

Westerly Wind Bursts: ENSO's Tail Rather than Dog?

OR

How do Westerly Wind Bursts Affect ENSO Characteristics?

Geoffrey Gebbie, Ian Eisenman, and Eli Tziperman Harvard University, Cambridge, MA, USA

Andrew Wittenberg Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA

Westerly Wind Bursts Are ...

- 5 or more days with wind speed > 4 m/s and peak > 7 m/s
- Defined to be the strong WWEs, i.e., 'mega-WWEs' of HV97
- Defined relative to seasonal variations
- Approx. 3 WWBs/yr

Verbickas 1998, Yu et al. 2003

A Link Between WWBs and the Ocean State

WWBs are 3x more common when warm pool extends past date line

Vecchi and Harrison 2000, Yu et al. 2003, Eisenman et al. 2005

Objective:

Are the characteristics of ENSO (i.e., amplitude, frequency, irregularity) sensitive to the link between WWBs and SST?

<u>Test:</u> Use a hybrid coupled GCM with an explicit coupled representation of WWBs to determine the sensitivity of ENSO characteristics.

The Model:

Ocean model: GFDL MOM4

- Global domain
- ¹/₂ resolution in tropics

Statistical atmosphere: •Linear regression of ERA40 monthly-mean wind stress onto SST (1979-2001)

Griffies et al. 2004, Wittenberg and Vecchi 2005

Modeling WWBs

- 1. Increase coupling coefficient.
- 2. Deterministic: When warm pool extends past 180, WWB occurs.
- 3. Stochastic. No dependence on warm pool.
- 4. Semi-stochastic. Probability of WWB increases with warm pool extent.

•No WWBs in boreal summer.

•coupling determined by ECMWF ERA40 reanalysis
•Decays to seasonal cycle

The model stability con't. :"1.5x coupling coeff.

Deterministic WWBs

If warm pool extends past date line, WWB occurs.

Deterministic WWBs con't.

The magnitude and period are sensitive to WWB formulation.

Purely Stochastic WWBs

WWBs occur independently of ocean state.

•std(NINO3.4)=0.3 C

- •2-3 year recurrence
- •Irregular
- •3.5 WWBs/yr

```
Weak interannual , variability.
```


Semi-stochastic WWBs

Conclusions

ENSO Amplitude: •Deterministic WWBs give interannual variability near observed levels without any other forcing.

•WWBs based upon a purely-stochastic atmosphere give weak variability.

•'Semi-stochastic' WWBs are conceptually appealing and also give more variability than purely-stochastic WWBs.

<u>Warm event recurrence times</u>: Sensitive to particular WWB formulation.

<u>ENSO irregularity:</u> In this model, irregularity comes from the stochastic atmospheric variability.