# Model fidelity and ENSO change: signal vs. noise

## Andrew Wittenberg NOAA/GFDL



# Is ENSO changing?

- Variations in amplitude & period
- Short record, changing obs system
- Disparate AR4 model projections
- Which models to trust?
- How long to evaluate/distinguish?



# **Review of ENSO modulation**

See also: Diaz & Markgraf (2000), esp. chapter by Kleeman & Power

### **1. ENSO modulation in historical records**

# Multidecadal variations in ENSO amplitude, frequency, SSTA propagation coincident with apparent changes in background state

Enfield & Cid (JC 1991); Wang (JC 1995); Wang & Wang (JC 1996); Torrence & Compo (BAMS 1998); Allan (Diaz & Markgraf 2000); An & Wang (JC 2000); Fedorov & Philander (Science 2000); Wang & An (GRL 2001; CD 2002); Timmermann (GPC 2003); An & Jin (JC 2004); Yeh & Kirtman (JGRO 2004); Fang et al. (GRL 2008); Sun & Yu (JC 2009); Vecchi & Wittenberg (WIREs 2010)

### 2. "Unusual" recent behavior of ENSO

1990s less predictable; "extended ENSO"; more central-Pacific events However: "not previously observed" needn't imply "nonstationary" (perhaps we simply haven't observed long enough) And must account for mean-state changes in ENSO indices (how, for recent past?)

Harrison & Larkin (GRL 1997); Rajagopalan et al. (JC 1997); Trenberth & Hoar (GRL 1997) Latif et al. (JC 1997); Power & Smith (GRL 2007); Yeh et al. (Nature 2009); Lee & McPhaden (GRL 2010)

## Review of ENSO modulation (ctd.)

### 3. ENSO modulation in paleo proxies

ENSO weaker at 6ka? sparse, often discontinuous records, sometimes hard to interpret limited time resolution, some rely on teleconnections, or confound SST/precip what if seasonal cycle / teleconnections differed in the past?

Sandweiss et al. (Science 1996); Rodbell et al. (Science 1999); Markgraf & Diaz (Diaz & Markgraf 2000); Cole (Science 2001); Tudhope et al. (Science 2001); Moy et al. (Nature 2002); Cobb et al. (Nature 2003); McGregor & Gagan (GRL 2004); D'Arrigo et al. (GRL 2005); Emile-Geay et al. (JC subm. 2010)

### 4. ENSO modulation in intermediate models and CGCMs

Cane et al. (NRC 1995); Knutson et al. (JC 1997); Collins et al. (CD 2001); Picaut (workshop 2003); Yukimoto & Kitamura (JMSJ 2003); Yeh et al. (JC 2004); Yeh & Kirtman (JGRO 2004, GRL 2005); Moon et al. (CD 2007); Burgman et al. (JC 2008); Vimont et al. (JC 2002); AchutaRao & Sperber (CD 2002); Lin (GRL 2007); Wittenberg (GRL 2009)

# 5. IPCC-AR4 model projections of ENSO over next century: some stronger, some weaker, some unchanged

Meehl et al. (IPCC-AR4 2007), Guilyardi et al. (BAMS 2009), Collins et al. (NG 2010)

## Review of ENSO modulation (ctd.)

### 6. Mechanisms for ENSO modulation

ENSO might generate its own irregularity, internal to tropical Pacific region. Internal nonlinearity, seasonal resonance, intermittency, bursting.

Münnich et al. (JAS 1991); Jin et al. (Science 1994); Tziperman et al. (Science 1994); Kirtman & Schopf (JC 1998); Timmermann & Jin (GRL 2002); Timmermann et al. (JAS 2003); Timmermann (GPC 2003)

#### And modulation could arise from noise and/or intrinsic chaos alone.

Schopf & Suarez (JAS 1988); Battisti (JAS 1988); Zebiak & Cane (Elsevier 1991); Penland & Sardeshmukh (JC 1995); Eckert & Latif (JC 1997); Zhang et al. (GRL 2003); Newman et al. (JC 2003); Flugel et al. (JC 2004); Kirtman et al. (JAS 2005)

#### ENSO sensitive to mean state (trades, TC depth/intensity). But ENSO asymmetry itself can alter mean state.

Wang (JC 1995); Fedorov and Philander (JC 2001); Wittenberg (Princeton 2002); Dong et al. (GRL 2006) Rodgers et al. (JC 2004); Schopf and Burgman (JC 2006)

#### Might ENSO act to regulate tropical temperatures?

Sun (JC 2003); Sun & Liu (Science 1996); Sun & Zhang (GRL 2006)

#### ENSO modulation links to extratropical changes; cause & effect? A recent focus: seasonal footprinting & meridional mode physics.

Barnett et al. (GRL 1999); Kleeman et al. (GRL 1999); Liu & Yang (GRL 2003); Sun et al. (JC 2004); Matei et al. (JC 2008); Vimont et al. (GRL 2001); Vimont et al. (JC 2003); Chang et al. (GRL 2007); Di Lorenzo (NG 2010); Alexander et al. (JC 2010)

## **IPCC-AR4: GFDL CM2.1 global coupled GCM**

atmos: 2°x2.5°xL24 finite volume ocean: 1°x1°xL50 MOM4 (1/3° near equator) 2hr coupling; ocean color; no flux adjustments ENSO & tropics rank among top AR4-class models SI forecasts; parent of GFDL AR5 models

**4000-year pre-industrial control run** 1860 atmospheric composition, insolation, land cover 220yr spinup from 20th-century initial conditions substantial investment: 2 years on 60 processors

**1990 control (300yr)**  $2xCO_2$  (600yr)  $4xCO_2$  (600yr)

## new AR5 models: ESM2M ESM2G CM3

Delworth et al., Wittenberg et al., Merryfield et al., Joseph & Nigam (JC 2006), Wittenberg (GRL 2009) Zhang et al. (MWR 2007); van Oldenborgh et al. (OS 2005); Guilyardi (CD 2006); Reichler & Kim (BAMS 2008) Donner et al. (subm 2010), Griffies et al. (subm 2010); Stouffer et al. (in prep)

# **20 centuries of NINO3 SSTs**



# **Spectrum of NINO3 SST**









# Equatorial SSTA standard deviation









# Equatorial SSTA regressed on NINO3 SSTA









# Equatorial zonal wind stress regressed on NINO3 SSTA







# Equatorial net surface heat flux regressed on NINO3 SSTA







# Equatorial 300m heat content regressed on NINO3 SSTA

interann temp (2S:2N, 0:300m) regr on NINO3 SSTA 21yr chunks



interann temp (2S:2N, 0:300m) regr on NINO3 SSTA 100yr chunks



## interann temp (2S:2N, 0:300m) regr on NINO3 SSTA 20yr chunks



# Equatorial surface zonal current regressed on NINO3 SSTA





## interann u (2S:2N, 0:50m) regr on NINO3 SSTA 20yr chunks



# Summary of GFDL model results

1. 4000yr run of pre-industrial CM2.1 shows strong interdecadal & intercentennial modulation of ENSO. AR5 models do too.

2. Large uncertainties for *some* ENSO metrics (e.g. spectra, stddevs) diagnosed from short time series. Regression (feedback) diagnostics are more robust.

3. For sub-century ENSO records, **model biases and intermodel differences** are much easier to distinguish than **impacts of CO2**. But the CM2.1 **ENSO optimum** near 2xCO2 is interesting.

4. Intrinsic modulation might largely determine the ENSO behavior we'll actually experience over our lifetimes.

5. **Both the ocean & atmosphere** model components still exert influence over the ENSO behavior, perhaps indirectly through the mean state.

## 1. Improve quality/utility of historical & paleo records

#### a. Obs of feedbacks are critical

surface stress & heat flux; ocean currents, upwelling, mixing

- b. Maintain the present ENSO observing system, with redundancy TAO, QSCAT
- c. Uncertainty estimates -- particularly for reanalyses changing obs/analysis system

#### d. Obs intercomparisons e.g. of wind stress / heat flux products

e. Paleo synthesis/reanalysis

#### f. Provide obs in modeler-friendly form

access: OPeNDAP (DODS) aggregations, NetCDF via FTP lon/lat gridded, monthly-means complete & correct metadata (grid info, units) references, contact for questions & bug reports

#### g. Community inventory of all ENSO-relevant obs products

keep up-to-date advocate on behalf of modelers

## 2. Improve GCM simulations

#### a. Model intercomparisons

shared problems, outlier behaviors (good & bad)

- b. Identify/rank the "seeds & amplifiers" of model biases
- c. Improve subgrid processes, coupled feedbacks atmos convection & clouds ocean vertical mixing & solar penetration
- d. Auto-diagnostics (with summary metrics)
- e. Auto-optimization (explicit cost function) constrained by other model aims: MOC, ice, carbon, MJO, hurricanes
- f. In-house "obs data librarian" at modeling centers

#### g. Bigger computers

longer runs, larger ensembles, higher-resolution more detail & comprehensiveness

h. Accelerate spinup, esp. for ESMs

## 3. Analyses & experiments

#### a. How has ENSO behaved in the past?

could address with perfect-model studies what fraction of real-world ENSO attractor have we observed? representative/informative about rest of attractor? how to extrapolate full attractor, using models? and future changes in attractor?

#### b. Identify ensemble size / run length needed for detection

depends on both model & metric what can we extrapolate from short runs/forecasts?

#### c. How do model biases affect:

ENSO's sensitivity to climate change? ENSO teleconnections, and *their* sensitivity to climate change?

#### d. Extrapolating ENSO sensitivities from biased models to real world

d(sensitivity) / d(metric) ? d(reliability) / d(metric) ? perfect-model and model-model interprediction

#### e. Prioritize useful metrics

best constraints on simulations? (model tuning) best discriminants of ENSO response to climate change?

#### f. Paleo tests: bigger signal, but foggier "obs"

test paleoreconstructions using pseudo-proxies

#### g. Increasing data volume: need parallel analysis tools

## 4. Understanding & theory

#### a. How to model the ENSO sampling problem?

parameterize distributions of metrics

#### b. Map ENSO theory onto GCM fields & processes

features shifted in space/time/seasonality continuous/parameterized processes diagnostic model hierarchy: fit to CGCMs aim for efficient (but accurate) "knowledge-compression" Poisson & ARMA models, LIMs & NLIMs simple conceptual dynamical models intermediate models hybrid GCMs atmos-only, ocean-only, nudged GCMs useful predictions of which knobs to turn? side-effects of those adjustments, e.g. on mean state?

#### c. Fundamental predictability

sources/limits of predictability irreducible components of uncertainty intrinsic variability/chaos unpredictable forcings (volcanoes), and their leverage on ENSO

#### d. What sets maximum ENSO intensity?

are we near an ENSO climate-optimum?

#### e. Changes in ENSO diversity?

may first need to better sample & understand past diversity

## 5. Predictions & projections

#### a. ENSO CO2-optimum?

could help explain diversity of model sensitivities

#### b. How to improve predictions?

model: reduce biases ensemble size & representativeness (internal variab) initialization: more accurate, and consistent with model dynamics (to reduce shock) how best to correct for biases (a-priori corrections to dynamical equations?) forcing scenario & components missing feedbacks/forcings (aerosols, land cover)

#### c. Communication to stakeholders

2-way street: what aspects of ENSO are most important to understand/simulate/predict? (e.g., do extremes matter most?) small research community, rapidly growing list of stakeholders