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1. Infroduction 3. Seasonal Cycle Changes

We assess impacts of increased atmospheric CO9 on tropical climate, using the CM2.0 &
CM2.1 global coupled climate models developed at NOAA/GFDL (Delworth et al. and Wit-
tenberg et al., J. Climate, 2006). We compare multi-century control runs (with fixed 1860
values of trace gases, aerosols, insolation, land cover, and 286ppmv COs) to runs in which
COs increases 1%/yr and then stabilizes at 4xCOs (1144ppmv) after year 140. We focus here
on years 200-300 of the CM2.1 runs (above); CM2.0 results are similar except for Section 4.

The 4xCOy simulation shows a stronger seasonal cycle of SST over the equatorial central
Pacific, Atlantic, and eastern Indian Ocean. The seasonal cycle of rainfall is enhanced in
the northern & southern ITCZs, the equatorial Pacific, and the tropical Indian Ocean.
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In the eastern equatorial

4xCO, — 1860

stronger southeasterly trades in boreal 1860

summer/fall enhance the upwelling
peak, and weaker trades in boreal
spring amplify the upwelling minimum.
These increased seasonal upwelling
variations act upon the stronger mean
upper-ocean thermal stratification at
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2. Annual-Mean Changes
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The 4xCO9 run shows a fairly uniform 3—4°C warming of SST, with enhanced warming in
the equatorial & eastern Pacific. Rainfall increases along and just south of the equator, but
decreases in the northern ITCZ. The Pacific trade winds weaken and become more symmet-
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Over most of the tropical oceans, the thermal stratification in- Pacific) and evaporation (in the east ... Sl
1o creases over the top 50m, the mixed layer shoals, and the sur- Pacific) during ENSO warm events. ofess =
0 face currents weaken. The thermocline flattens, shoals, and Compared to CM2.1, CM2.0 shows .
10°s intensifies, and the equatorial undercurrent and upwelling be- a larger increase in surface heat . § '}/ |
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come shallower. The Indo-Pacific warm pool grows fresher near
the surface, while the tropical Atlantic becomes saltier. In the
eastern equatorial Pacific, increased downward surface heat
fluxes indicate enhanced ocean-dynamical cooling; the opposite
holds near the dateline and in the southeast tropical Pacific.
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SSTAs also increases, due to en-
hanced cloud shading (in the central

flux damping, and more of an east-
ward shift of the equatorial zonal
wind stress response to SSTAs. Over
the Indian Ocean, Atlantic, and
east Pacific, the variance of zonal
wind stress weakens at both inter-
annual and subannual time scales

solar heating and greater reductions
in evaporation during El Niio.
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