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1. Introduction The 7, term produces strong up- Interior Upwelling: contour=0.2 m/day 5. Impact on Linear Stability
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The eastern tropical Pacific displays a distinct merid- . .
Pacific—but contributes much

ional asymmetry, with cold sea surface temperatures .
(SSTs) south of the equator, warmer waters to the less in the east, where the ther-

north, and an Intertropical Convergence Zone that is mocline is shallow and particu-
mostly north of the equator (Philander et al. 1996; larly susceptible to air-sea inter-
Wang and Wang 1999). The asymmetry is linked actions. The 7, term, in contrast,
to southerly surface winds over a broad span of gives east Pacific upwelling just
the equatorial eastern Pacific. How do these cross- a few degrees south of the equa-
equatorial southerlies affect the climatological cold | tor where the Ekman drift turns

tongue and El Nino/Southern Oscillation (ENSO)? northward to become more par-
allel with the wind. The

, which arises from
changes in atmospheric bound-
Annual mean T, (dPa) ary layer stability across the cold

GFDL AGCM (1983-98) tongue (Wallace et al. 1989; Liu

With the stochastic forcing turned off, the evolution of a tiny initial perturbation
reflects the linear stability of the model ENSO. Variability is strongly damped in
the absence of background 7,, but as 7, increases or the wind stress response to
SST anomalies strengthens, ENSO grows more unstable. At the critical coupling
for instability (dashed), the ENSO period decreases slightly with increasing 7,.
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2. Meridional Wind Stresses in Models and Observations

coupling parameter
o

'Ol P and Xie 2002), generates ad- 0 5 1.0 1.5 20 .0 5 1.0 1.5 2.0
- Q\ ditional upwelling in a narrow climatological T, multiplier climatological T, multiplier
~— 0, = zone just north of the equator.
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cific, also controls the asymmetry. Most atmospheric GCMs produce a tropical N Adding 7, en}?a?lces both the | sealeedback strengthin the east Facific. In Y -2
climate that is too meridionally symmetric, with southerly winds that are too depth zo.nal and meridional asyHIe- the contr.o | the ENISO period s sensitive to A o
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In observational analyses (below), the meridional winds over the southeast o the southeast equatorial Pa- | 1t1s sensitive to 551, The eat bud- &~
equatorial Pacific vary from year to year and from decade to decade. Mea- oovecton  CifiC, connects the cold tongue | get (below) shows why. Terms are scaled by 2 wuTh WUt b
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04 - thermocline downward toward | and indicates a transitioning term. Advec-
- Jone  the north. The extra upwelling tion b '
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Consider an ocean surface mixed layer of depth H,,, embedded in an active layer pled intermediate model of ENSO ; | 5° backs that control the period—like
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