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ABSTRACT

The advent of high precision gravity missions presents the opportunity to accurately measure variations
in the distribution of mass in the ocean. Such a data source will prove valuable in state estimation and con-
straining general circulation models (GCMs) in general. However, conventional GCMs make the Boussinesq
approximations, a consequence of which is that mass is not conserved. By use of the height-pressure coordinate
isomorphism implemented in the MITgcm, the impact of non-Boussinesq effects can be evaluated. Although
implementing a non-Boussinesg model in pressure coordinates is relatively straight-forward, making a direct
comparison between height and pressure coordinate (i.e., Boussinesq and non-Boussinesq) models is not sim-
ple. But a careful comparison of the height coordinate and the pressure coordinate solutions ensures that only
non-Boussinesq effects can be responsible for the observed differences. As a yard-stick, these differences are
also compared to those between the Boussinesq hydrostatic and models in which the hydrostatic approxima-
tion has been relaxed, another approximation commonly made in GCMs. Model errors (differences) due to the
Boussinesq and hydrostatic approximations are demonstrated to be of comparable magnitude. Differences in-
duced by small changes in sub-grid scale parameterizations are at least as large. Therefore, non-Boussinesq and
non-hydrostatic effects are most likely negligible with respect to other model uncertainties. However, because
there is no additional cost incurred in using a pressure coordinate model, it is argued that non-Boussinesg mod-
eling is preferable simply for tidiness. Itis also concluded that even coarse resolution GCMs can be sensitive to
small perturbations in the dynamical equations.

1. Introduction Boussinesq OGCMs. Boussinesq models conserve volume;

R tv. the B . imati . ﬁeonsequently, they cannot recover steric effects. Hence, un-
ecently, the boussinesq approximations in ocean mo _?S the steric sea level change is explicitly calculated (Great-
els have attracted much attention (e.g., de Szoeke and Sar%e%-

i ; . atch 1994), one cannot use such models to study global sea

ls_lon zootz’lezfgf_)ﬁtcgoga_al\l/'l éOOl, Fu?nlgz?)gg Jl'lr'lh 200 el change due to net heating of the ocean at seasonal and

uang et_a. h" hu » VIC oluga el al dqf ): eat‘%nger time-scales. Furthermore, changes in the heat and

proximations, which are commaonly employed Tor Compulas o, ater content of the ocean can have spurious effects
tional efficiency in general circulation models and in analyti-

X . L . n the diagnosed bottom pressure in OGCMs that make the
cal studies, cor_15|st of re_placmg (0) mass conservation by Vog'oussinesq approximations. For example, heating the wa-
ume conservation and (ii) the density in temporal and advef:-r column (and neglecting the subsequent adjustment) de-

tion operators by a constant reference density (MCDOUQaCﬁeases the density. By volume conservation, decreasing the
etal. 2002). density reduces the mass and the bottom pressure, which for
While these approximations are generally justified fop rea| fluid should be unchanged in this case. Therefore,
purposes of.simulating the ocean circulation with ocean geg-,ojume conserving model may be inappropriate to study
eral circulation models (OGCMs), there are many problemszeanic mass distribution and bottom pressure in the con-
in physical oceanography that may require the use of nofsxt of high precision satellite gravity missions such as the

GRACE (Gravity Recovery and Climate Experiment) mis-
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tions as follows: “(1) The fluctuations in density which appear with the(Huang and Jin 2002).

advent of motion result principally from thermal (as opposed to pressure) . .

effects. (2) In the equations for the rate of change of momentum and mass, According to Huang et al. (2001), the Boussinesq approx-

density variations may be neglected except when they are coupled to timaations also may introduce erroneous energy sources and
gravitational acceleration in the buoyancy force.”
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energy transformation processes, although this issue is undgheric model in pressure coordinates (Brugge et al. 1991).
debate (R. Ferrari and A. Adcroft, personal correspondenc®y transferring the atmospheric model to the ocean and re-
In the ocean, heating the water column from above raises thtacing the equation of state, a fully non-Boussinesq OGCM
sea surface and increases the gravitational potential energypressure coordinates is readily available. Here, this model
But in a Boussinesq model, the same heating decreases théntegrated in parallel with the Boussinesq height coordi-
mass, does not raise the sea level, and thus reduces the greate mode of the MITgcm and the solutions are compared
itational potential energy. Also, neglecting the compressibito yield a quantitative assessment of the differences due to
ity in the continuity equation removes the explicit conversiothe Boussinesq approximation. The MITgcm can also be
between mechanical and internal energy from the Boussudn as a non-hydrostatic model which makes it possible to
nesq model. This may have an effect on the energy balancempare the relative impact of the Boussinesq and the hydro-
in the Boussinesq equations, although the magnitude of thestatic approximations and check the conclusion of de Szoeke
errors is unclear (Huang et al. 2001). and Samelson (2002) that the crucial simplification is the lat-

In this paper, we will argue that all of these errors aréer one.
at the noise level of a coarse resolution OGCM. In particu-

lar, they are comparable to, say, errors due to the hydrostagic Non-Boussinesq Pressure Coordinate Model and

approximation and uncertainties associated with model pgoussinesq Height Coordinate Model: Making the
rameterizations, because the long integration of an OGCModels Comparable

is sensitive to any small perturbation, even at non-eddy-

permitting resolution. Following de Szoeke and Samelson (2002), the hydro-

McDougall et al. (2002) pointed out that—in addition tostatic:, Boussinesq equations of motion in height coordi-

replacing mass conservation by volume conservation and {pates have the same form as the hydrostatic, non-Boussinesq

density by a constant reference density in temporal and uation in presstl_Jre cpordmates. To (él_ata![n af set (g non-
vection operators—when making the Boussinesq approxfOuSSinesd equations in pressure coordinates from Boussi-

mations, an error in the tracer equation needs to be cons 25 equations in height coordinates, one only has to substi-

ered that results from using a divergence-free velocity as e pressure fgr height as the vertical coordinate, a psequ-
elocity, which is the rate of change of pressure, for the verti-

advecting velocity. Greatbatch et al. (2001) and Lu (2001 Lvelocity. th tential heiaht for hvdrostati
each suggested a practical solution for accounting for th g velocily, the geopotential height for nydrostatic préssure

error in a conventional Boussinesq model. The two soILf’]-m(.j specific vqlume for de.nsity. Marshall G.}t al..(2003) .de'
tions differ only slightly: Lu (2001) re-interpreted the modelscrlbed how this isomorphism of the equations is exploited

variables as density weighted averages of the grid cell ar]; rmerIing of the atmosphere anq the ocean ‘.Nith the same
ynamical kernel code. The description of the isomorphism

added a correction to the vertical advection term in the mo-"" N ! X
mentum and tracer balance equations. This correction tet‘%‘d its application 1o a non-Bou_ssme_:sq pressure coordinate
is diagnosed from the original continuity equation which in-mOdeI of the ocegn are sgmmanzed in Append|xA.
cludes time-derivatives in density. Greatbatch et al. (2001) In the following sections, the solution of the non-

re-interpreted the model velocity variables as average ma3gussinesq pressure coordinate model is compared to that
flux per area normalized by a constant reference densiﬂf. the Boussinesq height coordinate model for a coarse res-

They arrived at a set of equations in which the density nee@dution configuration with mixed boundary conditions. Al-
to be stepped forward in time. though both models use essentially the same dynamical ker-

In a completely different approach, de Szoeke and samd®! of ”:e Mli?ﬁmt’ detailz Olf the (ijmpltﬁmzntatiton and t_he
son (2002) showed that the non-Boussinesq hydrostaf??lrame ers ot the two models render the direct comparison

equations in pressure coordinates have a form that is “dud] the wo mode! dn‘ﬁcult. Before the models can be com-
to the hydrostatic Boussinesq equations. In this way, only ﬂ%ared, the following issues need to be addressed.
structure of the boundary conditions in existing Boussinesq

ocean model code needs to be modified. The remaining coae Initialization

can be used without any further modifications, provided one . . .
y P Because the vertical grids of the pressure coordinate and

repl h, vertical veloci r re,an I nsity. . .
eplaces depth, vertical velocity, pressure, and scaled de sntéqghtcoordlnate models are different, the models cannot be

anomaly by pressure, vertical pseudo-velocity, Montgome%started from a common spun-up equilibrium state. Only a
potential, and the scaled specific volume anomaly, respec- P P €q : y

tivel start from rest with flat hydrography provides the identical
Y- initial conditions that are necessary for the close comparison
) In t'he MITgem (Mqrshall et al. 1997a, the model COd%resented here. Difficulties in interpolating the hydrogra-
is available at http://mitgcm.org), the dynamical core of Fh hy onto pressure levels that implicitly depend on temper-
model suggested by de Szoeke and Samelson (2002) is alre and salinity are avoided by starting both models from
ready implemented and used as an atmospheric model ($g6¢orm temperature and salinity fields, where the constant
Marshall et al. 2003, where atmosphere-ocean |somorph|sr\7/1§|ues off = 3.6°C andS = 34.7 are chosen to be approx-
and their implementation in the MITgcm are describedyyaiely the mean temperature and salinity estimated from
In fact, the MITgem was originally motivated by an atmo-y,q | evitus climatologies (Levitus and Boyer 1994; Levitus
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Sensitivity of GCMs to fundamental approximations 3

etal. 1994). c. Natural Boundary Conditions for Freshwater Flux

Pressure. is a nonlinear functpn of dep_th. Therefore, The response to freshwater forcing is anticipated to be
after choosing the depth levels in the height coordlnatg

. . e of the major dynamical differences between a Boussi-
model, the pressure levels in the non-Boussinesq model gsq and a non-Boussinesq model (Huang and Jin 2002).
the initial pressure field in the Boussinesq model are d

. i . : ; %Hence, the implementation of the natural boundary condi-
termined by integrating the nonlinear hydrostatic equat|0{i1Ons for freshwater flux requires great care

dp = —gp(p)dz. In the Boussinesq model, the pressure ) . .
is evaluated at the end of a time step. Then at the be- In the height coordinate model, adding freshwater locally

ginning of the next time step, the pressure from the prev[_educes the sal|n_|ty of the top layer, but a_t the same time
creases the height of the free surface via an inhomoge-

ous time step is used in the equation of state to calculalf& ) . : .
P d ous term in the free surface equation (Equation (A9) in

ity. Laggi in thi ids th li
density. Lagging pressure in this way avoids the nonline AppendixA). Note, that in this work, the freshwater flux is

integration at every time step (Griffies et al. 2001). Us | d aloball he forci iod h
ing an equation of state in which pressure is computed glanced giobally over the orcing perio (one year) so that
ere is no net flux of freshwater into the ocean.

p(z) = —gpoz can lead to errors of up to a few Sverdrup§
(1Sverdrup= 1Sv = 10°m?s1) in the Gulf Stream re- In pressure coordinates, the flux of freshwater is a mass
gion (Dewar et al. 1998) and is therefore explicitly avoidedlux at the surface, also balanced to avoid an overall mass
in our comparison. Huang and Jin (2002) used an equati&¥ift. The surface mass fluctuatiopsrw (P — E) change

of state that does depend on height and not on pressurelfi§ Pressure tendenay = Dp/Dt by a vertically constant
the height coordinate model which makes definite compayalue throughout the entire water column. Consequently,
isons between Boussinesq and non-Boussinesq models prgpew (P — E) also appears as a forcing term in the bottom
lematic. In this study, density is computed as a function diressure equation(A20) in AppendixA, which is effectively

pressure in both height coordinate and pressure coordin&gass equation. The salinity, however, is affected in the sur-
model. face layer. The derivation of the surface boundary conditions

for w in pressure coordinates can be found in AppendixB.

b. Computation of the Potential .
d. Free Surface vs. Bottom Pressure Gradients to the

The potentialp (¢ is pressure divided by, in height co- Momentum Equations
ordinates and geopotential height in pressure coordinates) is
computed by integrating the generalized buoyanstarting
from the free surface, (bis gravitational acceleration times
density in height coordinates and specific volume in pressu

i ; A ixA f furth I i f th . . .
coordinates; see AppendixA for a further explanation of t goordlnates and with topography, the corresponding geopo-

In the height coordinate model the contribution to the mo-
mentum equations of the surface pressure gradient is split

p%to gVn+gVi(p — po)/po] n. Often, the second term is ne-
ected on the grounds thgt— po)/po < 1. Butin pressure

notation): tential height gradient at the bottom is evaluated at differ-
r ent pressures. Making the above approximation in pressure
o(r) = d(rs) + / b(s) ds, (1) coordinates introduces larger errors because the specific vol-
T ume varies with depth. Therefore, terms of orfer o)/ po

in height coordinates anfx — «g)/ag in pressure coor-
dinates & = p—!) are not neglected in this study, thereby

At rest and with no atmospherllc pressure load, the S‘?@ducing the differences between a height coordinate and a
surface of a homogeneous ocean is flat. Because both pr S3ssure coordinate model

sure and geopotential are zero at the air-sea interface, this

implies that, in this resting state, the potentiamust be

zero at the ocean-atmosphere interface in both formulatiorfs. Turbulent Diffusion and Viscosity
This condition is easily met in the height coordinate for-
mulation where the air-sea interface is the free surface a

wherer is the general vertical coordinate.

The spatially constant eddy diffusion and eddy viscos-
ﬂ9 coefficients of the height coordinate (Boussinesq) model

¢(7“a) . p(zh = 77h)/POh Edo. h'” “tfhe pres];s,ure" F:OOdeQate have to be converted to pressure coordinates. For example,
model, on the other hand, the "free surfacg™is at the o e ricql viscosity terms takes the form

ocean floor and appropriate boundary valygs,) at the
bottom are needed to ensure that, at rest, the geopotential 9 () Ou , 0 (z) Ou
is flat at the air-sea interface. These boundary values are ob- 92 ( 1% 5) ) Pa—p < 1% Pa—p) ;
tained by integrating the initigl from the free surface at rest
r0 = ry(t = 0) to the fixed surface = Ry.a(= 0P3 at

the ocean-atmosphere interface:

3)

whereAgf) is the vertical eddy viscosity coefficients,the
horizontal velocity vectorg the acceleration due to gravity,
Rinen andp the in-situ density. Therefore only for constant density
P(rs) = —/ b|,_, ds. ) p = po, doesA” = AP g2p2 However, for any real-
2 istic scenario, in which pressure is a nonlinear function of
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density, the vertical diffusion and viscosity coefficients ar¢
a function of the vertical coordinate. Here, these variatior
are neglected and the coefficiemlg) andxﬁﬁ’) are assumed gl , .
constant. This assumption introduces an error of up to 3!

in the vertical viscosity and diffusion terms, if one assume

a reference density gf = 1035kg m~3. Thus, the vertical
eddy viscosity and diffusivity coefficients should be scale(z
by (p/po)? to reduce this error but are not done so herez3
There is a further discrepancy in the lateral diffusion an®
viscosity terms; in the height coordinate model lateral edd |
fluxes are directed down-gradient along the horizontal. |

o drift [cm]

pressure coordinates the fluxes are calculated along isobe 50 w51 92 953 e gé[s ] 056 957 958 959 | 960

. . . . . - time [yrs] -
surfaces which may be inclined. But the slope of isobari *° g
surfaces is at most of the orded—* and this effect is ne- — dift of sea surface height n pressure coordinate model

. . . . — — drit of bottom pressure In heignht coordinate mode!

glected as well. Finally, |mplement|n.g.the Gent-M_cW|II|ams O ae a0 a0 50 oo 700 0 oo 1000
and Redi schemes (Gent and McWilliams 1990) in pressu time [yrs]
coordinates would have incurred the same difficulties and so _
we chose to not employ these schemes. Fic. 1. Temporal evolution of the global means of bottom

pressure of the volume conserving (height coordinate, Boussinesq)
model and sea surface height of the mass conserving (pressure coor-
3. Comparison of OGCM Results dinate, non-Boussinesq) model. The bottom pressure is represented
in height units after scaling bypo ~ 10* kgm~2 s~2 and revers-
ing the sign. Both models show both an annual cycle and variability
longer time scales.

a. Model Parameters and Configuration

Both models are integrated for 1000 years. The horizontdl
resolution is4°, ranging from80°S to 80°N with 15 verti-
cal levels. The bottom topography is realistic and deriveg1|

from ETOPOS5 (NOAA 1988). The level thickness range obally averaged bottom pressure of the height coordinate

: . . odel and the globally averaged sea surface height of the
from 50m to 690m in the height coordinate model. Monthly ressure coordinate model. The evolution of the global mean

mean wind stress fields by Trenberth et al. (1990), monthiye b, o1, pressure in the height coordinate model in Fig. 1

mean heat flux and climatological freshwater flux by Jian% represented in height units after scalingglpy and revers-

et al. (1999) force the models at the surface. The surfaﬁ: . . . . .
. . . . the sign. Note that in spite of the approximate scalin
layer of thickness 50 m is also restored with a time scale 9 S!9 n Sp! pproxi scaling

? ne could use the vertically averagaditu-density instead
2 months to monthly mean sea surface temperature (Lewtgf,; 20), the mass evolution in the height coordinate model

Et a:.ﬂ19943 to_ represen; an ofcgatr;]lc fegdlback on the a(_:tlé Id the volume evolution in the pressure coordinate model
. e_? bluxi T?]S'C parame ersbot 0 Tr? els are summznzs e remarkably similar. We thereby confirm the conclusion
in fable L. The comparison between the pressure coor Ir“F’btfaGreatbatch (1994) who showed that one can recover steric

and height coordinate model is carried out by showing thg ‘ustina th level loballv unif ..
differences of time averaged fields. Unless indicated oth géreyﬁasgbgo??e]g;g?]gt e sealevel by a globally uniform, time
e .

wise, the averages are taken over the last 100 years of t
integration.
The two models operate on different vertical gridsP- Whatis the Magnitude of the Differences?

Hence, direct comparison of model variables will in most We now compare sea surface elevations and bottom pres-
cases involve the interpolation from one grid to the otheg .o anomalies (differences from the long time mean). For
introducing another possible, albeit small, source of d'ﬁerthis comparison, both the time-dependent global averages of

ences between the results. The only variables that evade {jg y,ta| mass of the height coordinate model and the volume
problem are bottom pressure and sea surface elevation. Bgkihe pressure coordinate model have been removed.
tom pressure is a prognostic variable in the pressure coordi-

rte o, bt mus b cagnosed fom e eight coor 12 S how TRCTerL e soeenen (et be
nate model. In contrast, sea surface elevation has to be di oare the height goordinate model with thg same moéiel
nosed in the pressure coordinate model, but is a prognosfi P 9 . oo
variable in the height coordinate model. Furthermore th\«@"th small changes to the dynamics, the parameterizations,

mean bottom pressure in the height coordinate model mr r}gxtgt?ol;oroc?r:ﬁeﬁﬁlddsr'os-lt—ggcn;OStrg):ic;;n;Qs:ttghﬁr;ﬁE: t';]hee
contain a false mass drift in time, whereas the mean sea sur- y PP

face elevation in the pressure coordinate model may driftdue

to steric expansioﬁ.Fig. 1 shows the time evolution of the elevation in the pressure coordinate model is only consistent with the model

discretization if the hydrostatic equation is integrated using a finite volume
_ discretization as opposed to finite difference discretization. The finite vol-
2Diagnosing bottom pressure in the height coordinate model or surfacene discretization of the hydrostatic equation is described in AppendixC.
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Sensitivity of GCMs to fundamental approximations 5

Table 1. Summary of model parameters

Parameter Symbol  z-coordinates p-coordinates
horizontal viscosity An 3.00 x 1075m?s7! 3x10°m?s!
vertical viscosity Ay 1.67 x 1073m?s™t  1.721611620915750 x 10°P& s~!
horizontal diffusivity KH 1.00 x 103m? st 1x10°m?s!
vertical diffusivity Ky 5.00 x 107°m?s~ ! 5.154525811125000 x 103 P& s~ !
convective vertical diffusivity i, 1.00 x 1071m?2s™1  1.030905162225000 x 109 P& s~*
bottom friction r 0 0
reference density 00 1035.0 kgm=3 1035.0 kgm~3
freshwater reference density pryw 999.8 kgm—3 999.8 kgm—3

vertical Coriolis terms and non-hydrostatic metric terms thab the sensitivity of the Southern Ocean in our results.
include the vertical velocityv. (See AppendixD for de-  The TOPEX/POSEIDON altimeter mission provided
tails.) With these terms, which are generally of the ordesceanographers with sea surface height anomaly data that
of 107°m?*s™!, the model is not fully non-hydrostatic, but have an accuracy of the order of 2cm (Wunsch and Stammer
it has a consistent energy conservation principle. Marshalbog). The accuracy of these data may serve as the bench-
etal. (1997b) called this model “quasi-hydrostatic™. mark for the difference in sea surface variability. The square
We also compare two hydrostatic Boussinesq models thatot of the variance of the sea surface height over 100 model
differ only in the choice of the vertical diffusivity parameteryears is shown in the top panel of Fig. 3 for the Boussinesq
for temperature and salinity. This parameter is often tuned taodel. The difference in sea surface height variability be-
bring the model close to the observations. Therefore it camween Boussinesq and non-Boussinesq model (second panel
have values that vary dramatically from one application tof Fig. 3) is smaller than that due to quasi-hydrostatic terms
another. As an additional test, we compare the results of tifhird panel of Fig. 3). It is hardly detectable with today’s
height-coordinate model with different implementations ohigh precision altimetry.
the equation of state and perturbations of the fOI’Cing fields All experiments so far use the po|yn0mia| equation de-
at the level of numerical round-off errors. rived by Jackett and McDougall (1995) from the UNESCO
The mean sea surface of the Boussinesq model is shodformula. The bottom panel of Fig. 3 shows the difference
in the top panel of Fig.2. The difference in mean sea surfackie to a different equation of state, namely the polynomial
elevation between the Boussinesq and non-Boussinesq madblished by McDougall et al. (2003). While the difference
els in the second panel of Fig.2 reaches 4 cm in the Southeémthe density computed by these different formulas is of the
Ocean, otherwise it is small. Such differences will just berder of 10~3 kg m~=3, it still causes differences in sea sur-
detectable when the new high precision geoid models b&ce variability of the same order as those due to Boussinesq
come available which are expected from the ongoing gravitgffects.
mission GRACE. The third panel of Fig. 2 shows the dif- Bottom pressure gauges and the satellite mission GRACE
ference in mean sea surface height due to quasi-hydrostafi@duce measurements of the bottom pressure fluctuations.
terms. This effect is approximately half the Boussinesq efpe therefore compare the temporal variations of bottom
fects. The bottom panel of Fig. 2 compares the Boussinegglessure in the models. The top panel of Fig. 4 shows the
model to an experiment in which the vertical diffusivity hassquare root of the bottom pressure variance over a period of
been increased by 1% of the standard value. Apparently, thigo years for the Boussinesq model (with the global mean
change in diffusivity leads to similar, if not greater, changesubtracted at every time step). The difference in the bot-
in mean sea surface elevation as do the Boussinesq effectgm pressure variability between the Boussinesq model and
In general, the differences due to Boussinesq, hydrdhe non-Boussinesq model (second panel of Fig.4) is on the
static, or equation-of-state effects are largest in the Soutbrder of 1cm equivalent sea surface height in the Southern
ern Ocean. This region is characterized by large horizont@icean and much smaller everywhere else. This difference is
density gradients and steep isopycnal slopes. Small changeslarge as 30% of the signal and is therefore not negligible.
in these large gradients may explain the observed sensitivilowever, the difference in bottom pressure variability due to
to small perturbations. Since these calculations do not hatlee quasi-hydrostatic effects (third panel of Fig.4) has a still
the Gent-McWilliams parameterization (GM), there is mordarger amplitude.
convective activity in the Southern Ocean (ACC) thanis nor- To assess the extent to which the above responses are an
mally seen in models with GM. The highly non-linear naturgnnate property of the system (i.e., does any small perturba-
of the convection parameterization may also be contributingyn lead to large changes?), the height coordinate model run
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FiG. 2. Top panel: mean sea surface elevation (in cm) of the FiG. 3. Top panel: Sea surface height variability (square-root
hydrostatic, Boussinesq model; contour interval is 20cm. Secoraf the variance in m); contour interval is 1cm. Second panel: dif-
panel: sea surface height difference due to Boussinesq effects; céegrence in sea surface height variability due to Boussinesq effects;
tour interval is 1cm. Third panel: sea surface height differencesontour interval is 0.5cm. Third panel: difference in sea surface
due to quasi-hydrostatic effects; contour interval is 1 cm. Bottorheight variability due to quasi-hydrostatic effects; contour interval
panel: difference in sea surface height variability due to a chandge 0.5 cm. Bottom panel: sea surface height differences due to a
of 1% in vertical diffusivity; contour interval is 1cm. changed equation of state; contour interval is 0.5cm.

is repeated with slightly different forcing fields: all forcing of Fig. 4 shows the resulting differences in bottom pressure
fields are perturbed by random noise with a relative amplisariability. As with the use of a different equation of state
tude2.22 x 10~ 16, This amounts to changing the last digit ofand a perturbed vertical diffusivity, the effect of these tiny

a 64 bit (double precision) real number and simulates the diferturbations on the variability is of the same order of mag-
ferences in round-off error that one encounters when changitude as the Boussinesq effects. This again suggests, that
ing compilers or computing platforms. The bottom panebur model is particularly sensitive in the Southern Ocean,
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Hydrostatic, Boussinesq model
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FiG. 5. The difference in bottom pressure variability as a func-
tion of scale. Shown is the square root of the degree variances

V2o lenm|? of the spherical harmonic coefficients,.. All ap-
proximations and errors give rise to differences in bottom pres-
sure variability that exceed the estimated errors of a geoid derived
from GRACE (Balmino et al. 1998) at large scales. But the hydro-
static approximation (QH), small changes in the vertical diffusivity
(KAPPA), small differences in the equation of state (EOS), and nu-
merical noise in the forcing fields (NOISE) seem to be as important
as Boussinesq effects (NB).

bination of restoring conditions for temperature and flux
boundary conditions for salinity has been reported to make
OGCMs unstable (Power and Kleeman 1994; Rahmstorf
1996). Repeating the above experiments with restoring
boundary conditions for both temperature and salinity con-
strains the height coordinate and the pressure coordinate
model to stay on very similar trajectories. However, this
does not change the qualitative result: when the models are
restored to the same surface fields, the solutions of the vari-
ous models become more similar and all differences are re-
duced by one order of magnitude. But the relative sizes of
the differences remain the same (not shown).

Fig.5 summarizes the previous comparisons as a function
of scale. Plotted is the square-root of the degree variances

FIG. 4. Top panel: bottom pressure variability (square root of /Zm lcnm |2 Of the bottom pressure variability differences

the variance); contour interval isx 10~ Pa~ 4mm equivalent
sea surface height. Second panel: difference in bottom press
variability due to Boussinesq effects; contour interval(s * Pax
1mm. Third panel: difference in bottom pressure variability due t
quasi-hydrostatic effects; contour interval & ' Pa~ 1mm. Bot-
tom panel: difference in bottom pressure variability due to numer
cal noise in the forcing fields; contour intervalli§™! Pa~ 1mm.

(0]

(in mm equivalent sea surface height) projected onto spher-

#&l harmonic coefficients,,,,. To bring the experiments

into the context of the current high precision satellite grav-
ity mission GRACE, the expected error of a geoid model that
will be derived from the GRACE gravity data (Balmino et al.
1998) is also drawn as a function of spherical harmonic de-
gree. (It is assumed that the bottom pressure measurement
errors, which are unknown at this time, are comparable to
the errors of the mean geoid. In this sense the geoid errors

where the flow is geostrophically balanced by large densifyrovide only a rough estimate of the measurement errors.)

gradients.

All differences in bottom pressure variability are larger than

The most likely explanation for the observed sensitivthe geoid errors on the very large scales; degree 10 corre-
ity is the choice of mixed boundary conditions. The comsponds to a wavelength of approximately 4000 km, degree
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15 to approximate|y 2670km. On shorter scales the geoi Height — pressure coordinate model, nonlinear free surface
errors dominate. For most coefficients, that is spatial scale
the differences due to Boussinesq effects are smaller thi
those due to both non-hydrostatic effects and round-off nois
in the forcing fields.

In summary, comparison of solutions obtained using:
Boussinesq and non-Boussinesq models shows significe
differences in the time-mean and variance of surface elev:
tion and in the variance of bottom pressure. Compariso . -
of the hydrostatic model to the quasi-hydrostatic model indi ~ ° 50 O ey
cates larger differences than those due to the non-Boussine Height - pressure coordinate model, rigid lid
approximations in sea-surface height and bottom-pressu
variances though a considerably smaller change in mean s
surface height. Thus the relative effect of the two approxime
tions seems comparable. Changing the vertical diffusivity b
1%—actually, we know that both vertical viscosity and dif-
fusion can potentially vary by 2—3 orders of magnitude—
the form of the equation of state, or adding truncation leve
noise to the forcing leads to equally large changes.

latitude [°N]

latitude [°N]
U

0 50 100 150 200 250 300 350
longitude [°E]
4. Are the Differences Between Height Coordinate and
Pressure Coordinate Model Really due to the Fic. 6. Difference of the square root of the sea surface vari-
Boussinesq Approximations? ance over an averaging period of 1 year for the model with constant

density. Top panel: with nonlinear free surface; contour interval
After showing that the differences between the Boussis 1 x 10~ m. Bottom panel: with rigid lid; contour interval is

nesq and the non-Boussinesq model are generally of tA&2 x 107°m.
same order of magnitude as those due to relaxing the hy-
drostatic approximation or changing uncertain parameters
slightly, it is still not clear whether the observed differencesaces). Note that in this Configuratiom,g’) - A§f>92p3,
between the models are really due to the Boussinesq approgiactly.
mation or simply due to the numerical difference introduced gy g jjjystrates the contributions of the effects due to the
by the different coordinate systems. These may arise bfginear free surface. Shown is the difference in sea sur-

along different surfaces (pressure vs. height surfaces),

numerical truncation may lead to different trajectories. Thfhe 10th year of integration. Although both the height coor-
nonlinear free surface causes an additional numerical diﬁe&inate and the pressure coordinate model describe the same
ence: in the height coordinate model the surface layer hagigiq of constant density, the answers are slightly different
variable thickness, while in the pressure coordinate modeldj, 1 the different truncation errors implied by the differ-
is the bottom layer that can vary in time and space. ent formulation, top panel of Fig.6. The difference between
To test how much of the differences between the heighressure and height coordinate model is three orders of mag-
coordinate model and the pressure coordinate model &igude smaller than in the full model of Section 3. Replac-
due to the numerical discretization, any dependence on tligy the nonlinear free surface by a rigid lid, bottom panel of
Boussinesq approximations is removed by replacing theig.6, decreases the difference in sea surface height variabil-
pressure dependent denSity with a constant in both the helgﬂ; by two orders of magnitude (and the differences in mean
coordinate model and the pressure coordinate model. TBga surface elevation and bottom pressure variability as well,
system is forced by wind stress only, and there is no buoyot shown). The remaining differences in sea surface height
ancy flux. Then any pressure level inclination is solelyariability are largely due to fact, that sea surface elevation
barotropic and due to sea surface elevation changes. in the pressure coordinate model is a diagnostic variable,
Only two differences remain between the pressure coowhereas it is prognostic in the height coordinate model. In a
dinate and the height coordinate model: changes in laybarotropic model, sea surface height and bottom pressure are
thickness due to the nonlinear free surface (at the bottom éguivalent. Comparing the sea surface height of the height
pressure coordinates and at the top in the height coordinateordinate model and the bottom pressure anomaly of the
model) and the way the horizontal gradients in the nonline@ressure coordinate model reveals that, after proper scaling,
advection terms and the horizontal viscosity terms are evdhey are the same in the case of a rigid lid to working preci-
uated (strictly along pressure surfaces and along horizongibn. The differences in horizontal velocities are also smaller
surfaces, which form a small angle with the pressure suthan10~!* for the barotropic experiment with rigid lid, and
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Sensitivity of GCMs to fundamental approximations 9

the two models give essentially the same result. That is, the McDougall et al. (2002) showed that the steady-state
angles between surface of constant height and surfacesgafostrophic Boussinesq equations are equivalent to the non-
constant pressure are so small that the horizontal gradie®sussinesg equations under the same dynamical regime.
do not cause any differences that exceed the noise level. Wherefore, at the coarse resolution used here, we can ex-
can assume that in the case of variable density, the diffgrect only small differences between a Boussinesq and a non-
ences in humerical discretization are also mainly due to tHgoussinesq ocean model, because a good deal of the sim-
nonlinear free surface. Although there may be a larger im#ation should be geostrophically balanced. With increas-
pact of the free surface in the full baroclinic model becausiag realism of the simulations (increased resolution, higher
of the vertical advection of buoyancy at the surface, the nidrequencies, etc.) that leads to sufficient ageostrophic and
merical effects due to difference coordinate systems are stiline-dependent motion one expects the Boussinesq effects
much smaller than the Boussinesq effects. to become more important. But at the same time, hydro-
static effects will become more prominent as well. Further,
the model solutions of chaotic (eddy-resolving) systems will
5. Discussion and Conclusions be highly sensitive to noise in the initial fields and the bound-
Conventional OGCMs make a number of approximation%ry c_glndmodns. L/Vheth_er the Boussinesq e_ffects W|I_I be g;s-
that influence their solution, such as the hydrostatic a[():_erm. € under these circumstances, rema|.ns questlona. ©
proximation and the Boussinesq approximations. We find Still: models that do not make the Boussinesq approxima-
that relaxing the hydrostatic approximation has a larger inflo" are recommended over the conventional height coordi-
pact on the variability of a coarse resolution global modd}t€ models when they are not more expensive to integrate.
than do Boussinesq effects. Non-Boussinesq effects lead t§iS POINnt of view is taken for the puristic reason of aban-
larger changes in mean sea surface elevation than do n&QNing an approximation. If, however, there is a consider-
hydrostatic effects and is consistent with switching fronf!€ additional effortinvolved in integrating these mass con-
conserving volume to conserving mass, as discussed $f"Ving models, the minor effects of the Boussinesq approx-
Huang and Jin (2002). Note, however, that we have not us&ation do not justify that cost. Instead, efforts to improve
the MITgcm in a fully non-hydrostatic mode. The fully non-th_e parameterlzatl_op of unresolved physms such as mixing
hydrostatic model involves an additional algorithmic step t/ill 0& more beneficial to OGCM solutions that relaxing the
compute the non-hydrostatic pressure contribution, whidROUSSINesq approximations.
is complicated when using a nonlinear free surface. The One of the conclusions of this study is only indirectly re-
changed algorithm represents a further perturbation and wifited to the Boussinesq approximations. In the configura-
surely lead to additional deviations from the solution of théion of this study with mixed boundary conditions for tem-
hydrostatic model. perature and salinity, the OGCM yields robust results on

There is also convincing evidence that the changes duelf}f® 1arge scale. But at the same time, it is so sensitive to
Boussinesq effects are smaller than the errors introduced §§rall: in fact, almost indetectable changes in the parameter-

other approximations and parameterizations generally mal&tions, largely unknown forcing fields, or approxma_tlons
by ocean general circulation models. made, that one cannot expect two models that use a different

Greatbatch et al. (2001) showed that the differences b§<_)ord|nate system to stay on almost identical trajectories for

ween a Boussinesa model and a non-Boussinesa mo qinfinite time (of integration). The results presented here
are reassurinaly on (Et]he order of a few percent in th(l me E)ssibly depend on this detail. It is particularly important to

. gly on . P compare the model variances while the two models are on a
fields. Here we confirm that the differences between the non-

Boussinesq pressure coordinate model and the Boussin similar trajectory. Once the models have diverged, there is
: qp . . finte hope of recovering the results shown.
height model are small in the time mean. But even the coarse

resolution experiments are sensitive to small differences jn V/hen the property of exact mass conservation is required

the dynamics or parameterizations. These small perturb@ & particular study, non-Boussinesq models must be pre-

tions lead to detectable changes in the computed circulatidf"ed- However, current Boussinesq models in height co-

particularly in the variability of bottom pressure and sea sufrdinates still have their benefits. For instance, at eddy re-
face height solving scales, non-hydrostatic effects are believed to be im-

portant, and a non-hydrostatic model is much easier to for-
shown here were obtained by usina the same compiler mulate: in height coordinates than in pressure coordinates.
W W : y using . P! rgE)n this note, the approach by Greatbatch et al. (2001) may
the same platform. Use of a different compiler or platfor llow the inclusion of non-Boussinesq effects into the non-
changes the results due to differing numerical floating po"ﬁydrostatic version of the MITgem and make the compari-

operations, and gives an additional clue about the order 2n of the different height coordinate models simpler. But

g]uacir_"utj:; noljrﬁcrarr(i)é;t:iiiot\zrlles?h;pggﬁgm glitclxcr)]niss 'ggc\)@e suspect that the Greatbatch et al. also introduces artifi-
: ' :;ial differences due to the different structure of the equations

It is particularly interesting to point out that all results

Fg&;edq:% r:gii,ee)i(r?ter?en}g?;i;haftie'slzgwél,iﬁ gilffffsrreezggg Srlé:e Rew terms) while the height-pressure isomorphic equations
9 ) ave the same structure.) Also, the representation of at-

large as those due to Boussinesq effects.
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mospheric pressure load in a pressure coordinate modelAd&. Boussinesq Hydrostatic Ocean Model in Height
slightly more complicated than in a height coordinate modeCoordinates

because it involves two moving surfaces. Further, while the

representation of bottom pressure in the pressure coordinate Ne equations of motion incoordinates after making the
model is more natural, the bottom pressure diagnosed froRPussinesq approximation can be cast as

the height coordinate model appears accurate enough in the

light of_othgr approximations made, namely the hydrostatic Du _ *Vzﬂ _ fkxu+F, (A1)
approximation. Dt 00

Constraining pressure coordinate OGCMs with bottom Op
pressure data is more straightforward in the same way that 92, 9P (A2)
height coordinate models are more easily constrained by sea ow
surface elevation data. Although we found high sensitivi- Veru+ 92 0, (A3)
ties to dynamical formulation under mixed boundary condi- D6
tions, constrained models may show less sensitivity, as was Dt (A4)
the case with restoring boundary conditions. If this is the DS
case then concerns about assimilation of bottom pressure Dt Qs- (A5)

even in height coordinate OGCMs are unwarranted, partic-

Ularly since we have demonstrated that the evolution of I’lﬁﬁ these equationm is the horizonta' Ve|ocity andj the
ocean mass can be quite accurately accounted for in sucheitical velocity,p is the full hydrostatic pressur®, is the
model. frictional force. The subscript 0¥, indicates that the gra-
dient is taken along surfaces of constanthe substantial
Acknowledgments. The authors thank Carl Wunsch andtime-derivative (rate-of-change) operator is
John Marshall for initiating this work and for many valuable
comments. Raffaele Ferrari helped improve the manuscript. D P
We also wish to thank Steve Griffies and one anonymous Di ( >
reviewer for their helpful comments. This work is a contri- z
bution to the ECCO (Estimating the Circulation and Climate _ ) _ )
of the Ocean) project. ML was funded JPL/NASA Contrac\"’here again the subscript at_the differential operator means
# 1205624. AA was funded by ONR/NOPP N00011-99-1t-hat these operators are applied at constaAt the free sur-

1050. IMC was funded by the MIT Climate Modeling Ini- 2.2 = 71(z, y, ), we assume that the pressure is constant
(taken to be zero) which leads to the boundary conditions

T +u~VZ+w£, (A6)

0z

tiative.
Dn
= =——-(P-F tz = A7
p=0, w=—1r—( ) atz =, (A7)
w=-u-V,H atz = —H(z,y). (A8)

(P — E) is the freshwater flux into the ocean (precipitation
minus evaporation).

A prognostic equation for the sea surface elevatjda

APPENDIX obtained by integrating (A3) and applying (A7) and (A8):

VZ-(/T7 udz)Jr%(PE). (A9)

-H

Linearizing this equation is equivalent to neglecting a term
V. - (un) in the surface boundary condition far (Roullet

. ) ) and Madec 2000).
A. Isomorphic Pressure and Height Coordinate

Formulation of the Primitive Equations
A2. Non-Boussinesq Hydrostatic Ocean Model in Pressure
Coordinates

To familiarize the reader with an ocean model in pres- The equations of motion written in terms of pressure as
sure coordinates, the symmetry between the pressure and émeindependent variable are well-known and much used in
height model formulations as pointed out by de Szoeke ardynamical meteorology (e.g., Haltiner and Williams 1980).
Samelson (2002) and Marshall et al. (2003) is reviewed. Using an isomorphism (Marshall et al. 2003), the MITgcm
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Sensitivity of GCMs to fundamental approximations 11

implements these equations in pressure coordinates: which is the analogue to equation (A9). Equation (A20) can
Du be viewed as a statement of mass conservation for the entire
o= ~V,® — fk x u+F, (A10) water column.
0P o .
. (All) A3. Symmetry of the Primitive Equations and the
Isomorphism in the MITgcm
Ow
Vp-u+ — =0, (A12) . . . .
op The two sets of equations in the preceding two sections
Do have a strikingly similar form. By making the following sub-
Dt Q, (A13)  stitutions, they can be transformed into each other:
DS
_— = . 2 p7
D = Ws (A14)
W — W,
Here,® = gz is the geopotential an¥,, is the gradient D/ py s @ (A21)
along pressure surfaces; the substantial time-derivative (rate- ’
of-change) operator is gp — .
D P P In the model code of the MITgcm, these variables are re-
DL <8_> +u-Vy+w— placed by general variables. A run time switch then selects
t t)p p (A15) the meaning they have in the present experiment. This makes
(9 tu-V. 4 wg it possible to use the identical dynamical kernel for simula-
—\ ot ; # 0z’ tions in both pressure and height coordinates (Marshall et al.
: i 2003).
}?’::Jebthe pseudo velocity, the pressure tendency, is de- Exploiting this symmetry, both models can be summa-
y Dp rized in terms of more generalcoordinates:
e L . — =—-V,¢— fk F, A22
The specific volume is given by the equation of state Dt ¢~ flexut (A22)
9¢
p ' =a=a(S6,p). (A17) o b, (A23)
o7
At this point, it is interesting to point out that the V,-u+ a—r =0, (A24)
form of the continuity equation (A12), albeit resembling A
. - i . Do
the incompressibility statement of Boussinesq models in z- T Q, (A25)
coordinates, is a consequence of the hydrostatic assump- DS
tion (A11) and does not require the neglect of dilatation D = Qs. (A26)

p~tDp/Dt (de Szoeke and Samelson 2002). Hence, a non-
Boussinesq model with continuity equation (A12) conservekhe general coordinate replacesp andz, the vertical ve-
mass in contrast to a Boussinesq model, which conserv@§itiesw andw becomei = Dr/Dt, the general poten-
volume. tial ¢ takes the place oP andp/py, and the generalized

As before, we assume that the pressure is constant at f#f#Pyancyb is substituted for the specific volumea and
upper surface (taken to be zero). Any freshwater flux into tHg'® Scaled density-gp/po. The substantial time-derivative
ocean (precipitation minus evaporation) appears as a bourtfte-0f-change) operator in this formulation is

ary condition forw (see AppendixB). The flux is scaled by D b )
the gravitational acceleratignand the density of freshwater Dt (g) +u-V,+ "o (A27)
prw = 999.8kgm~3: "
where now the horizontal gradients are taken along the sur-

w=gprw(P—E) atp=0. (A18) faces of constant

To see the symmetry in the kinematic boundary condi-
tions it is convenient to distinguish between a (moving) free
surface, which is at the top in height coordinates and at the
ocean floor in pressure coordinates, and a fixed boundary
surface, which conversely is at the top for pressure coordi-
nates and at the bottom for height coordinates. The boundary
onditions at the free and at the fixed boundary surfaces are

At the ocean bottonmy, = — H («, y), the boundary condition
is expressed in terms of bottom presspygér, y,t) as

w=——+u-Vyp, atp=pp. (A19)

Together with the continuity equation (A12), the boundar
conditions yield a prognostic equation for the bottom pres-

Drg
sure = ﬁ atr = r,, (A28)
Py a
Vp - ( / udp) - % =gprw(P — E),  (A20) i =—u-V,Rixwd atr=—Rpxca(z,y).  (A29)
0
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wherer = r, is the free surface:, is the bottom pressure 77 @nd—2; are the respective heights of the surface pressure
py in pressure coordinates and the sea surface elevaiion @nd the base of the layer. Multiplying through withusing

height coordinatesr = — Rgyeq is the topography of the Leibniz’s rule, and using the boundary condition (A7) far
fixed surface, that ig) in pressure coordinates and depgth W€ get
in height coordinates. So with the additional substitutions o n
for the boundary conditions 0 :EAp +V- (gpu) dz (B3)
an
— 9P, — 9P Vil
retone—p (A30)
9(—2)
Rfixea: H+—0 +9p—g,— t9pu- Vp(=21)
D
+ gpFZ — gprw (P — E) — (gpw)

the symmetry is complete, except for freshwater flux at the

ocean surface. The fluxy(P — E) has to be added to the 7 ; andV, 2, are gradients along surfaces of constant pres-

boundary condition (A28) or (A29), whichever is the one a§yre. With the layer averaged velocifyand observing that
the ocean-atmosphere interface. The scale factamverts A is constant@Ap/dt = 0)

the freshwater flux into pressure or height units, that is, mass

flux (v = gprw) or volume flux ¢ = —1), respectively. Fi- 0=V - (Apu) — gprw (P — E) (B4)
nally, the prognostic equation for the free surfagés again 9z
the same for both coordinate systems: - {gp (w T u- Vp21) }

or

v, (/ udz) + 687;9 —y(P—E). (A31)

— Rfixed

1
0=V.-u+ — <—gpFW(P—E)+w

) ,  (BS)

Ap
because
B. Natural Boundary Conditions in Pressure Dz 0z v 0z (B6)
Coordinates YEDr T e T ”Z+w8_p'

) _ Equation (B5) is the full continuity equation in pressure co-
At the surface, a freshwater flux not only dilutes the saling,qinates for the top layer. Fakp — 0, one recovers the

ity, but adds mass to the water column. To represent thiitferential form, and the implied boundary condition for
flux through the material surface (interface between atmgyecomes

sphere and ocean), the boundary conditionfan pressure
coordinates (otv in height coordinates) has to be modified. w=gprw(P — E) atp = 0. (B7)
Without a freshwater fluxpy = 0 at the surface. Including

the flux leads to the boundary condition (A18), which may C. Finite Volume Discretization of the Hydrostatic
appear inconsistent at first, because at the sugfaee0 is Equation

a coordinate plane. Integrating the non-Boussinesq, hydro-
static continuity equation in height coordinates forover
the top pressure layer with thicknedy yields

Let k£ be the index of the grid point at the center between
the vertical cell interfacels— £ andk+ 1. If the distance be-
tween these vertical cell interfaces is call&d;,, a finite dif-
ference discretization of the hydrostatic equation (A23) that
yields the potentiap at the center between two grid planes

=/0 {—p + V. (pu) + %(ﬁw)} dp (B1) IS

Ap

Arg + Ar b+ b
¢k+1:¢k+( k . k+1).(k 2k+1). 1)

This formulation has been shown to conserve energy (Ad-
croft et al. 1997). However, an arbitrary choice about dis-
or cretization at the top and bottom boundaries leaves the def-
inition of bottom pressure (surface geopotential) somewhat
ambiguous. This ambiguity can be avoided by using the fi-
n(p=0) o nite volume discretization where the hydrostatic pressure is
0= S v =z dz. (B2)
= o " =(pu) + B (pw) ¢ dz. (B2) integrated over half levels as follows:

—z1(p=Ap)
Gyt = Pp_1 + Aryby, (C2)
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