Westerly Wind Bursts: ENSO's Tail Rather than Dog?

OR

How do Westerly Wind Bursts Affect ENSO Characteristics?

Geoffrey Gebbie, Ian Eisenman, and Eli Tziperman

Harvard University, Cambridge, MA, USA

Andrew Wittenberg

Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
Westerly Wind Bursts Are ...

In space:

5 or more days with wind speed > 4 m/s and peak > 7 m/s

Defined to be the strong WWEs, i.e., 'mega-WWEs' of HV97

Defined relative to seasonal variations

Approx. 3 WWBs/yr

In time:

Verbickas 1998, Yu et al. 2003

Harrison and Vecchi, 1997

Eisenman, pers. comm.

- 5 or more days with wind speed > 4 m/s and peak > 7 m/s
- Defined to be the strong WWEs, i.e., 'mega-WWEs' of HV97
- Defined relative to seasonal variations
- Approx. 3 WWBs/yr
A Link Between WWBs and the Ocean State

Vecchi and Harrison 2000, Yu et al. 2003, Eisenman et al. 2005
Objective:

Are the characteristics of ENSO (i.e., amplitude, frequency, irregularity) sensitive to the link between WWBs and SST?

Test: Use a hybrid coupled GCM with an explicit coupled representation of WWBs to determine the sensitivity of ENSO characteristics.

The Model:

Ocean model: GFDL MOM4
- Global domain
- ½ resolution in tropics

Statistical atmosphere:
- Linear regression of ERA40 monthly-mean wind stress onto SST (1979-2001)

Griffies et al. 2004, Wittenberg and Vecchi 2005
Modeling WWBs

1. Increase coupling coefficient.
2. Deterministic: When warm pool extends past 180, WWB occurs.

- WWBs applied 5 W of warm pool edge.
- No WWBs in boreal summer.
The model without WWBs:”Stable

NINO 3.4 SST

Zonal Windstress Anomaly

- coupling determined by ECMWF ERA40 reanalysis
- Decays to seasonal cycle
The model stability con't. "1.5x coupling coeff."

Wind anomalies are 1.5x larger than ECMWF regression values.

Dots represent warm events.

Characteristics:
- \(\text{std}(\text{NINO3}) = 0.8 \) °C
- 2.5 year ENSO recurrence time
- Periodic
Deterministic WWBs

If warm pool extends past date line, WWB occurs.

• $\text{std}(\text{NINO3}) = 0.6 \degree C$
• 2 yr period
• 3.5 WWBs/yr

Inclusion of WWBs gives interannual variability.

Black dots indicate WWBs.
Deterministic WWBs con't.

2 WWB representations:

40 day WWB lifecycle
std(NINO3) = 0.6 °C
2 year period

25 day WWB lifecycle
std(NINO3) = 0.7 °C
4 year period

The magnitude and period are sensitive to WWB formulation.
Purely Stochastic WWBs

WWBs occur independently of ocean state.

- $\text{std(NINO3.4)}=0.3 \, ^\circ C$
- 2-3 year recurrence interval
- Irregular
- 3.5 WWBs/yr

Weak interannual variability.
Semi-stochastic WWBs

WWBs more likely with extended warm pool.

- $\text{std}(\text{NINO3.4}) = 0.45$ C
- 2-5 year recurrence intervals
- Irregular
- 2.9 WWBs/yr

'Bunching' of WWBs. Stronger interannual variability than purely stochastic case.
Conclusions

ENSO Amplitude:

- Deterministic WWBs give interannual variability near observed levels without any other forcing.
- WWBs based upon a purely-stochastic atmosphere give weak variability.
- 'Semi-stochastic' WWBs are conceptually appealing and also give more variability than purely-stochastic WWBs.

Warm event recurrence times: Sensitive to particular WWB formulation.

ENSO irregularity: In this model, irregularity comes from the stochastic atmospheric variability.