# Reassessing the Role of Stochastic Forcing in ENSO Events



## Andrew Wittenberg GFDL/NOAA

# Gabriel Vecchi

## UCAR Visiting Scientist Program

Email: Andrew.Wittenberg@noaa.gov

## Forecasts of the 1997/98 El Niño

#### (Landsea & Knaff 2000)







NCEP Coupled Model Forecasts



## 1997/98 El Niño

Equatorial anomalies





**1997/98 El Niño** Equatorial totals

#### Hypothesis:

Unpredictable wind stresses ruined the forecasts.

#### **Initial test:**

Partition the observed stress:  $\mathbf{Y} = \mathbf{X}\mathbf{W} + \mathbf{E}$ 

 $\mathbf{Y}_{n imes q} = ext{stress anomalies}$   $\mathbf{X}_{n imes p} = ext{SSTA predictors}$   $\mathbf{W}_{p imes q} = ext{regression coefficients}$  $\mathbf{E}_{n imes q} = ext{residual stress}$ 

Estimate  $\widetilde{\mathbf{W}}$  and  $\widetilde{\mathbf{E}}$  from observations.

Investigate how  $\tilde{\mathbf{E}}$  affects coupled forecasts.







## Statistical Atmosphere (Mode 2) SST and wind stress from NCEP2 (1979–2002)



### Wind stress decomposition: monthly NCEP2 obs





## Hybrid Coupled Model

Statistical atmosphere:

- tuned to NCEP2 obs SST/stress (1979–2002)
- 120°E–70°W by 5°; 20°S–20°N by 2°

Ocean model (GFDL MOM4):

- $2^{\circ}$ lon  $\times$  25 levels;  $\Delta y = 0.5^{\circ} \rightarrow 1.5^{\circ} \rightarrow 4.5^{\circ}$
- global domain, sponge to obs poleward of  $45^{\circ}$
- free surface, freshwater fluxes
- KPP vertical mixing
- Laplacian horizontal diffusion & viscosity

### Hybrid Model Ocean Grid



#### Spinup of the hybrid coupled model



#### Mean state from flux-adjusted HCM













## **Random initial conditions**

no residual forcing



## Random initial conditions forced by 1997 stress residual





Are the residual stresses random?

Only one realization of the obs!

Invoke an atmospheric GCM:

- 1. Force an AGCM ensemble with obs SSTs.
- 2. Fit a linear stress model to each run.
- $\Rightarrow$  Ensemble mean should vanish if residual is noise.

GFDL AM2p12 2.5°lon  $\times$  2°lat  $\times$  24 levels 10 members

#### AGCM wind stress decomposition: monthly mean









#### What drives the WWEs?



# AGCM $\tau'_x$ driven by precursive SSTA



## Skewness of AGCM $au_x'$ noise







#### **Background SST affects the WWEs**



#### **Background SST affects the convection**



#### **CGCM** biases



## Summary

- 1. Regression onto tropical Pacific SST captures most interannual variance of equatorial Pacific  $\tau'_x$ .
- 2. But the residual stress matters. It induces strong dispersion of ENSO forecasts.
- Pacific was preconditioned for warming in 1997.
  But unusually intense residual westerlies greatly amplified the warming.
- 4. The residual is not completely independent of SST.
- 5. Convective nonlinearity  $\Rightarrow$ 
  - role for background SST, Indian Ocean
  - challenge for CGCMs (climate drift)