How realistic are ENSQO’s advective tendencies in the

Introduction Temporal Structure of ENSO CGCMs?

Climate general circulation models (CGCMs) have ENSOs which . 20 h C Cl S . 1 . The leading advective terms in the heat balance
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Wittenberg 2002) have emphasized the importance of the structure of longitude and phase lag. Since advective ten-
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Rossby waves are generated, thus affecting the adjustment time of] 5 - o8 ] 5 CoCMs 08s ;;:z::o o closely confined about the growth, while a quadrature relationship (dot-dash :
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PCM NCAR (USA) 34 138 189.0 - Rossby waves are excited further away from the equator. B R B T T
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