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The XML file used at GFDL to describe an
experiment -- all code, compiler options,
namelist settings, input files, and postpro-
cessing -- also directs automated scripts to
generate diagnostic figures and summary
statistics as the model runs. The resulting
figure archives are invaluable for rapid as-
sessment & intercomparison of new simu-
lations, and they help expose errors early.

The CM2.0 and CM2.1 global coupled GCMs from the Geophysical Fluid
Dynamics Laboratory (GFDL) performed very well in model intercom-
parisons connected with the IPCC Fourth Assessment (AR4). But like
all current CGCMs run without flux adjustments, the GFDL models re-
tain substantial biases in their simulated tropical climate and variability
(Wittenberg et al. 2006). To address these biases we have taken three
promising avenues, illustrated here with a focus on the ENSO problem.
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Multi-scale coupled interactions complicate the attribution of biases e
in full CGCMs. To address this, we have developed a hybrid model EZE:;;;
consisting of the CM2.1 ocean coupled to a statistical atmosphere that
is fit to a long run of CM2.1. Individual components of the surface
fluxes can then be partially coupled, or swapped with other simula-
tions, isolating the impacts of the climatological background, anomaly
coupling, and quasi-stochastic flux forcings on the simulated ENSO.
The hybrid model thus provides a fast, controllable testbed for isolat-
ing coupled sensitivities, intercomparing CGCMs, and evaluating new

="CM2.1U_Control-1990_E1"

input

<gr i pec file= hive m3/input CH3f /grid_sp />

<dia gT able file= h p fJ ipce_ard/input CH2 1 pld_d ag_table_ipce
</in

z
ja
|| mmy =
D0 o oMt
A A

= =z =t
mwmno n
Hhoth Hh b = @M
AAAn oS
|

erp="
chul
ima
ript=
Tipt=
Tipt=
ript=

www

th Hh bbb

AAA A

[
nhan nAnNnnn A A nn
W R W omon S s
=== 3 =g ===l -] === =g =
o o o

HHE HHHA HHHRH
[ T] He e e He e 4
mm s mToTm S wmTTo
~+ + M HHH ~+ + =+ +
(] o 0o
2 - = =
[ nw W
OO0 khkhkh
- ez Mz
moo |II

annual—-mean SST (°C)

annual—mean precip (mm/day) stddev of interannual SSTA (°C)

— o — model components and data assimilation systems.
h : B NINO3 SST t
| L i S o no—CMT coupled mode 1 CM2.1 coupled mode 1 SPeEte
: o g1z (10200 an wind stress heat flux stochastic ENSO
1 324 CM2.1 (0001 0300) o~ . . .
= SRR 5% couphng damping forcmg spectra

al wind stress (mPa)
ed onto NINO3 SSTA

1979-2001)

net heat flux down al wind stress (cPa)
all months, tot corr w/ local SST

lux + ISCCP obs (1984-2002)
! L I L
U lJ

NINO3 SST spectra
, anom stddev of all months

(19 9— 2001) (a) NOAA ER.v2 obs (1957-2002)
N (b) CM2.1U Cmtro\—1990 E1 (0101-0200)

all mo th regre
<>Eo| s (

period (YR)

2. Intercomparisons with Other CGCMs
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(i) GFDL—CM2.0 nino34_std=0.88

Different CGCMs exhibit a variety of pat-

terns for zonal wind stress anomalies re-
gressed onto NINO3.4 SSTAs (see right).
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Prior studies with simple models (Kirtman
1997; An & Wang 2000; Wittenberg 2002)
suggest that the ocean adjustment time and
ENSO period should be linked to the merid-

ional width (Ly) and zonal position (C) of the

equatorial westerly anomalies. Capotondi et
al. (2006) explore this in CGCMs by regress-

Here we consider two runs of CM2.1, which differ only by inclusion of
parameterized subgrid-scale atmospheric cumulus momentum trans-
port (CMT). Compared to the no-CMT case, the control CM2.1 ENSO
1s stronger, has a longer period, and has a very different pattern of
wind stress coupling.

The statistical atmosphere extracts from the wind stress a part which

Elements from ENSO theory have analogues
in the automated diagnostics, enabling tests
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ing the ENSO periods (7) from the ARA4 i - ' ' ' ' : i : S I R I
g - perio (T depepds hnea.rly on la?ge scale !;roplcal Pamﬁc.SSTAs, lanlng behind of ENSO mechanisms, and building bridges s i
20th-century simulations onto the L, & C a noisy, nonlinear residual forcing. The hybrid model driven by the between CGCMs and conceptual models iy g
values estimated from the models’ ENSO residual forcing recovers the actual CGCM wind stress patterns fairly Multiple observational products are used to . o o
zonal wind stress regression patterns. well. Swapping just the SSTA-regressed stress feedbacks of the help characterize the large flux uncertainties o 7 o
5 - | CM2.1 and no-CMT hybrid models strongly alters the ENSO behav- e e7e o
CGCMs o8s :  All the models have too short a pe- : : : PR o 04 1082 | L tou_cur
- . 0 - viod for ENSO. with stress snoma ior, with the CM2.1 stress feedbacks favoring stronger oscillations & Summary statistics -- such as the model's .. 082 |-
Sk 5 4 - = 1 - . . . 12 4 , | tou_x
> $4 8 3 : . ’ more eastward propagation than the no-CMT stress feedbacks. pattern correlations with observations -- are ©- oes - |rto
8 s g 48 i lies that are too far west and thered b ta-tools to hichlieht b el |
S E E .. : athered u meta-tools to highli rob- . S |
Zé . meridionally too narrow. Regress- zonal wind stress anomaly (cPa, 5°S=5°N) lgem areas pan?if differences amoi g;nodrc)els o oan |
e - o  1ng T onto L, & C gives the equa- no—CMT atmosphere CM2.1 atmosphere 5 17 0.9/ [-ste
5 10 15 20 25 g y g q . . . . & oos Lt surf
|—y (degrees of lat) . . orig resid orig stat atm  sim stat atm  CM2.1 forced no—CMT forced sim stat atm  orig stat atm orig resid These StatlStICS can then be fed ll’ltO Ob_]eCthe 1 -
tion below for T}, (best-fit solution SO T TR O ', . . . : A A s UL AN A A
SE . . | : f“ = cost functions to measure simulation quality. mattorn correrdion ith ERMO (1979-5001)
: CGCMs 0BS ] I - g G s . . .
A3 , O E and ?OZ" boo;strap hC(f)"n idence in ° = _ The end result is an interconnected tree of in- ‘
2 2 9 - 3 —, . e : .
>0 6 R : terval s own for e}?c lttleld paralln : | : i o formation that allows one to quickly grasp
2 3 8 : eter). pesplte the small sample, g e — the model results at various levels of detail. cost functions
5 we can infer -- for these CGCMs at ) B
1E o 3 . - F = K  F] Cb, = _
170° 180° 170°W 150°W least - that the eI'lOd does tend to ° S ST ""’““ . . . e .
Center of mass leneth 1 p o L & C o — = ~ A final challenge is to balance competing priorities to design useful cost
engthen with increasin . 5 a = . . .. : :
SE R 5 b 1 gd f? - o= functions -- and improve the scientific understanding and observational
0BS - ~ ] ' z G o : C. . . .
_aE . -0 1ven the m‘gg’c l\irgeT LLIETences ° — = footing needed to optimize them. Both will require a sustained commu-
g : é,} 3 - among these S fp 15 & SUIT 5 — 1l 3 nity-wide effort spanning observations, theory, and models.
5 _¢3°3 . prisingly good predictor of T o s T—_— —_—
“2E - E 5 - = oy
T : s [. = References
1 2 3 4 5 - 10 - 10 © = - =
16 188 S
L 2 U T R T P S T I =S An, S.-I., and B. Wang, 2000: Interdecadal change of the structure of the ENSO mode and its impact on the ENSO frequency. J.
1 =UKMO—HadCM3 _ _ L —|14 C-1184 s P o e : = & L ATROY e, S 5o T ’
2 =PCM y o=t - |- ¥ 7% - & Ef = F = —— B Ao —— Climate, 13, 2044-2055.
3 =GISS—EH 3.4 13 179 3 = = | Capotondi, A., A. Wittenberg, and S Masina, 2006: Spatial and temporal structure of tropical Pacific interannual variability in
g igg;’g—%’g 5 correl( Tp/ 7)=0.82+0.15 Tp: 3N YV r+————+t——F———— 2 T " 20th century coupled simulations. Ocean Modelling, 15, 274-298.
5 —MRI—CGCMD. 3.2 2 7 20 77 5 —— . B Kirtman, B. P., 1997: Oceanic Rossby wave dynamics and the ENSO period in a coupled model. oJ. Climate, 10, 1690-1704.
7 =GFDL—CM2.0 - 10 30 S 1 N :'--_ - Wittenberg, A. T., 2002: ENSO response to altered climates. Ph.D. thesis, Princeton University. 475pp.
8 =IPSL=CM4 4 14 SO | e~ | W Y 1 SR — v Y. = 2 X Wittenberg, A. T., A. Rosati, N.-C. Lau, and J. J. Ploshay, 2006: GFDL's CM2 global coupled climate models. Part III: Tropical
9 =CC3M3 I ] I ] 150°€ 160°W 110°W  150°E 160°W 110°W  150°E 160°W 110°W  150°E 160°W 110°W 150° 160°W 110°W  150°E 160°W 110°W  150°€ 160°W 110°W  150°E 160°W 110°W Pacific climate and ENSO. J. Climate, 19, 698-722.

*Address for correspondence: Dr. Andrew T. Wittenberg, US DOC/GFDL, Princeton University Forrestal Campus, US Route 1, Princeton, NJ 08542. Email: Andrew.Wittenberg@noaa.gov



