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ABSTRACT

The El Ni~no–Southern Oscillation (ENSO) exhibits well-known asymmetries: 1) warm events are stronger

than cold events, 2) strong warm events are more likely to be followed by cold events than vice versa, and 3)

cold events are more persistent than warm events. Coupled GCM simulations, however, continue to un-

derestimate many of these observed features.

To shed light on these asymmetries, the authors begin with a widely used delayed-oscillator conceptual

model for ENSO and modify it so that wind stress anomalies depend more strongly on SST anomalies

(SSTAs) duringwarm conditions, as is observed. Then the impact of this nonlinearity onENSO is explored for

three dynamical regimes: self-sustained oscillations, stochastically driven oscillations, and self-sustained os-

cillations disrupted by stochastic forcings. In all three regimes, the nonlinear air–sea coupling preferentially

strengthens the feedbacks (both positive and delayed negative) during the ENSOwarm phase—producing El

Ni~nos that grow to a larger amplitude and overshoot more rapidly and consistently into the opposite phase,

than do the La Ni~nas. Finally, the modified oscillator is applied to observational records and to control

simulations from two global coupled ocean–atmosphere–land–ice models [Geophysical Fluid Dynamics

Laboratory Climate Model version 2.1 (GFDL CM2.1) and version 2.5 (GFDL CM2.5)] to elucidate the

causes of their differing asymmetries.

1. Introduction

Fluctuations of the El Ni~no–Southern Oscillation

(ENSO) involve coupled changes to the ocean and at-

mosphere. During the warm phase of ENSO, the pre-

vailing easterly winds over the central Pacific weaken;

these westerly wind anomalies advect warm surface

water toward the east, reduce the zonal slope of the

thermocline, and inhibit the upwelling of cold water in

the eastern Pacific, which feeds back positively on the

warming of surface water in the eastern Pacific and al-

lows small perturbations to grow. This positive feedback

is also known as the Bjerknes feedback (Bjerknes 1969).

To first approximation, La Ni~na (the cold phase) anom-

alies are roughly the opposite of those of El Ni~no (Larkin

andHarrison 2002, hereafter LH2002). Theories proposed

to explain the termination of El Ni~no (La Ni~na) and its

transition into the opposite phase include the reflection

of oceanic internal waves at the eastern and western

boundaries (Suarez and Schopf 1988; Battisti and Hirst

1989, hereafter BH1989), recharge and discharge of equa-

torial warm water due to Sverdrup balance (Jin 1997),

western Pacific wind-forced Kelvin waves (Weisberg and

Wang 1997), and anomalous zonal temperature advec-

tion by oceanic currents (Picaut et al. 1997). These the-

ories agree that oceanic adjustments result in delayed

negative feedbacks that explain the turnabout between

ElNi~no and LaNi~na, with simple models illustrating how

these mechanisms can result in oscillatory behavior for

ENSO. Although nonlinearity has been shown to impact

the growth and decay of El Ni~no (Tziperman et al. 1997;

Gebbie et al. 2007; Vecchi 2006; Vecchi and Harrison

2006), linear techniques that are widely used for studying

ENSO, such as empirical orthogonal function (EOF)

analysis and linear regression, tend to treat El Ni~no and

La Ni~na as simple mirror images of each other.
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For all of the approximate symmetries of El Ni~no and

La Ni~na events, considerable asymmetry does exist.Most

noted in past literature is the amplitude asymmetry of

ENSO, namely that El Ni~no tend to be stronger than La

Ni~na (Burgers and Stephenson 1999). Several oceanic

mechanisms have been proposed for this asymmetry:

nonlinear dynamical heating (Jin et al. 2003; An and Jin

2004) and negative feedback owing to tropical instability

waves that are stronger during La Ni~na (Wang and

McPhaden 2000; Vialard et al. 2001). A common element

of all of these proposed mechanisms is their inherent

oceanic origin.

Other studies have drawn attention to the asymmetric

atmospheric response to sea surface temperature changes.

Kang and Kug (2002) studied a hybrid atmosphere–ocean

coupled model and suggested that the relatively weaker

sea surface temperature anomalies (SSTAs) and shorter

duration for La Ni~na are attributable to the westward

shift of the wind stress anomalies (Hoerling et al. 1997).

Philip and van Oldenborgh (2009) and Frauen and

Dommenget (2010) found that a nonlinear zonal wind

response to the opposite sign SST anomalies may have

an important influence on the SST skewness in the east-

ern tropical Pacific. Dommenget et al. (2013) suggest that

the skewness in SST is related to the asymmetries in the

pattern shape and the time evolution of ENSO events

that can be partially attributed to the nonlinear response

of the zonal wind to SST anomalies. Nonlinear relation-

ships between the seasonal cycle andENSO aswell as the

origins of ENSO phase locking to the seasonal cycle were

also studied (Harrison and Vecchi 1999; Galanti and

Tziperman 2000; Tziperman et al. 1997; Galanti et al.

2002).

In addition to amplitude asymmetry, there are other

differences in the evolution of El Ni~no and La Ni~na.

LH2002 characterized differences in the life cycles of the

warm and cold phases by examining the ENSO behavior

phase by phase. In their appendix, LH2002 note that

warm-to-cold transitions tend to occur within a single

year, with the cold event emerging the year following the

warm event. In contrast, cold-to-warm transitions occur

over 1–3 years. Okumura and Deser (2010) also showed

that there is a robust asymmetry in the duration of El

Ni~no and La Ni~na in observations, with La Ni~na per-

sisting longer, a feature also noted by Kessler (2002).

Subsequently, Okumura et al. (2011) proposed that an

asymmetric wind response due to delayed SST forcing in

the Indian Ocean acts to prolong La Ni~na.

Various observational datasets of Pacific surface wind

stress support the hypothesis that during ENSO the wind

stress response to the SST anomalies is weaker in the

cold phase than in the warm phase. Figure 1 shows re-

gression coefficients of zonal wind stress anomalies onto

the Ni~no-3.4 SSTA index (area average of SST anoma-

lies at 58S–58N, 1708–1208W) during warm and cold

conditions for the Florida State University (FSU) ob-

servational wind product (see section 2). The asymmetry

in the sensitivity is also evident in other estimates of

wind stress. Figure 2 shows scatterplots of the zonal

wind stress anomalies averaged over a 108 latitude by 408
longitude region where the regression coefficients are

largest versus the observed Ni~no-3.4 SSTA index, from

2months before an event peak to 2months after the peak.

The averaging area is also shifted zonally according to

where the regression coefficients are largest for a partic-

ular ENSO phase. It is clear that wind stress responds

more sensitively to sea surface temperature anomalies

during warm conditions.

In this study, we have explored the impact of this at-

mospheric nonlinearity on the symmetry of ENSO. We

will parameterize this effect in a simple model by having

the air–sea coupling efficiency be dependent on the

ENSO polarity and explore how this dependence can

cause asymmetries in the duration, amplitude, and se-

quencing of ENSO. In section 2, we describe the ob-

servational datasets and GCM outputs to which we

apply themeasures described in section 3 to identify these

three aspects of asymmetry. The formulation of the

conceptual ENSO model used is given in section 3. The

results are presented and analyzed in section 4. Section 5

gives a summary and further discussion.

FIG. 1. Regression coefficient of FSU zonal wind stress anoma-

lies onto the HadISST Ni~no-3.4 index for Ni~no-3.4 (top) greater

than 0.5K and (bottom) less than20.5K. Regions with confidence

level exceeding 60% are hatched.
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FIG. 2. Regression coefficient of the area-averaged zonal wind stress anomalies onto the Ni~no-3.4 index for Ni~no-3.4
(top) greater than 0.5K or (bottom) less than20.5K. The HadISSTNi~no-3.4 index is used for the FSU and ERA-40

regression analysis. Reanalysis wind stress anomalies are regressed onto the reanalysis Ni~no-3.4 indices for MERRA

and NCEP-1, respectively. Model wind stress anomalies are regressed onto the model Ni~no-3.4 index; area averages

of the wind stress are computed within 408 longitude boxes from 58S to 58N where the regression coefficient is the

largest across the equatorial Pacific domain. For warm events, wind stress anomalies are averaged within boxes at

1778–1378W (FSU), 1768E–1448W (ERA-40), 1768–1368W (NCEP-1), 1798–1398W (MERRA), 1678E–1538W
(CM2.1), and 1708E–1508W (CM2.5). For cold events, the box sits at 1718E–1498W (FSU), 1538E–1678W (ERA-40),

1608E–1608W (NCEP-R1), 1678E–1538W (MERRA), 1408E–1808 (CM2.1), and 1408E–1808 (CM2.5).
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2. Data sources

a. SST data

There are uncertainties in past reconstructions of the

tropical Pacific SST (Vecchi et al. 2008) and we therefore

explore two SST datasets: the Hadley Centre Sea Ice and

Sea Surface Temperature dataset (HadISST) and the

extended reconstructed SST version 3b (ERSST).

1) HADISST

The HadISST dataset for 1880–2012 (Rayner et al.

2003) is used for computing the Ni~no-3.4 SSTA index.

We examine the historical record entirely as well as in

segments. Monthly climatologies are computed over the

period of the time series sampled, and the anomalies are

computed by subtracting the climatologies from the orig-

inal record. The HadISST Ni~no-3.4 SST anomalies have

increased by 0.28 from 1880 to 2012.

2) ERSST V3B

ERSST version 3b (Smith et al. 2008) provided by the

National Oceanic and Atmospheric Administration is

used as another long-term SST observational record to

compare with HadISST. The dataset spans from 1854 to

present. In the current study, the time series from 1880

to 2012 is used since the strength of the signal becomes

more consistent after 1880. This version of SST analysis

uses in situ SST data and improved statistical methods.

Unlike version 3, satellite data, which that causes a small

cold bias, is not used in version 3b. From 1880 to 2012,

ERSST Ni~no-3.4 SST anomalies have increased by 0.68.
The warming trends in the HadISST and ERSST

products are included in the analysis presented below.

The Ni~no-3.4 temperature anomalies are also smoothed

using a running 5-month boxcar average before analysis.

We will discuss the sensitivity of the results to whether

the time series is detrended or not.

b. Surface wind stress estimates

There are also large uncertainties in reconstructions

of wind stress over the Pacific (Wittenberg 2004), so we

use multiple wind stress estimates in our analysis. Ob-

servational datasets used here for the wind stress re-

sponse analysis are the Center for Ocean–Atmospheric

Prediction Studies (COAPS) third-generation Florida

State University objectively gridded Pacific monthly

mean in situ flux products (FSU3) (Bourassa et al. 2005)

from1987 to 2004; the 40-yrEuropeanCentre forMedium-

Range Weather Forecast (ECMWF) Re-Analysis (ERA-

40) (Uppala et al. 2005) 6-hourlymomentum stress product

from September 1957 to August 2002; ECMWF Interim

Re-Analysis (ERA-Interim) (Dee and Uppala 2009)

from 1979 to 2011; the National Aeronautics and Space

Administration Modern-Era Retrospective Analysis for

Research andApplications (MERRA) (Rienecker et al.

2011) from 1979 to 2010; and the National Centers for

Environmental Prediction–National Center for Atmo-

spheric Research (NCEP–NCAR) reanalysis (NCEP-1)

(Kalnay et al. 1996; Kistler et al. 2001) from 1948 to

2011.

c. Coupled GCMs

1) GFDL CM2.1

The Geophysical Fluid Dynamics Laboratory (GFDL)

Climate Model version 2.1 (CM2.1) is a global coupled

atmosphere–ocean–land–ice GCM. The detailed for-

mulations are described by Delworth et al. (2006, and

references therein). Wittenberg et al. (2006) describes

the behavior of ENSO in this model. The CM2.1 has

taken part in phases 3 and 5 of the Coupled Model In-

tercomparison Project (CMIP3 and CMIP5) and the

Fourth Assessment of the Intergovernmental Panel on

Climate Change (IPCC). In this study, we use the monthly

mean output of the preindustrial control experiment in-

tegrated for 4000 years with fixed 1860 estimates of solar

irradiance, land cover, and atmospheric composition.

The long run providesmore than 300 El Ni~no and 300 La

Ni~na events and thus allows statistically significant analysis

of the behavior of the simulated ENSO. The description

of the interdecadal variability of ENSO for the first 2200

years of this experiment is described inWittenberg (2009).

2) GFDL CM2.5

The GFDL Climate Model version 2.5 (CM2.5) is a

newer higher-resolution (atmosphere/land horizontal

resolution is 0.58 instead of 28; ocean/sea ice resolution is

about 0.258 instead of 18) global coupled GCM based on

CM2.1. The two models are initialized and forced in

a similar fashion. The resolutions of the atmosphere and

ocean components in CM2.5 are increased. A smaller

viscosity is used in CM2.5. Parameterized eddy mixing is

excluded in the CM2.5 ocean, while it is included in

CM2.1. Further details on CM2.5 and comparisons with

CM2.1 are documented in Delworth et al. (2012). The

data used in this study are based on a 260-yr control ex-

periment using fixed 1990 estimates of solar irradiance,

land cover, and atmospheric composition. The 37 El Ni~nos

and 34 La Ni~nas are identified in this experiment.

3) COMPARISON OF THE SIMULATED ENSO IN

CM2.5 AND CM2.1 WITH OBSERVATIONS

Delworth et al. (2012) describe how the simulated

ENSO in CM2.5 compares to CM2.1 and observations.

More detailed descriptions of the CM2.1 ENSO be-

havior can be found inWittenberg et al. (2006). Here we

summarize some of their results.
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TheENSO amplitude in CM2.5 is weaker and is closer

to observations, while CM2.1 tends to simulate ENSO

events that are too strong. While both models have

equatorial Pacific SST anomalies that extend too far to

the west, this bias is reduced in CM2.5.

Both models have problems simulating the seasonal

phase locking of ENSO. The CM2.1 ENSO shows al-

most no seasonal phase locking, except that the Ni~no-3.4

index has a slight tendency to peak between October

and February and strong events tend to lock better to the

seasonal cycle. The CM2.5 Ni~no-3.4 index has better

phase locking compared to CM2.1 but is still weaker and

later than observations by about a month.

At interannual time scales, the spectrum of tropical

Pacific SSTs in CM2.5 is too concentrated at about 2.5 yr.

CM2.1 shows a broader and more realistic spectrum but

is stronger than the observations at interannual time

scales. Accordingly, the ENSO in CM2.5 is noticeably

more regular than CM2.1 and the observed. However, the

lengths of observational records are short, so the spectra

in this frequency band are uncertain (Wittenberg 2009;

Vecchi and Wittenberg 2010).

3. Methods

a. The conceptual ENSO model

Following the delayed-oscillator model proposed by

BH1989, which is closely related to the models studied

by Suarez and Schopf (1988) and Zebiak and Cane

(1987), we model ENSO as arriving from two essential

drivers: first, the Bjerknes positive feedback that leads

to instability and, second, a delayed negative feedback

that results in oscillations. We thereby use a conceptual

model of ENSO based on the BH1989 model:

›T

›t
52bT1 c0t x(t2 t1)2 d0t x(t2 t2)2 �T3 , (1)

where T is the Ni~no-3.4 SST anomaly; tx is the wind

stress anomaly at the central equatorial Pacific near the

date line; t1 is the time required for wind stress response

to positively feedback to surface temperature T; t2 is the

time required for the negative feedback to enact; t1 is

smaller than t2; b, c
0 and d0 are positive scalar parameters;

and � is nonzero when the system is unstable otherwise.

The current settings for t1 and t2 are 1 and 6 months,

which are roughly the times required for the first/second

baroclinic Kelvin wave to propagate eastward from the

date line to theAmerican coasts and the time required for

Rossby waves to propagate westward and reflect back

as Kelvin waves to the eastern Pacific (Harrison and

Giese 1988; Harrison and Vecchi 1999). The qualitative

conclusion is unchanged if different values of t1 and t2 are

used as long as t2 . t1. If t15 0, one recovers the BH1989

formulation.

The first term on the rhs of Eq. (1) is a qualitative

representation of local dampings of T due to air–sea

fluxes, the mean zonal advection of the anomalous zonal

temperature gradient, and the mean vertical advection

of the anomalous temperature gradient that depends on

T. Guided by BH1989 and regression analysis on these

processes at the eastern Pacific, the value of b is kept

fixed at 0.24 month21 throughout the entire study.

The second and the third terms are the positive and

the delayed-negative feedbacks. Each of these two terms

incorporates the anomalous zonal advection of the mean

zonal temperature gradient, (part of the) mean vertical

advection of the anomalous vertical temperature gradi-

ent, and the anomalous vertical advection of the mean

vertical temperature gradient.

By construction, Eq. (1) gives a symmetric oscillator

in which warm and cold maxima have equal persistence,

frequencies, and amplitudes. To break the symmetry, we

write tx 5 tx(T) such that the wind stress anomalies

respondmore sensitively to warm SST anomalies than to

cold SST anomalies. For simplicity, we write tx as a

piecewise linear function of T; that is,

tx5 g(T1 rjTj) , (2)

where g (PaK21) and r (nondimensional) are both

scalar parameters. For r positive and less than 1, wind

stress anomalies are stronger for the same degree of

positive T than negative T.

From the regression analysis of wind stress response

to SST anomalies (Fig. 1), we can estimate r from the

difference in the regression slopes:

r5
sw 2 sc
sw 1 sc

, (3)

where sw and sc are the slopes for warm and cold events,

respectively.

Table 1 summarizes the value of r estimated from

different datasets. Most datasets produce an r of about

20%with the exception of NCEP-1. This agrees with the

suggestion made by Wittenberg (2004) that FSU is rec-

ommended over NCEP-1 for extended studies of ENSO

since the former dataset agrees better with other ob-

servations and updated analysis. Why the NCEP-1 does

not show the nonlinear relationship between the zonal

wind stress and SST during ENSO, as is seen in other

datasets, is unclear.

In addition to the asymmetry in the intensity of the

wind response, it is likely that the zonal shift in the wind

stress patterns (Fig. 1) between El Ni~no and La Ni~na
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may also be an important feature of ENSO (Kang and

Kug 2002). However, we forgo investigation of pattern

change effects in the present study in order to focus

more intensely on the effects of the wind stress strength

anomaly.

Further regression analysis of the wind stress response

shows that CM2.1 has a large estimated value of r ’
46%,much higher than the observed. Conversely, CM2.5

has a smaller value of r (515%).

As in BH1989, there are two key regions in the pa-

rameter space: one being a stable region in which the

oscillator is damped and another being an unstable re-

gion in which small perturbations in the oscillator grow

to infinity. The unstable regime can be further divided

into an oscillatory and a nonoscillatory regime. To sus-

tain an oscillation for the stable region, a stochastic wind

forcing is superimposed on tx. The stochastic forcing has

an amplitude that is normally distributed with mean zero

and a standard deviation s (Pa) and has a decorrelation

time of 0.2 months. For the unstable region, no stochastic

forcing is added, but � in Eq. (1) would be nonzero to

stabilize the oscillation (BH1989). The stability charac-

teristics across the parameter space are shown in Fig. 3. A

few examples of the parameter regimes 1 and 2 are shown

in Fig. 4. Region 1 is the linearly stable, damped region

with � 5 0. Region 2 is the linearly unstable region but is

nonlinearly stable using �. 0. Region 3 is unstable when

� 5 0; with � . 0, the oscillation dies quickly and con-

verges to a constant nonzero value, which is far from the

observed behavior. Regime 3 is not considered in the rest

of this study.

With stochastic forcing, Eq. (2) becomes

tx5 g(T1 rjTj)1N(t) , (4)

where N is Gaussian white noise with zero mean and

standard deviation s. Eq. (1) can be written more com-

pactly as

›T

›t
52bT1 c[T(t2 t1)1 rjT(t2 t1)j]

2 d[T(t2 t2)1 rjT(t2 t2)j]
1 c0N(t2 t1)2 d0N(t2 t2)2 �T3 , (5)

where c5 gc0 and d5 gd0 now have units of 1 month21.

In region 1 s is nonzero only unless otherwise specified;

� (�. 0) is nonzero only in regions 2 and 3. The values of

s and � are tuned so that the simulated T has a standard

deviation of roughly 0.8K in order to be compared with

the observations. The values of s and � do not alter

qualitative conclusions of this paper regarding the

asymmetry of the simulated ENSO.

Since the stochastic forcing is independent of T and

the additional damping is an odd function of T, neither

of these two functions should introduce asymmetries.

Any asymmetry in this model will be attributable en-

tirely to tx as a piecewise function of T. This permits a

focused look at the impacts of this particular non-

linearity, as a foundation for future inclusion of other

nonlinearities. In this paper, we present figures using

r5 0% and r5 60% for apparent and clear comparisons;

TABLE 1. Values of r estimated from linear regression analysis

between wind stress anomalies and Ni~no-3.4 SST anomaly index.

The rows show the data sources for the Ni~no-3.4 SST anomaly

index used in regressions. The columns show the data sources for

the zonal wind stress anomalies.

tx anomaly dataset

ERA-40 ERA-Interim FSU MERRA NCEP

HadISST 0.21 0.12 0.21 0.19 20.09

NCEP — — — — 0.00

MERRA — — — 0.24 —

ERA-Interim — 0.23 — — —

ERA40 0.24 — — —

FIG. 3. Stability characteristics of the conceptual model in the c–d parameter space with b 5 0.24 month21 and (left) r 5 0, (middle)

r5 20%, (right) r5 60%. In Region 1 the system is linearly stable and sustained by normally distributed stochastic forcing (s. 0, �5 0),

and in Region 2 the system is linearly unstable but is limited by additional damping (�. 0); there is no stochastic forcing (s5 0). Region 3

is unstable, nonoscillatory, and is not considered in the current study.
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we have also explored other intermediate values of r and

showed some results using r 5 20% and r 5 40%.

b. Definitions of ENSO phases and asymmetry

To compare the conceptual model results with the

observations andGCMs, consistent definitions of ENSO

events, peaks, and durations are needed. Despite the

richness of the ENSO phenomenon (e.g., LH2002;

Wolter and Timlin 2011), we use the sea surface tem-

perature anomaly in the central/eastern Pacific Ocean

Ni~no-3.4 box as a proxy to illustrate the asymmetries of

ENSO in observations and GCMs. To consistently

compare the conceptual model results with the obser-

vations and GCMs, the same recipe is applied to the

time series T simulated by the conceptual model.

El Ni~no (La Ni~na) is defined such that the 5-month

running mean of the Ni~no-3.4 index exceeds (is below)

its 90th (10th) percentile of the time series for at least

three consecutive months. Other percentiles (e.g., 85th/

15th) have been explored, and the fundamental results

remain roughly the same. The years of warm and cold

events in the observational datasets are summarized in

Fig. 5. Figure 6 illustrates the criteria for defining events,

terminations, and durations, as will be described below.

The termination time of events is calculated by the

time lapse from the event peak to the time when the

Ni~no-3.4 index first comes within 25% of the standard

deviation from the time mean. If an event persists and

reintensifies into another event of the same sign such that

both events terminate at the same time, the preceding

event is not considered in the duration analysis to avoid

double counting.

The asymmetry in sequencing is examined by calcu-

lating the sample conditional probabilities of different

types of transitions. This analysis is more uncertain for

the observations largely due to the ambiguity of how one

identifies a transition type and the inadequate number of

events. To be consistent across observational datasets

and GCM outputs, we adopt the following procedures

when calculating the event transition probability:

(i) identify the El Ni~no and La Ni~na events using the

90th and 10th percentiles and persistence criteria

(ii) for each warm or cold event, for example, a warm

event,
d identify when the event terminates;
d if the next event is a cold (warm) event and oc-

curs within 12 months after the termination, this

FIG. 4. Sample time series of temperature anomalies. Locations in the parameter space are

shown in Fig. 11: (a) an example of self-sustained oscillations free of stochastic forcings and

(b),(c) examples of stochastically driven oscillations in a stable system.
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is identified as a warm-to-cold (warm-to-warm)

transition.

Following these procedures, transition probabilities are

calculated such that

Pwarm-to-warm1Pwarm-to-cold 1Pwarm-to-else5 1

Pcold-to-cold 1Pcold-to-warm1Pcold-to-else5 1.

4. Results

a. Observations and GCM

In the observational record and the models, more

warm events terminate within a year after peaks than

cold events do. Figure 7 shows the cumulative distribu-

tion of termination times for warm and cold events for

the observational datasets and global-climate-model

control run outputs. This result is consistent with

LH2002 andOkumura andDeser (2010). If the Ni~no-3.4

SSTA time series is detrended, cold events appear to last

much longer; that is, the asymmetry in duration is am-

plified upon detrending.

Following the procedures described in section 3,

conditional probabilities for different transition types

are calculated and shown in Fig. 8. From the observa-

tions, there is a higher likelihood to havewarm events be

followed by cold events than vice versa. Cold-to-cold

transitions are also more frequent than warm-to-warm

FIG. 5. Winter years of warm and cold events identified using the percentiles criteria on

HadISST (solid line) and ERSSTv3b (dashed line) datasets. Numbers above (below) the time

series indicate the years when warm (cold) events peak.

FIG. 6. A sample SST anomaly time series, filtered by 5-month running mean, illustrates how

terminations, durations, and transitions are defined. The segment is simulated using the con-

ceptual model with b 5 0.24 month21, c 5 0.49 month21, d 5 0.26 month21, r 5 0.6, � 5
0.07K22month21, and s 5 0.08g 3 7K ’ 0.01Nm22 if g 5 0.02Nm22K21. Filled circles

indicate event peaks followed by an event of the opposite sign. Crosses indicate event peaks

that are not followed by an event, under the criteria described in section 3.
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transitions. This qualitative conclusion holds even when

a linear trend is removed from the Ni~no-3.4 SST index.

The numbers of observed warm and cold events are so

small that the statistical significance varies with the

choice of Ni~no-3.4 SSTA thresholds as well as whether

or not a linear trend is removed. In contrast, the control

runs of CM2.1 and CM2.5 offer larger samples of El

Ni~no and La Ni~na. The asymmetry in sequencing is

consistently very strong in the CM2.1 control run, with

warm-to-cold transitions much more likely than cold-to-

warm transitions. CM2.5 shows an asymmetry in favor of

warm-to-cold transitions that is weaker than in CM2.1

but is similar to the observations. Cold-to-cold transi-

tions are very rare in both models.

Skewness is a useful measure to represent the ampli-

tude asymmetry, as is summarized in Table 2. The Ni~no-

3.4 SSTA index in the observations and CM2.1 have very

consistent positive skewness, indicating stronger warm

anomalies. CM2.5, however, with a more regular ENSO,

shows a small negative skewness with the Ni~no-3.4 index

and a small positive skewness with the Ni~no-3 index.

b. The conceptual ENSO model with r . 0

We have analyzed results using different values of r.

Table 2 summarizes the asymmetries that the conceptual

model is capable of at r5 20% and r5 40%. Since more

points in the c–d parameter space (i.e., fixing b) would

show significant asymmetries with larger values of r,

figures in this section present results using r 5 60% for

illustrative purposes. All qualitative results hold true for

other positive values of r.

1) ASYMMETRY IN AMPLITUDE

Figure 9 shows the skewness across the c–d parameter

space with r 5 60%. (The magnitude of the skewness

increases with increasing values of r.) The skewness can

be positive or negative depending on the relative

strength of the positive and negative feedback, that is,

the ratio of c and d. If c/d is large, extreme SST anom-

alies depend more on the instability brought by the

positive feedback; that is, had the damping term been

smaller, the system would be nonoscillatory and grow to

FIG. 7. Empirical cumulative distribution of event termination time using HadISST, ERSST, CM2.1, and CM2.5.

The thick lines represent results using the entire time series, and, for the conceptual models, thin lines represent the

standard deviation among 100-yr samples.
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infinity owing to the strong positive feedback. In this case,

positive feedback is enhanced with a larger coupling ef-

ficiency during warm events. Therefore, warm events are

able to grow to larger amplitudes while cold events be-

come relatively weak, resulting in a positive skewness.

Instead, if d/c is large, extreme SST anomalies depend

more on the strong overshooting of the preceding events

of the opposite sign; that is, the system would be oscil-

latory unstable if the damping term was not strong

enough. Therefore, cold events can grow to larger am-

plitudes owing to the stronger delayed cooling of the

preceding warm events, while warm event peaks cannot

grow as much since the delayed warming owing to the

preceding cold events is diminished. In short, if the cou-

pling efficiency is larger during warm events, skewness

becomes positive in the parameter region where positive

feedback strength is large or negative where negative

feedback strength is large. Notice that the cutoff does not

lie along c 5 d because b is nonzero.

2) ASYMMETRY IN DURATION

As r increases, cold events terminate at a later time

than warm events do. This difference in termination

times resembles the behavior found in the observations

and GCMs. Figure 10 shows how the distributions of

event termination time change with the value of r. The

FIG. 8. Conditional probability of transitions for warm and cold events using the Ni~no-3.4 index.

TABLE 2. Parameters that produce the best simulations of observed, CM2.1, andCM2.5 asymmetry statistics. Parameter b is fixed at 0.24

month21, and r is also fixed at values based on the zonal wind stress analysis. Observations are Std: standard deviation of the temperature

anomaly (K), Skewness: skewness of the temperature anomaly, LenDiff: termination time of cold events minus that of warm events (in

months), and Pdiff: probability of warm-to-cold transitionsminus that of cold-to-warm transitions. The row(s) below best fit correspond to

the asymmetry statistics derived from theNi~no-3.4 SSTA index. Parentheses represent statistics computed from the first and second halves

of the Ni~no-3.4 SSTA index time series.

Observations

r Std Skewness LenDiff Pdiff b c d

Best fit 0.2 0.7 0.26 0.52 0.43 0.24 0.37 0.24

HadISST 0.72 (0.68, 0.75) 0.34 (0.26, 0.43) 0.9 (20.4, 2.9) 0.15 (0, 0.2)

ERSST 0.77 (0.72, 0.79) 0.38 (0.35, 0.38) 2.1 (21.1, 4.0) 0.11 (20.1, 0.3)

CM2.1

Best fit 0.4 1.0 0.28 1.9 0.6 0.24 0.36 0.25

Ni~no-3.4 1.2 (0.28, 0.34) (3.3, 3.4) 0.6

CM2.5

Best fit 0.2 1.1 20.13 0.4 0.05 0.24 0.28 0.31

Ni~no-3.4 1.1 (20.16, 20.06) (2.2, 2.8) 0.11 (0.08, 0.12)
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effect of r . 0 on the termination time across the pa-

rameter space is shown in Fig. 11.

Since the delayed negative feedback is strengthened

for warm events, thewarm events tend to terminate faster

than cold events do. In addition, as a cold event decays

more slowly, the temperature anomaly that precedes the

eventual turnaround of the cold event is not as large as it

would have been had the event decayed more rapidly.

Therefore, the slower termination of cold events weakens

the delayed warming and makes the termination even

slower.

In addition, part of the longer termination time for

cold events can be explained by the fact that the time

mean state of the system is warmer than the equilibrium

state when the temperature anomaly is strongly posi-

tively skewed. Taking the warmer timemean state as the

reference neutral state, as is done with the observational

datasets, inevitably increases the termination time of

cold events. Nevertheless, following the contour of zero

skewness in Fig. 9, it is clear in Fig. 11 that cold events

tend to last longer than warm events in the conceptual

model even when there is little amplitude asymmetry.

If stochastic forcing is also added to self-sustained os-

cillations in region 2 (Fig. 12), the spread of the termination

FIG. 9. Skewness of the simulated SST anomalies for the conceptual

model with r 5 60%.

FIG. 10. Empirical cumulative distribution of event termination

time for the conceptual model with values of r 5 0, 40%, 60% for

b5 0.24month21, c5 0.33month21, andd5 0.26month21 (region 1).

FIG. 11. Mean termination time (month) for cold events minus

that for warm events in the conceptual model, with r 5 60% and

b 5 0.24 month21. The thick lines separate regions of different

stability as in Fig. 3. Gray line is the zero skewness contour from

Fig. 9. Star markers refer to sample temperature anomaly time

series in Fig. 4.

FIG. 12. Termination time for (a) warm and (b) cold events av-

eraged across region 2 as a function of stochastic forcing amplitude

with r5 0.6. Solid line represents the mean. Dashed lines represent

the 95th and 5th percentiles of the termination time.

9472 JOURNAL OF CL IMATE VOLUME 26



time distribution for cold events increases more than

that for warm events. When the stochastic forcing in-

tensity is moderate, high percentiles (e.g., 95th) of the

cold event termination time extend more to longer du-

rations than those of the warm events do. As stochastic

forcing continues to amplify, the entire distribution of the

termination time moves to shorter time scales because

the signal begins to be dominated by stochastic forcing,

which has higher frequencies than the ENSO. This result

clearly illustrates the susceptibility of cold events to ex-

ternal forcing.

3) ASYMMETRY IN SEQUENCING

The conceptual model also shows a higher tendency

for warm-to-cold transitions than cold-to-warm transi-

tions with r . 0. As shown in Fig. 13, the probability of

warm-to-cold transitions minus that of cold-to-warm

transitions are positive everywhere in the stable and

stochastically driven region (region 1). In region 2, the

oscillation is self-sustained and is very regular. The

positive difference in the transition probabilities in re-

gion 2, as shown in Fig. 13, is because some of the warm

events peak later than 12 months after the preceding

cold event termination and do not fulfill the transition

criterion (see section 3).

If stochastic forcing is added to region 2, the proba-

bilities of warm-to-warm and cold-to-cold transitions

increase, and the latter increases more than the former,

albeit to a slight extent (Fig. 14).

With the delayed negative feedback being stronger

following warm events and weaker following cold events,

warm events are more likely to be plunged into cold

events than vice versa—since the cooling following warm

events is strong enough to overshoot and is more re-

silient to disruptive stochastic forcing. In contrast, the

weakened delayed warming during the termination of

a cold event lowers the probability of a cold-to-warm

transition. This explains why a stable, stochastically

driven parameter region is necessary for the asymmetry

in sequencing to be revealed in this conceptual model.

5. Summary and discussion

The asymmetries of ENSO were examined using ob-

servational records, coupled climate models, and a simpli-

fied dynamical framework. Three asymmetries between

El Ni~no and La Ni~na are identified in models and obser-

vations: duration, sequencing, and amplitude. The dura-

tion asymmetry is the tendency of cold events to last longer

than warm events do. The amplitude asymmetry involves

warm events tending to be stronger. The sequencing

asymmetry involves the tendency of warm events to be

followed by cold events more readily than vice versa.

The central equatorial Pacific wind stress anomalies also

exhibit an asymmetric response to sea surface temper-

ature anomalies in models and observations. Using the

well-known delayed-oscillator conceptual model, we

parameterize the impact of the zonal wind stress asym-

metric response and demonstrate that this can lead to

the aforementioned asymmetries in a consistent way.

The duration asymmetry is pervasive across the pa-

rameter space that we have explored. The sequencing

asymmetry can be obtained only if there is stochastic

external forcing. The amplitude asymmetry has the

same sign as that observed when the positive feedback

is strong compared to the delayed negative feedback.

FIG. 13. Conditional probability of warm-to-cold transition mi-

nus that of cold-to-warm transitions for r 5 60% across the c–d

parameter space.

FIG. 14. Changes in transition probabilities with increasing

stochastic forcing intensity and fixed r 5 60% for region 2 (self-

sustained oscillations). Results are averaged within the region that

have probability(warm to cold) 5 probability(cold to warm) 5 1

when stochastic forcing is absent.
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The asymmetries owing to the additional nonlinearity

to the ENSO conceptual model can be understood as

follows: warm events are able to grow into larger am-

plitudes with the strengthened positive feedback. When

they decay, the strengthened delayed negative feedback

causes warm events to terminate faster and increases the

chance of a following cold event. The initial growth of

the cold events comes from the preceding warm event,

but the cooling subsides soon after onset. If the over-

shooting is not too strong, the weakened positive feed-

back of cold events causes the cold events to mature at

weaker amplitudes. When cold events terminate, the

delayed negative feedback is weaker. The slower neu-

tralization and the warmer long-term mean state are

responsible for the longer durations of the cold events.

Cold events are also more prone to be disrupted by ex-

ternal forcing and are less likely to be followed by

a warm event. As a result, when there is a warm event,

the predictability of a following cold event is higher.

What follows a cold event is more uncertain. This result

is consistent with Dommenget et al. (2013) that El Ni~nos

are mostly triggered by wind and are less predictable,

while La Ni~nas are more predictable.

The conceptual model simplifies the system into a few

feedback terms and provides a potential guide for in-

vestigations when a climate model simulates ENSO

asymmetries that are too strong or too weak. Figure 15

shows the parameter space regions where the concep-

tual model resembles the asymmetry statistics of the

observations, CM2.1, and CM2.5. Table 2 summarizes

the best solutions and the corresponding asymmetries.

We may conclude that the best solutions for the obser-

vations and CM2.1 are very close to each other. The fact

that CM2.1 shows a stronger ENSO asymmetry may

be explained by the larger r diagnosed for CM2.1. The

negative skewness in CM2.5, on the contrary, can be

explained by the stronger delayed negative feedback

parameter relative to that of the positive feedback. We

speculate that the meridional extent of the wind stress

anomaly may be the cause. Capotondi et al. (2006) show

that the CMIP3 coupled GCMs exhibited a pervasive

bias in which their patterns of wind stress anomalies

were too far west and too narrow meridionally. They

argued that, by amplifying the delayed negative feed-

back, this shortened the simulated ENSO period. The

conceptual model suggests that, in the presence of

asymmetric coupling (r. 0), in bothmodels the narrow

and westward-shifted wind stress response patterns could

also help explain their tendency toward overly symmetric

ENSO evolution. CM2.5, for example, has a particularly

narrow wind stress anomaly pattern, a strong diagnosed

delayed negative feedback, and highly symmetric ENSO

behavior.

In the conceptual model, the difference in the wind

stress response during warm and cold conditions also

leads to a time mean state that is warmer than the

equilibrium state. Since the equilibrium state of nature is

unknown, computing anomalies from the climatology

has been a conventional approach in analyzing ENSO

strength and duration in observations and models. The

time mean state, however, cannot be acquired a priori.

Therefore, for applications in which the mean climate

state is a necessary reference for analysis (e.g., in defining

the onset or termination of an event), we suggest that the

impact of changes in variability on the mean state be

considered.

We also note that the seasonal cycle is not formally

included in the current conceptual model. However, the

nonlinear wind stress response to the SST anomaly is

diagnosed from observations and coupled-climate-

model control experiments in which the seasonal cycle is

included. Therefore, the current results have not ex-

cluded, entirely, the contributions of the seasonal cycle

on the asymmetry of ENSO.

FIG. 15. Regions in the parameter space where the skewness (magenta, solid lines), warm-to-cold transition probability minus cold-to-

warm transition probability (cyan, dotted line), and differences in termination time (yellow, dashed lines) are closest to the required values

given by observations (r5 20%), CM2.1 (r5 40%), and CM2.5 (r5 20%); see Table 2. Lighter (darker) regions correspond to errors less

than 50% (less than 15%) of the targeted statistics.
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The coupling efficiency dependence on the polarity of

ENSO could have several causes. For example, obser-

vations indicate that westerly wind burst (WWB) oc-

currence depends on the state of ENSO (Harrison and

Vecchi 1997; Vecchi and Harrison 2000). The state de-

pendence of WWBs, their skewness, and their more

frequent/strong occurrence at the onset of warm events

would potentially be one of the processes that leads to

a positive r, for example, through the low frequency

component of the WWBs. GCM experiments also in-

dicate that the frequency and intensity of WWB can be

promoted during El Ni~no owing to a shifted location of

the warmest water (Lengaigne et al. 2003). Eisenman

et al. (2005) suggest that this state dependence may be

equivalent to an increase in the air–sea coupling strength

during El Ni~no events, andGebbie et al. (2007) show that

adding a state-dependent WWB parameterization to a

hybrid coupled GCM increases the instability, irregu-

larity, and asymmetry of its ENSO simulation.

The observational data for the wind stress responses

suggests r 5 20% for the conceptual model. While the

model at r 5 20% is capable of producing realistic

asymmetries in amplitude and transition probability, the

duration asymmetry is weaker than observed. This sug-

gests that other sources of nonlinearities, such as nonlinear

dynamical heating, the nonlinear relationship between the

eastern Pacific thermocline depth and SST, and the non-

linear rectification of tropical instability waves, are also

important in the understanding of the asymmetries.

The current study raises a number of questions: why is

the wind stress response sensitivity stronger during warm

events? Nonlinearities in atmospheric convection are

a likely source. How important are atmospheric non-

linearities compared to oceanic nonlinearities? What are

the roles of seasonality, ocean adjustment times, and the

spatio-temporal patterns of wind stress coupling in the

conceptual framework described here? How will future

climate changes affect ENSO asymmetries? We are in-

terested in answering these questions in the future.
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