variability. For

brevity, we only describe the SNR5 1.0 case, but results

are qualitatively similar for all noise levels.

The LM results are shown in Fig. 13 for RE scores

(similar conclusions hold for CE scores). Pseudoproxy

(PP) verification scores (dash–dotted lines) are seen

to worsen gradually over time, as expected from net-

work depopulation (Fig. 9). Yet the FNA distributions

(solid lines) are consistently shifted left of the PP dis-

tributions, especially at low frequencies, whereas HF

distributions overlap largely with their PP counterparts,

sometimes slightly under- or overestimating them. The

only exceptions are the A.D. 1000–99 and A.D. 1100–99

nests, where FNA overestimates total skill. However,

since their median never breaches zero, one would

judge such reconstructions unreliable regardless of

the assessment method. Interestingly, median LF PP

RE scores for the forced simulation are high (.0.7)

for all networks after A.D. 1200, so the total scores

presented in Fig. 10 are brought down by the two

earliest nests.

In the PI case (not shown), the opposite happens at

LF: FNA tends to overestimate LF RE distributions,

but in no instance do RE scores rise above zero, in-

dicative of skill-less reconstructions. Because of the

lack of substantial LF variability in this simulation,

distributions of HF and total variability largely co-

incide, consistent with previous findings, and in all

cases those scores are significantly underestimated by

FNA compared to PP.

These results suggest that FNA can significantly err

in its estimation of verification skill, especially at low

frequencies. The case of most interest is LM, where

LF variability is most comparable to that observed, and

for which LF skill is consistently underrepresented

in FNA compared to the PP case (by about 0.3 units

overmost nests). Although the aforementioned caveats

limit these results’ direct application to our real-world

FNA (section 4), they suggest that reconstruction

skill is generally underestimated by this assessment—

presumably because of the low number of degrees of

freedom available for calibration and/or verification.

Note, however, that the FNA samples are not inde-

pendent (two neighboring verification periods share

FIG. 11. As in Fig. 10, but with the CCSM4.0 PI target.
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95% of data in common), so their size and spacing must

reflect a compromise between sample size and the degree

of overlap. We find that 30-yr holdout blocks advocated

byMcShane andWyner (2011) are even less suited to the

estimation of LF skill, and that increasing the spacing to

5 yr does not qualitatively affect our results. Overall, the

chosen block size (45 yr) and spacing (2 yr) were found

by trial and error to yield the least biased assessments of

skill, although this bias remains strong. Finally, using an

unscreened proxy network yields almost identical re-

sults, indicating that the short screening period used in

FNA is not responsible for the lower LF skill.

6. Discussion

In this first part, we have set the stage for multiproxy

reconstructions of tropical Pacific SST (Niño-3.4 index)

over the past millennium. Using a network of accurately

dated paleoclimate proxies back to A.D. 1000, we pre-

sented two largely independent methodologies (RegEM

and CPS), which were validated by systematic cross-

validation exercises and (for RegEM) pseudoproxy

studies.

The frozen network experiments raised several key

points: first, all methods used here are vulnerable to

noise in the data, so adding more proxy predictors does

not necessarily reduce out-of-sample prediction error

as measured by the RE, CE, or R2 statistics. Efforts are

underway to devise more robust and accurate statistical

methods tailored to this problem. Second, we found LF

(decadal and longer) variability inherently harder to

reconstruct than HF (interannual) variability, consis-

tent with previous studies (Gergis et al. 2006; Braganza

et al. 2009; W10). Although we found that in all cases

skillful LF reconstructions could be obtained back to

A.D. 1200 with a HadSST2i or ERSSTv3 target (A.D.

1000 with a Kaplan target), FNA skill scores are far

from uniform in time and are highly dependent on the

instrumental target. This result is surprising and un-

derscores the need for a better understanding of the

divergence between SST data products at decadal to

centennial time scales. Third, we found RegEM TTLS

to be more skillful at reconstructing LF fluctuations

than CPS, although HF skill was comparable between

the twomethods, with a slight advantage for RegEM. This

leads us to favor the latter method in the millennium-

long reconstructions of Part II. An important caveat of

the frozen network framework is that it may compro-

mise the quality of centennial-scale calibration by

shortening the calibration and verification periods,

FIG. 12. Spectral characteristics of pseudoproxy reconstructions (SNR 5 1.0). Variance-

preservingMTM spectra are shown as in Fig. 6. Yellow and grey shaded regions represent error

at a 95% confidence interval obtained via x2 estimates under ergodic, Gaussian assumptions.

Blue dashed lines show the 95% confidence interval from the pseudoproxy ensemble of re-

constructions, whose median is represented by the solid blue line. Numbers across the top refer

to the period in years.
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thereby providing an overly pessimistic assessment of

the quality of LF reconstructions based on longer train-

ing and verification periods. This is cause for concern,

because cross-validation exercises of this type are cur-

rently the only way to evaluate the reliability of real-

world climate reconstructions, and our results suggest

that this may be very difficult with inevitably short cali-

bration/verification periods. Furthermore, the frozen

network exercise is inherently oblivious to the growth

of proxy age uncertainties with time. Because slight

offsets between proxies can readily cause destructive

interferences between interannual signals, ignoring them

will tend to overestimate HF reconstruction skill in

preinstrumental times. However, this problem is alle-

viated at low frequencies given a dating control of 5 yr

or better.

We further probed RegEM’s performance via a suite

of realistic pseudoproxy tests using two different GCM

simulations of the past millennium, one driven by best

estimates of solar and volcanic forcing (LM) and the

other driven by constant forcing (PI). The range of

tropical Pacific variability spanned by these two cases

was meant to bracket nature’s behavior, and indeed

encompasses the behavior of the three instrumental

Niño-3.4 time series considered in this study (Fig. 6).

Our pseudoproxy design incorporates key aspects of

the real network, including the decreasing availability

of predictors back in time, and uses pertinent climate

fields as input for the pseudoproxies. It does, however,

make very stringent assumptions regarding the phys-

ical controls of each proxy, sometimes overestimating

and sometimes underestimating their relationship to

Niño-3.4. The case of most interest (SNR 5 1.0) sug-

gests that about 40% of the total Niño-3.4 variance

(75% of LF variance) can be reliably reconstructed

back in time, consistent with frozen network experi-

ments, although with important variance losses at LF

and a warm bias induced by the presence of a strong

trend over the calibration interval. The large LF RE

scores found in this case very likely constitute an

upper bound on the real-world performance of our

network and method. Discrepancies between FNA and

FIG. 13. The FNA Frozen network analysis with LM pseudoproxies in the SNR 5 1.0 case. Plots represent distributions obtained by

kernel density smoothing of the raw histogram for each century, with a bandwidth of 0.1. Solid lines represent the FNAdistributions (short

calibration), while dash–dotted lines represent the PP distributions (long calibration). (cf. Fig. 3).
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PPEs are partially reconciled by considering the in-

ability of FNA to approximate the true PP distributions

(section 5c).

Nevertheless, important caveats limit the applica-

tion of those results to the real world: 1) the spectral

characteristics of each GCM’s simulated Niño-3.4

(none of which emulate instrumental estimates) and

2) the simplicity of the pseudoproxy design. The first

point highlights the necessity of using as realistic a

GCM as possible in pseudoproxy tests. Millennial in-

tegrations run as part of the PMIP3 project (see https://

pmip3.lsce.ipsl.fr/wiki/doku.php/pmip3:design:lm:final)

are bringing the most comprehensive models to bear on

the simulation of the tropical Pacific response to natural

forcing over the past millennium, and a similar analysis

conducted over a wider ensemble of simulations would

put our findings on a stronger footing. The second point

highlights the importance of increasing the realism of

pseudoproxy tests. To the best of our knowledge, this

study is the first attempt to date at incorporating a

realistic pattern of temporal availability in the pseu-

doproxy network; that being said, the univariate,

white-noise model used here offers only a simplistic

representation of the manifold processes whereby

climate signals are incorporated into proxy archives.

Should the spectral signature of the proxy genesis

process assume a more complex form than our simple

model, the reconstruction skill would be correspond-

ingly affected between frequency bands, perhaps

nonlinearly so. In addition, this pseudoproxy frame-

work (as in all studies to date) assumes perfect age

control, which is obviously an idealization. As in FNA,

we expect dating uncertainties to negligibly impact

LF skill, but deteriorate HF skill. A more rigorous

framework for testing reconstruction methods using

pseudoproxies consists of using forward, process-based

proxy models, incorporating physical, chemical, and

biological mechanisms of proxy genesis to simulate

synthetic proxy records with realistic properties

(Anchukaitis et al. 2006; Evans 2007; Cobb et al.

2008; Thompson et al. 2011; Mann et al. 2012). This

field is only in its infancy, and will await further de-

velopment before being operationally used for the

validation of climate reconstruction methods.

To what extent do these results carry over to real-

world reconstructions? Discrepancies between FNA

and PPEs illustrate the difficulty of quantitatively as-

sessing LF reconstruction skill: on the one hand, the

pessimistic assessments of FNA are most likely exces-

sive; on the other hand, LM may be too favorable a test

case because of the relatively high-amplitude LF signals,

which exceed that found in all observational datasets

considered here. Overall the results suggest that RegEM

TTLS can faithfully capture the phase of LF fluctuations,

albeit with an amplitude that will inevitably be damped as

proxy series drop out of the network—so our estimates

are likely to be on the low end of possible centennial

variability. It is noteworthy that verification skill depends

critically on the instrumental target, which drives signifi-

cant differences in reconstructed LF behavior. In Part II,

we apply the methodologies described and evaluated

herein to obtain a range of plausible histories of Niño-3.4

variability over the past 1000 years, before discussing

some dynamical implications of the results.
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APPENDIX

Proxy Dataset

Table A1 contains the characteristics of the proxy database that was obtained from NCDC.

TABLE A1. Tropical proxy database; r is the correlation of each series with Niño-3.4 (HadSST2i in this case), and g is the lag-1

autocorrelation obtained by the method of Allen and Smith (1996). Significant correlations are shown in boldface.

No. Site Class Type Lat Lon Range r g Reference

1 Abraham Reef Coral d18O 228S 1538E 1638–1983 10.03 10.49 Druffel and Griffin

(1999)

2 Abrolhos Coral d18O 288S 1148E 1795–1995 10.04 10.16 Kuhnert et al. (1999)

3 Amedee Light Coral d18Od18O 228S 1668E 1661–1994 10.03 10.63 Quinn et al. (1998)

4 Aqaba 18 Coral d18O 308N 358E 1788–1992 20.19 10.20 Heiss (1994)

5 Bermuda Coral Sr/Ca 328N 648W 1781–1998 20.07 10.70 Goodkin et al. (2008)

6 Espiritu Santo Coral d18O 158S 1678E 1806–1979 10.26 10.61 Quinn et al. (1996)

7 Fiji 1F Coral d18O 178S 1798E 1781–1996 10.28 10.70 Linsley et al. (2008)
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TABLE A1. (Continued)

No. Site Class Type Lat Lon Range r g Reference

8 Fiji AB Coral d18O 178S 1798E 1617–2001 10.31 10.51 Linsley et al. (2008)

9 Guam Coral d18O 138N 1458E 1791–2001 10.06 10.73 Asami et al. (2005)

10 Ifaty Coral d18O 238S 448E 1660–1996 10.25 10.24 Zinke et al. (2004)

11 Ifaty Coral Sr/Ca 238S 448E 1689–1996 10.08 10.03 Zinke et al. (2004)

12 Kavieng Coral Sr/Ca 38S 1518E 1824–1998 10.10 10.31 Alibert and Kinsley

(2008)

13 La Reunion Coral d18O 218S 558E 1833–1996 20.09 10.61 Pfeiffer et al. (2004)

14 Lombok Strait Coral d18O 88S 1168E 1783–1991 10.20 10.31 Charles et al. (2003)

15 Mafia Coral d18O 88S 408E 1623–1999 20.42 10.35 Damassa et al. (2006)

16 Mahe Coral d18O 58S 558E 1847–1996 20.42 10.41 Charles et al. (1997)

17 Maiana Atoll Coral d18O 18N 1738E 1841–1995 20.66 10.50 Urban et al. (2000)

18 Malindi Coral d18O 38S 408E 1801–1994 20.30 10.71 Cole et al. (2000)

19 Palmyra Coral d18O 68N 1628W 1146–1998 20.63 10.52 Cobb et al. (2003)

20 Rarotonga (2R) Coral d18O 218S 1608E 1727–1997 10.26 10.41 Linsley et al. (2008)

21 Rarotonga (2R) Coral Sr/Ca 218S 1608E 1766–1997 10.34 10.32 Linsley et al. (2006)

22 Ras Umm Sidd Coral d18O 288N 348E 1752–1996 20.15 10.28 Felis et al. (2000)

23 Savusavu Coral d18O 178S 1798E 1776–2001 10.37 10.65 Bagnato et al. (2005)

24 Secas Coral d18O 88N 4428W 1708–1985 10.00 10.30 Linsley et al. (1994)

25 Tonga TH1 Coral d18O 208S 5358W 1794–2004 10.22 10.64 Linsley et al. (2008)

26 Turrumote Coral Sr/Ca 188N 678W 1751–2004 20.08 10.37 Kilbourne et al. (2008)

27 Urvina Bay Coral d18O 08 4518W 1607–1982 20.06 10.37 Dunbar et al. (1994)

28 Salalah Speleothem d18O 188N 558E 1218–1998 10.07 10.70 Burns et al. (2002)

29 Puruogangri, Tibet Ice core d18O 348N 898E 1603–1998 10.02 10.99 Thompson et al. (2006b)

30 Huascaran, Peru Ice core d18O 148S 718W 1598–1993 10.04 10.97 Thompson et al. (1995)

31 Sajama, Bolivia Ice core d18O 188S 698W 1603–1998 20.05 10.96 Thompson et al. (1998)

32 Quelccaya, Peru Ice core d18O 148S 718W 1540–2002 10.37 10.54 Thompson et al. (2006a)

33 Lake Challa Sediment Log(varve

thickness)

38S 388E 21050–2005 20.54 20.07 Wolff et al. (2011)

34 Cariaco basin Sediment Mg/Ca SST 118N 658W 1221–1990 10.29 10.62 Black et al. (2007)

35 NADA PDSI Tree PC1 288N 1058W 0–2006 20.56 10.29 Cook (2008)

36 Saradan Tree TRW 88S 1118E 1690–2000 10.02 10.52 Stahle et al. (1998)

37 Zimbabwe Tree Log (summer Pr) 198S 278E 1796–1996 20.15 10.00 Therrell et al. (2006)

38 Chilean Cordillera Tree Log (summer Pr) 338S 728W 1000–2000 10.28 20.12 Le Quesne et al. (2006)

39 Barranca Tree PDSI 198N 998W 771–2008 20.04 10.44 Stahle et al. (2011)

40 Madera Canyon,

Mexico (MX)

Tree TRW 298N 1038W 1675–1998 10.38 10.38 ITRDB (2009)

41 Nevado de Colima, MX Tree TRW 208N 1048W 1553–1998 10.14 10.58 ITRDB (2009)

42 Cerro Baraja, MX Tree TRW 268N 1068W 1376–1998 10.46 20.08 ITRDB (2009)

43 Cerro Baraja, MX Tree TRW 268N 1068W 1376–1998 10.47 20.05 ITRDB (2009)

44 Creel International

Airport, MX

Tree TRW 288N 1088W 1644–1998 10.42 20.06 ITRDB (2009)

45 El Salto, MX Tree TRW 248N 1068W 1481–1998 10.34 10.36 ITRDB (2009)

46 El Tabacote/Tomochic,

MX

Tree TRW 288N 1088W 1583–1998 10.41 10.02 ITRDB (2009)

47 El Vado, MX Tree TRW 178N 978W 1750–1998 20.17 10.44 ITRDB (2009)

48 Rio Verde, MX Tree TRW 228N 1008W 1574–1998 10.30 10.38 ITRDB (2009)

49 Villareal, MX Tree TRW 208N 988W 1710–1998 20.08 10.22 ITRDB (2009)

50 Capote Knob,

Texas (TX)

Tree TRW 298N 988W 1712–1998 10.18 10.24 ITRDB (2009)

51 Lavaca River, TX Tree TRW 298N 978W 1668–1998 10.26 10.01 ITRDB (2009)

52 Coleto Creek, TX Tree TRW 298N 978W 1682–1998 10.23 10.08 ITRDB (2009)

53 Ecleto Creek, TX Tree TRW 298N 988W 1695–1998 10.11 10.39 ITRDB (2009)

54 Camp Springs, TX Tree TRW 298N 1038W 1473–1998 10.40 10.09 ITRDB (2009)

55 Camp Springs, TX Tree TRW 298N 1038W 1473–1998 10.37 10.08 ITRDB (2009)

56 Camp Springs, TX Tree TRW 298N 1038W 1473–1998 10.27 20.01 ITRDB (2009)

57 Die Bos Tree TRW 328S 198E 1564–1998 20.08 10.55 ITRDB (2009)
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