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Abstract
A new ocean circulation model based upon the Navier-Stokes equations is presented as a general purpose tool

to study oceanic flows from the small scales of convective processes (∼ 1 km), right through to the scale of the
global circulation. The horizontal discretisation of the model is based upon the Arakawa ‘C’ grid, but includes a new
method that overcomes the problem of spurious grid-scale noise that would otherwise be manifest at low resolutions
(relative to the Rossby radius of deformation). The model is formulated in terms of finite volumes which allows an
accurate representation of topography to be implemented.

Various classes of wave motion, inherent in the model physics, are derived by linearisation of the governing
equations. The distinct wave motions are translated to the context of shallow water theory and analysed. A thorough
understanding of how the grid-scale noise behaves in numerical models is developed. Two types of fundamental wave
motion need to be modeled accurately; inertia-gravity waves and Rossby waves. The dispersive properties of these
waves in a discretised model dictate how grid-scale noise propagates. A new numerical algorithm is then presented
that evaluates the relevant terms in a more exact manner. The algorithm is shown to accurately model the dispersive
properties of both inertia-gravity waves and Rossby waves.

Conventional representation of topography, as boxes fitted to the model grid, is severely limited by vertical
resolution. The finite volume method, presented here, introduces the concept of zone (volume averaged) quantities
and flux (area averaged) quantities into which the model variables can be catagorised. The continuous governing
equations are then integrated over finite volumes that fit the bottom topography, and are written explicitly in terms
of zone and flux quantities. The model is thus able to resolve small variations in bottom relief without explicitly
needing the equivalent vertical resolution in the interior.
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Chapter 1

Introduction

1.1 A historical perspective of numerical ocean modelling

To understand the ocean circulation and the role of the ocean in the climate system, we must understand complex
processes in the ocean that occur on a wide range of scales. We use numerical models as tools for furthering our
understanding of both the large scale circulation and small scale processes. The large scale circulation is intimately
linked with processes on smaller scales. These processes must be either resolved or accurately parameterised if we
are to render an accurate picture of the global ocean. The scale of geostrophic turbulence in the ocean is of the order
30–100 km which is very much smaller than the typical 1000 km scale in the atmosphere. The limitations on spatial
resolution of numerical models, imposed by computer technology, are therefore more severe for ocean modelling than
for meteorology.

Since the earliest attempts to use computers to help understand the ocean circulation computers have become
ever more powerful. The computers accessible by most oceanographers today are orders of magnitude faster, and can
store much more data, than those available in the 1960’s when the first real efforts to model the ocean were being
made. The earliest attempts to model the global scale circulation could not possibly resolve the meso-scale features
present in the ocean. Instead, these processes had to be parameterised and, indeed, this is still the norm in regional
and global calculations.

The first large scale ocean simulation was carried out by Sarkisyan [Sar55] in the mid ’50s. Subsequent work by
Sarkisyan focused on regional studies such as for the North Atlantic. Bryan began modelling the ocean at GFDL
by applying numerical methods to the solution of the barotropic vorticity equation [Bry63] in the early ’60s. Later,
ocean modelling started elsewhere with Friedrich constructing a multi-level model in West Germany [Mos66]. Bryan,
in the meantime, moved onto three-dimensional box models and started a number of multi-level primitive equation
studies with Cox [BC68]. Soon after, a more general model was developed that incorporated irregular coast-lines and
variable bottom topography [Bry69]. The methods laid out by Bryan and Cox have been the foundation of many
subsequent modelling efforts by other parties.

The limitations imposed by the state of the computer technology meant that the Cox and Bryan model was first
applied to regional simulations. These included regional simulations of the Southern, Indian and North Atlantic
Oceans. Another model was then being developed in parallel at UCLA by Haney, Arakawa and Takano [Han71].
Takano went on to develop a less general model but applied it to the global ocean. He applied idealized atmospheric
forcing and obtained an ocean circulation with many realistic features [Tak74, Tak75].

Since then, several multi-level primitive equation models have been developed. Semtners code [Sem74] is a
derivative of the Bryan and Takano models. Two attempts to formulate the model on an Arakawa C grid, following
the UCLA Atmospheric GCM were made. Jeong-Woo Kim [Kim79] and Cox (unpublished) found the models to be
susceptible to grid-scale noise and they are apparently no longer in use [Jr.86]. Nevertheless, atmospheric models
were being successfully built on C grids since they resolved the geostrophic adjustment process1. Ocean models were
constructed on the B grid since they were unable to resolve the Rossby radius of deformation which is much smaller
in the ocean than in the atmosphere.

Further adaptions of the Bryan formulation were made by Han [Han84] and Cox [Cox84] and now, in the mid
1990’s, there are many models derived from or based on this formulation. Recent development of the Bryan-Cox-
Semtner code has been carried out at Los Alamos by Dukowicz and Smith [DSM93, DS94]. They have moved from
a stream function approach for treating the barotropic mode to a surface pressure approach. This allows islands to

1The inherent strengths and weaknesses of the B and C grid formulations as a function of resolution is described in detail in chapter
4.
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be treated more appropriately.
All these models use height as the vertical co-ordinate. More recent models have departed from this convention.

MICOM, developed by Smith and Bleck [SBB90], is an isopycnal model where height is a prognostic variable and
potential density is the vertical co-ordinate. The advantage of isopycnal co-ordinates is that the parameterization
of sub-grid scale processes can be made adiabatic. The formulation does however introduce complications both
at the solid boundaries and at the surface, and has difficulties when incorporating an accurate equation of state.
SPEM, see Haidvogel et al., 1991 [HWY91], and the Princeton model, see Mellor 1992 [Mel92], use terrain following
σ co-ordinates. These models are well suited for coastal oceanography where high horizontal resolution allows σ
co-ordinates to follow the topography smoothly. The SPEM code has not been widely applied at global scales
presumably because the topography of the ocean is extremely irregular and has many islands. The Princeton model
uses a variant of σ co-ordinates where the number of modes in the vertical can be varied in the horizontal to allow
sudden changes in topography.

1.2 Opportunities for a New Ocean Circulation Model

The advent of new parallel computer architectures has recently allowed oceanographers to begin running models at
eddy resolving resolutions on a global scale (see, for example Semtner, 1988 [SC88]). As the available memory of
computers increases, issues involving grid resolution must be re-addressed. One such issue concerns the approxima-
tions made to the governing equations used for large scale ocean modelling. For example, the usual approximation
of hydrostatic balance in the vertical may not be strictly valid at the smaller scales (smaller than the Rossby de-
formation radius) now being resolved by these models. Further, horizontal Coriolis effects can only be investigated
if the hydrostatic approximation is relaxed. Small scale phenomena are interesting in their own right and can only
be investigated using a non-hydrostatic model. Currently, all global ocean models are hydrostatic and there has not
been, until now, a numerical model applicable to both the small and the large scale. Such a model would allow a
smooth transition between studies at high and low resolution.

Models which resolve the Rossby radius of deformation operate in a parameter regime analogous to that of most
atmospheric models. They do not, therefore, suffer from the excessive grid scale noise, confronted independently by
Kim and by Cox.

Just as advances in computers allow the global circulation models to increase their resolution, the same advances
permit models designed primarily for the study of small scale phenomena to be applied to the larger scale.

Here, one such model is described that is applicable to all scales in the ocean. It has successfully been applied
to the convective overturning scale, up through the meso-scale and in extended integrations at the global scale. The
model is non-hydrostatic, though it can operate in a hydrostatic or quasi-hydrostatic mode. It is formulated on a C
grid, but uses an innovative method for evaluating the Coriolis term so that it is not susceptible to the grid-scale
noise problems of C grid models.

1.3 Development of a Navier-Stokes model for study of ocean circula-

tion

The model described here uses height as a vertical co-ordinate and can have arbitrary topography and irregular coast-
lines (or may be periodic in x and/or y). The kernel of the model is founded on the incompressible Navier-Stokes
equations. It can also be used to step forward quasi-hydrostatic and hydrostatic models that employ approximated
forms of the governing equations.

The model incorporates ideas developed in the computational fluid dynamics community which are relatively new
to ocean modelling (eg. conjugate gradient methods and finite volume methods). It has been developed on a parallel
computer architecture that gives the modeller access to higher resolution, through increased memory, and to longer
integrations, through increased speed.

The model solves the incompressible Navier-Stokes equations and so involves fewer assumptions than the hy-
drostatic primitive equations employed in most existing models. Further approximated forms can be recovered by
means of “switches” so that the relative importance of various small terms can be evaluated. In particular, the
non-hydrostatic facility can be turned on or off selectively; a quasi-hydrostatic form of the model allows horizontal
Coriolis effects to be retained whilst neglecting the advection of vertical momentum.

The Navier-Stokes model has been designed for the study of dynamical processes in the ocean ranging from the
convective scale, through the geostrophic eddy scale to the global scale circulation. The algorithm for studying
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this wide range of scales is essentially the same, though approximations2 can be made at larger scales to make the
integration more efficient with no significant loss of accuracy.

The computational challenge is to maintain non-divergence of the flow. This entails diagnosing the appropriate
pressure field that ensures the flow has zero divergence at all times. The equation satisfied by the pressure field is
elliptic and has Neumann boundary conditions. Thus, the pressure field depends upon the global distribution of
inhomogeneous sources and boundary conditions.

This last aspect of the problem has implications for implementation on parallel computers. Global interaction,
required by the elliptic problem, demands that information be exchanged globally between processors on a parallel
machine. The reduction of inter-processor communication is thus a priority in designing such an algorithm.

The development of the model has required expertise from diverse fields. Knowledge of ocean physics, numerical
methods, parallel computer architectures, data management and visualisation were supplied by members of a large
team; nominally John Marshall, Chris Hill, Lev Perelman, Curtis Heisey, and myself. Discussions with Prof. Arvind,
Andrew White, Roger Brugge, and Paul Cloke, among others, helped guide the development of the model.

1.4 Motivation for this thesis

The model is developed on a ‘C’ grid because it is the appropriate grid for study of small scale phenomena. It is also
the natural grid for both a finite volume formulation and the pressure correction method. When applied at coarse
resolution, the pure ‘C‘ grid model is found to be susceptible to grid-scale noise, as was the case for Kim and for Cox.
This is a direct consequence of the choice of gridding and is a well documented problem, most notably by Arakawa
and Lamb [AL77]. To evaluate the Coriolis term on the C grid, the horizontal velocities must be spatially averaged.
A result of the spatial averaging is that the Coriolis term vanishes for the grid scale. Grid scale noise can therefore
exist as stationary waves that have no inertial oscillatory component. For this reason, low resolution ocean models
are formulated on other grids, typically the Arakawa B grid.

This thesis has two foci. The first concerns the representation of the Coriolis term on a staggered grid, or,
more generally, on the representation of inertia-gravity and Rossby waves in numerical models. Noise, manifest in
the ‘w’ field, was resilient to many attempts to control it. Many approaches, ranging from brute-force filtering to
the introduction of artificial damping terms, were attempted. None of these methods were satisfactory for various
reasons. We decided, therefore, to find a correction to the problem rather than try to control it. This led to the
formulation of what we term the Cd scheme; a D grid is used in tandem with the C grid where the D grid velocities
are used to evaluate the Coriolis term. The scheme can be successfully used at coarse resolution and avoids the grid
scale noise problems that would otherwise manifest themselves.

The second issue addressed in this thesis is the representation of topography. The conventional representation
of topography in height co-ordinate models is as “step-wise” functions fitted to the model layer depths, a crude
representation. As an alternative, we consider a finite volume approach in which shaved cells can be used to represent
topography. The ‘C’ grid formulation lends itself quite naturally to a finite volume interpretation of the model. The
finite volume approach aims to conserve properties such as volume and tracers in a precise manner. The model
equations are discretised by integrating them over a grid of finite volumes. In the interior, the use of regular volumes
or cells gives rise to a conventional discretisation. However, the cells need not be regular where they abut a solid
boundary. We take advantage of this by shaving the cells to fit the topography of the ocean. In this manner, the
model is able to represent topographic effects that could otherwise not be represented without prohibitive increases
in horizontal and vertical resolution.

1.5 Structure of this thesis

Chapter 2 presents the continuous equations of motion on which the model is based. The approximations implicit in
the Navier-Stokes equations are discussed. Finally the natural modes of motion at various degrees of approximation
are derived. Subsequent chapters concern the accurate representation of these motions in numerical models.

The kernel of the numerical model, excluding the implementation of the two innovations, is described in chapter
3. Here, the model is integrated in a realistic configuration and found to be susceptible to grid-scale noise when
the Rossby radius of deformation is not resolved. The nature of the noise is traced to the spatial averaging of the
Coriolis term on a C grid. Several attempts to control the noise problem are briefly outlined and discussed.

Chapters 4 and 5 deal with the issue of the spatially averaged Coriolis term on a C grid. The similarity between
the shallow water equations of motion and the equations pertaining to a baroclinic mode in the Navier-Stokes model

2The hydrostatic approximation is described at the end of chapter 2.
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is used to motivate a study of the gridding issue in the context of the shallow water equations. Chapter 4 reviews
the work of Arakawa and Lamb [AL77] and describes a scheme that improves the representation of inertia-gravity
waves. The scheme is flawed due its inability to represent Rossby waves. A new scheme, the Cd scheme, is then
described in chapter 5, which correctly treats both inertia-gravity waves and Rossby waves.

The Cd scheme is implemented in a numerical shallow water model and compared with the B and C grids. It
is found to have no grid scale noise problems and is subsequently implemented in the Navier-Stokes model. The
scheme entails only minor modification of the original model (as described in chapter 3) and adds little computational
overhead.

In chapter 6, the representation of topography is discussed. The finite volume approach and the use of shaved
cells to represent topography are described. The model is re-formulated using finite volumes. A series of experiments
are devised and conducted to test the representation of topography using shaved cells.
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Chapter 2

Equations of Oceanic Motion

All classes and scales of motion are described by the Navier-Stokes equations (derived in Appendix A). The equations
used for the study of the general circulation of the ocean, however, are based on approximated forms which involve
the Boussinesq approximation and assume non-divergence of the flow. The latter approximation excludes the acoustic
modes of motion.

Further degrees of approximation are made that modify but do not eliminate the remaining natural modes of
motion. These classes of motion will be derived. The accurate representation of these modes was a paramount
concern when building and understanding the finite difference model. Chapters 4 and 5 deal exclusively with the
numerical representation of inertia-gravity waves and Rossby waves, the nature of which will be derived at the end
of this chapter.

2.1 Navier-Stokes equations of oceanic motions

The complete unapproximated system that describes inviscid, adiabatic flow is:

Dp

Dt
+ ρc2s∇.u = 0 (2.1a)

Du

Dt
+ 2Ω ∧ u +

∇p

ρ
+ ∇Φ = 0 (2.1b)

DS

Dt
= 0 (2.1c)

Dθ

Dt
= 0 (2.1d)

ρ = ρ(θ, S, p) (2.1e)

where p, u = [u, v, w], θ, S and ρ are the pressure, three-dimensional velocity, potential temperature, salinity and
in-situ density respectively. These equations are derived in Appendix A from first principles.

There are six prognostic equations for the variables p, u, θ and S and one diagnostic relation for ρ. These are
the Navier-Stokes equations supplemented by complete thermodynamics. These equations are the basis from which
all models of the ocean are derived in their various degrees of approximation.

The full system is often also expressed in terms of in-situ temperature T rather than potential temperature θ.
Similarly, the salt and temperature equations can be combined into a thermodynamic equation for potential density
defined σpo

= ρ(θ, S, po) ⇒ d
dtσpo

= 0.
The pressure equation will later reduce to the continuity equation (expressing non-divergence of the flow) when

the acoustic modes have been filtered out of the system. The pressure equation is obtained by combining conservation
of mass with the equation of state. The Navier-Stokes equations could equally have been written using conservation
of mass instead of the pressure equation. This, however, would have yielded two explicit equations for the density,
ρ, and none for the pressure, p.

2.2 Approximations

System 2.1 is completely general and describes all physical processes in the ocean that are not affected by molecular
viscosity and diffusivity. This, however, is a draw back for any practical computation since the explicit time scales
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in the system require that all processes be resolved. For example, the acoustic modes are very fast relative to any
process relevant to the long time scales of interest (normally much longer than a few days). An explicit numerical
model based on the above system would have a time step limited by the sound waves. This severely limits the
applicability of any such numerical model.

There are two ways of proceeding; either writing the numerical model in an implicit manner or explicitly filtering
out the fast modes. Implicit models can be written, and in fact would bear a striking resemblance to the adjusted or
filtered model. Implicit techniques act to slow the respective process down so that a long time step does not violate
any criteria. The filtered system, in the other limit, assumes that the process acts infinitely fast so that the system
is always adjusted. The latter approach is more common because it is considerably easier to implement.

Three types of approximation will be used throughout the rest of this chapter:

Rapid time scale approximation in which the mode under consideration is considered much faster than the
time scales of interest. Filtering of these modes assumes that the process has acted infinitely fast and that the
fluid is instantaneously adjusted. The acoustic modes and surface gravity waves will be filtered in this manner.

Short spatial scale approximation in which the spatial scale of a mode is very much shorter than any scale of
interest. For instance, internal inertia-gravity waves behave in a hydrostatic manner except where the aspect
ratio of the motion is small.

Small amplitude approximation in which the amplitude of an effect is much smaller than the signals of interest.
For example, the amplitude of density perturbations due to the transit of an acoustic wave are typically much
smaller than the dynamically interesting variations arising from mean vertical motion excursions.

These classifications are not exclusive and often one is implied by another.
In the account that follows, classes of motion will be derived and approximations made that either modify or

filter the modes of motion.

2.2.1 Acoustic modes

To derive the acoustic modes of motion, consider a reduced form of the Navier-Stokes equations; the conservation of
mass, momentum equations retaining just the local acceleration and pressure gradient terms and equation of state
(the dependence on temperature and salinity can be neglected for adiabatic motion):

∂

∂t
u +

1

ρ
∇p = 0 (2.2a)

∂

∂t
ρ+ ∇ · (ρu) = 0 (2.2b)

ρ = ρ(p) (2.2c)

Combining the conservation of mass and the reduced equation of state gives the pressure equation. Linearizing
about some mean state then yields:

∂

∂t
u +

1

ρo
∇p = 0

∂

∂t
p+ ρoc

2
s∇ · u = 0

The three dimensional divergence of the momentum equations is:

∂

∂t
∇.u +

1

ρo
∇

2p (2.3)

This can be substituted into the time derivative of the pressure equation to yield:

∂2

∂t2
p = c2s∇

2p (2.4)

which is a non-dispersive wave equation describing waves with phase and group speed cs. The speed of sound in
water is approximately 1500 ms−1

The acoustic modes act to adjust the pressure field so that the tendency for the three-dimensional divergence of
the flow is to vanish. The wave motion would be eliminated if either of the time derivatives in 2.2a and 2.2b were
removed, or if the pressure dependence of density were removed. Setting ∂ρ

∂p

∣

∣

∣

θ,S
→ 0 means that the speed of sound

becomes infinite, cs → ∞.
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2.2.2 The Anelastic Approximation

As mentioned earlier, filtering out of the sound waves can be achieved by assuming the limiting case of incom-
pressibility that makes the sound speed become infinite, cs → ∞. An intermediate approximation, the anelastic
approximation, that retains compressibility effects requires a reference state (denoted by the subscript r) to be
defined as follows:

∂pr

∂z = −gρr(z)
p = pr(z) + p′ ρ = ρr(z) + ρ′

(2.5)

where both ρr and pr are prescribed functions of the vertical co-ordinate. Deviations from the reference state are
denoted by primes. The momentum equation is unapproximated.

∂

∂t
ρu + ∇ · (ρuu) + 2Ω ∧ ρu + ∇p′ + ρ′∇Φ (2.6)

The pressure equation becomes:
Dpr
Dt

+
Dp′

Dt
= −ρc2s∇.u (2.7)

The anelastic approximation can be obtained by assuming that the perturbations in the pressure field propagate

so fast that the pressure field is always adjusted. This means that Dp′

Dt � Dpr

Dt is a good approximation for the slow

and long scales of interest. Noting that Dpr

Dt = w ∂pr

∂z , the pressure equation can be approximated:

∇.u =
gρr
c2sρ

w (2.8)

This assumption only deals with time scales and so the equation of state still has a dependence on p′. This is
inconsistent with the continuity equation because there would then be two different prognostic equations for density.
Therefore, a more consistent method is to, instead, make an assumption about the amplitudes of motion.

Assume that the amplitudes of motion are such that density changes induced by the acoustic pressure pertur-
bations are very much smaller than the density changes brought about by large changes in depth (i.e. ∂ρ

∂p′ � ∂ρ
∂pr

).
Then the equation of state becomes:

ρ = ρ(θ, S, pr) (2.9)

Differentiating this equation and making use of the continuity equation, the same anelastic continuity equation
is derived. In this manner, the equation of state is consistent with the approximated pressure equation.

The complete anelastic system is then:

∇.u =
gρr
c2sρ

w (2.10a)

Du

Dt
+ 2Ω ∧ u +

∇p′

ρ
+
ρ′

ρ
∇Φ = 0 (2.10b)

DS

Dt
= 0 (2.10c)

Dθ

Dt
= 0 (2.10d)

ρ = ρ(θ, S, pr) (2.10e)

It should be pointed out that there is no explicit equation for the pressure field p′. A diagnostic equation for p′

can be deduced by combining the momentum equations with the anelastic continuity equation to form an elliptic
equation. This will be done later.

The system no longer contains sound waves but does still contain the effects of compressibility brought about by
the slow motions that involve changes in depth.

The removal of the acoustic modes reduces the number of natural modes to four. The appropriate number of
prognostic equations is obtained by replacing the w equation with the anelastic equation so that there are three
diagnostic equations; an elliptic equation for pressure, the anelastic equation and the equation of state.
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2.2.3 Boussinesq approximation

The name Boussinesq approximation is not always used in a consistent fashion. In fact it refers to a wide range of
very different degrees of approximation from anelastic flow, through non-divergent yet compressible flow, to fully
incompressible flow. Two steps will be described here; the first makes use of an observation about the significance
of density perturbations, the second notes that the scale height over which compressibility effects are important is
very much greater than the real depth of the ocean.

In the ocean, variations in density are small compared to a typical mean value, ρ′/ρo ≈ 10−3. Thus, wherever
the full density is used, it can be approximated by the mean value ρo. This is a trivial exercise when applied to
the anelastic equations above. If the exercise is applied to the Navier-Stokes equations, special care is needed when
considering the gravitational term. By taking out the reference pressure (now defined ∂

∂zpr = −gρr = −gρo so that
simply pr = −gρoz), the gravitational term is naturally handled.

The second step notes, that in the anelastic continuity equation, the two terms involving w are ∂w
∂z and g

c2s
w. The

scaling of these two terms goes like 1
H and g

c2s
. The exponential scale depth

c2s
g ≈ 225 km is around 50 times larger

than the deeper parts of the real ocean. Thus the anelastic term is typically quite small and can be neglected leaving
the non-divergence condition.

The Boussinesq equations of motion for non-divergent yet compressible flow are:

∇.u = 0 (2.11a)

Du

Dt
+ 2Ω ∧ u +

∇p′

ρo
+
ρ′

ρo
∇Φ = 0 (2.11b)

DS

Dt
= 0 (2.11c)

Dθ

Dt
= 0 (2.11d)

ρ = ρ(θ, S,−gρoz) (2.11e)

Note that the Lagragian form of the equations is readily interchanged with the Eulerian or flux divergence from
because of the non-divergence of the flow; ∂

∂tφ + ∇ · (φu) = Dφ
Dt . This is useful when formulating finite difference

models since conservation is better expressed as the divergence of a flux.
There is now apparently an inconsistency between the equation of state which admits compressible effects and

the statement of the non-divergent flow. Taking the time derivative of the equation of state:

dρ

dt
=

1

c2s

dpr
dt

=
−gρo
c2s

w (2.12)

If the continuity equation is still satisfied then the non-divergence of the flow would be violated:

c2s∇.u = −gw (2.13)

Therefore, the Boussinesq approximation must relax the principle of conservation of mass and instead replace this
principle with the non-divergence condition. This equation is usually termed the incompressibility condition though
this is misleading since the compressible effects felt through the dependence of temperature and density on depth are
still incorporated. The incompressibility condition expresses a constancy of volume and is thus a pivotal equation
for the formulation of a model built around fixed, finite volumes. Conservation of total mass has therefore been
exchanged for constant total volume.

2.2.4 Pressure equation (diagnostic)

As mentioned earlier for the anelastic equations, there is no prognostic equation for the pressure in the Boussinesq
equations, as written above. A prognostic equation for p′ can be found by combining the incompressibility condition
with the momentum equations. For convenience, first define the vector G to be all the terms of the momentum
equations except the local derivative and pressure gradient:

G ≡ −(u.∇)u − 2Ω ∧ u− ρ′

ρo
∇Φ (2.14)
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Now the momentum equations can be written simply:

∂u

∂t
+

1

ρo
∇p′ = G (2.15)

The flow must be non-divergent for all time. Substituting the momentum equations into the incompressibility
condition yields:

1

ρo
∇

2p′ = ∇.G − ∂

∂t
∇.u (2.16)

where the last term should vanish. In practice, the last term is kept to stabilise the numerical model so that any
divergence of the flow is seen by the pressure field and adjusted for.

The final form for the Boussinesq equations is:

∇
2p′ = ρo∇.G (2.17a)

∂uh
∂t

= Gh −
1

ρo
∇hp

′ (2.17b)

∂w

∂z
= −∇h.uh (2.17c)

Dt

Dt
θ = 0 (2.17d)

Dt

Dt
S = 0 (2.17e)

ρ = ρ(θ, S,−gρoz) (2.17f)

G = −(u.∇)u − 2Ω ∧ u− ρ′

ρo
∇Φ (2.17g)

The boundary conditions for the elliptic problem take the form of a Neumann condition on the normal gradient
at the boundaries. The exact details pertaining to solid boundaries will be left until the numerical sections. The
boundary condition applied at the free-surface is one of continuity of pressure across the interface, i.e. ocean surface
pressure and atmospheric surface pressure will be the same.

2.3 Free surface

The surface of the ocean is free to move in response to the net accumulation of depth integrated mass fluxes and
to mass fluxes across the interface (precipitation, evaporation, river discharge, freezing and thawing). The latter
sources are normally grouped into the thermodynamics of the model. In the incompressible model, the mass flux is
replaced by a volume flux, or, in other words, the continuity equation becomes the incompressibility condition. The
equation of evolution for the free surface, ignoring sources and sinks of mass, can be obtained by considering the
incompressibility condition, integrated over the total depth of the ocean:

h(x,y,t)
∫

−H(x,y)

(∇h · uh +
∂w

∂z
) dz =

h(x,y,t)
∫

−H(x,y)

∇h · uh dz + [w(z)]
h(x,y,t)
−H(x,y) = 0 (2.18)

where z = −H(x, y) defines the solid ocean bottom and z = h(x, y, t) defines the position of the air-sea interface.
The Leibniz formula connects the depth integral of the horizontal divergence to the horizontal divergence of the
barotropic flow:

∇h ·
h(x,y,t)
∫

−H(x,y)

uh dz =

h(x,y,t)
∫

−H(x,y)

∇h · uh dz + (uh(z = h) · ∇h− uh(z = −H) · ∇(−H)) (2.19)

The kinematic boundary condition applicable at both interfaces is that a particle on the interface will remain on
the interface; DtDtzboundary

= w. Applied to the free surface and bottom:

Free surface:
Dt

Dt
h− wh =

∂h

∂t
+ uh(z = h) · ∇h− wh = 0 (2.20)
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Figure 2.1: The shallow water model comprises a homogeneous layer of fluid between rigid bottom, of depth H , and
free surface of, elevation h.

Solid bottom:
Dt

Dt
(−H) + wH = uh(z = −H) · ∇(−H) − wH = 0 (2.21)

Defining the depth integrated flow:

ûh(x, y, t) ≡
1

h+H

h(x,y,t)
∫

−H(x,y)

uh dz (2.22)

and substituting the boundary conditions into the the depth integrated continuity and making use of the Leibniz
formula, the equation for surface elevation is obtained:

∂h

∂t
+ ∇ · {(h+H)ûh} = 0 (2.23)

The pressure is continuous across the free interface and so:

p′(x, y, z = h(x, y, t)) = pa (2.24)

where pa is the atmospheric pressure, usually assumed small and constant, trivializing the boundary condition.

2.3.1 External gravity wave

Associated with the free surface is a relatively fast wave motion. Perturbations in the surface elevation tend to want
to slump under gravity. The motion generated is then subject to the effects of the rotating frame of reference. Just
as the acoustic modes were filtered, the external gravity wave will also be filtered later.

Consider an approximation of the ocean as a layer of homogeneous fluid but with a free surface (figure 2.1.
Retaining only linear terms, the equations of motion for the layer are:

∂u

∂t
− fov +

1

ρ

∂p

∂x
= 0 (2.25a)

∂v

∂t
+ fou+

1

ρ

∂p

∂y
= 0 (2.25b)

gρ+
∂p

∂z
= 0 (2.25c)

∂h

∂t
+ ∇.Hûh = 0 (2.25d)
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Integrating the hydrostatic balance, the homogeneity of the layer dictates that the horizontal pressure gradients
be independent of depth:

p(x, y, z) = gρ(h− z) + p|z=h (2.26)

⇒ ∇hp = gρ∇hh (2.27)

where the horizontal variations in atmospheric pressure have been neglected. The horizontal flow, uh, is then easily
approximated as being barotropic also (a consequence of the Taylor-Proudman theorem).

For the flat bottom case (H is constant), linear barotropic equations can be written exclusively in terms of the
barotropic flow and the free surface elevation:

∂u

∂t
− fov + g

∂h

∂x
= 0 (2.28a)

∂v

∂t
+ fou+ g

∂h

∂y
= 0 (2.28b)

∂h

∂t
+H∇h · uh = 0 (2.28c)

The system can be expressed in terms of the horizontal divergence, D = ∇h · uh, and vertical component of
vorticity, ζ = k̂ · (∇h ∧ uh):

∂D

∂t
− foζ + g

∂2h

∂x2
= 0 (2.29a)

∂ζ

∂t
+ foD = 0 (2.29b)

∂h

∂t
+HD = 0 (2.29c)

Taking the time derivative of the divergence equation and substituting in from the vorticity and height equations,
the surface gravity wave equation is obtained:

∂2D

∂t2
+ f2

oD − gH∇
2
hD = 0 (2.30)

The dispersion relation for plain waves of the form exp ı(kx+ ly − ωt) is:

ω2 = f2
o + gH(k2 + l2) (2.31)

For long waves (|k̂|2 � gH
f2

o
) the frequency is almost constant corresponding to the inertial frequency. Short

waves (|k̂|2 � gH
f2

o
) are almost non-dispersive: ω ≈ √

gH|k̂|. The phase and group speeds for such short waves is

cφ = cg =
√
gH which for an 4 km deep ocean gives a wave speed of 200 m s−1. Compared to other wave and fluid

motions in the ocean, this is extremely fast.

2.3.2 Rigid-lid approximation

The fast surface gravity wave speed demands a strict limit on the possible time step allowed in the model (if the
process is explicitly represented). For a 1 degree horizontal resolution model at mid-latitudes, a surface gravity wave
speed of 200 m s−1 would take only 500 s to travel across a grid-cell. The explicit time step would have to be some
fraction of this. This is far short of that preferred to investigate the longer time-scales of interest.

The surface gravity wave can be filtered out of the system (just as the acoustic modes were) by imposing a
rigid-lid on the model. The lid can be thought of as exerting a surface pressure on the model equal to the hydrostatic
weight of the water column above the mean surface.

The upper boundary condition now becomes w = 0 (the surface is fixed) so that the vertical integral of the
continuity (incompressibility) equation simply becomes:

∇h.(

z=0
∫

−H(x,y)

uhdz) = ∇h.Hûh = 0 (2.32)
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where ûh is the depth averaged (or barotropic) flow.
The full pressure field is split into two parts; a surface pressure, ps(x, y), representing the pressure exerted by the

rigid lid, and the remaining internal pressure, pi.
The horizontal momentum equations are written succinctly:

∂u

∂t
+

1

ρo

∂ps
∂x

= Gu (2.33a)

∂v

∂t
+

1

ρo

∂ps
∂y

= Gv (2.33b)

where all other terms, including the remaining pressure gradients are collected into the G terms. The divergence
of the depth integrated horizontal momentum equations is:

1

ρo
∇h.H∇hps = Ĝ − ∂

∂t
∇h.Hûh (2.34)

where the last term vanishes through equation 2.32.

2.4 Classes of Motion

The Boussinesq approximation has removed a certain amount of non-linearity from the system. The natural modes
of motion remain essentially unchanged (except that the acoustic modes have been filtered out of the system). The
remaining four natural modes of motion are:

1× Temperature-Salinity (T -S) mode This mode exists because there are two active tracers, θ and S, that
are dynamically felt through the density. Non-linearities in the equation of state can then lead to cabbeling.
Differing mixing coefficients for θ and S allows double diffusion. Most importantly for the large scale circulation,
the different nature of boundary conditions for θ and S leads to very complex behavior including the existence
of multiple steady states.

2× Gravity modes As will be seen, external and internal gravity waves are modified extensively by rotation to
produce inertia-gravity waves. Compressibility is an insignificant effect. These waves of horizontal divergence
propagate energy quickly and bring the ocean into a geostrophically adjusted state.

1× Geostrophic mode This is the slowest of the natural modes but is perhaps the most important for shaping the
large scale circulation. Asymmetry in the dispersive properties of these waves leads to east-west asymmetry of
the oceans.

For the remainder of this chapter, the non-linearities in the equation of state will be neglected for convenience.
Apart from the effects of mixing and boundary conditions, this trivializes the roles of the two thermodynamic tracers
θ and S and allows them and the equation of state to be replaced by a prognostic equation for density:

dρ

dt
= 0 (2.35)

which has no connection with the continuity equation. Under this assumption, only the gravity modes and the
geostrophic mode will be apparent.

Both the gravity and the geostrophic classes of motion will now be derived. The inertia-gravity waves will be
derived in both a non-hydrostatic and hydrostatic context. The scaling of non-hydrostatic effects is described in
appendix B.

2.4.1 Non-hydrostatic Inertia-Gravity waves

Gravity waves are responsible for radiating energy away from regions of forcing and bringing the fluid into a geostroph-
ically adjusted state. Rotation influences gravity waves producing dispersive inertia-gravity waves.

The modification to gravity waves by the rotation of the system is most easily demonstrated on an f-plane that
assumes the planetary vorticity is constant in space and points along the local vertical. Ignoring the non-linear
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terms in the momentum equations and assuming a representative background stratification ∂ρ̄
∂z = −ρo

g N2, the single
constituent, linearised system, in dimensional form is:

∇
2p′ + ρofo(∇ ∧ u).k̂ + g

∂ρ′

∂z
= 0 (2.36a)

∂uh
∂t

+ fok̂ ∧ uh +
1

ρo
∇hp

′ = 0 (2.36b)

∇.u = 0 (2.36c)

∂ρ′

∂t
+ w

∂ρ̄

∂z
= 0 (2.36d)

A succinct method for finding the natural modes of a system is to write the linear system as an amplifying matrix,
in this instance:















∇
2 ρofo

∂
∂y −ρofo ∂∂x 0 g ∂

∂z
1
ρo

∂
∂x

∂
∂t −fo 0 0

1
ρo

∂
∂y fo

∂
∂t 0 0

0 ∂
∂x

∂
∂y

∂
∂z 0

0 0 0 −ρoN
2

g
∂
∂t



























p′

u
v
w
ρ′













= 0 (2.37)

Assuming a local solution of the form:













p′

u
v
w
ρ′













=













p′o
uo
vo
wo
ρ′o













eı(kx+ly+mz−ωt) (2.38)

then on substitution into the linear system:

det

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣















−(k2 + l2 +m2) ıρofol −ıρofok 0 ıgm
ı
ρo
k −ıω −fo 0 0

ı
ρo
l fo −ıω 0 0

0 ık ıl ım 0

0 0 0 −ρoN
2

g −ıω















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (2.39)

or
ωm

(

(k2 + l2 +m2)ω2 −m2f2 − (k2 + l2)N2
)

= 0 (2.40)

There are three roots corresponding to the three natural modes. The trivial root ω = 0 reflects the steady state
of the geostrophic mode (steady because of the f-plane assumption). The remaining pair of roots give the dispersion
relation for the non-hydrostatic gravity waves:

ω2 =
m2f2 + (k2 + l2)N2

k2 + l2 +m2
(2.41)

In the long horizontal wave limit, where the vertical scales of the wave motion are assumed much shorter than
the lateral scales (a consequence of the aspect ratio of the ocean), then the vertical wave number will be much larger

than the horizontal wave numbers, k
2+l2

m2 � 1. Re-writing the dispersion relation for non-hydrostatic inertia-gravity
waves, an approximate form for the horizontally long waves is readily found:

ω2 =
f2 + k2+l2

m2 N2

1 + k2+l2

m2

' f2 + (k2 + l2)
N2

m2
(2.42)

The later form, applicable to the horizontally long waves, is similar to the form of the dispersion of the external
inertia-gravity wave modes (interpreting N/m as

√
gH the gravity wave speed). This means that lessons learned

about the numerical integration of the shallow water system (to be described in a later chapter) should be relevant
to the treatment of internal inertia-gravity waves in more comprehensive models.
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2.4.2 Hydrostatic approximation: Hydrostatic Inertia-Gravity waves

As just discussed, for motion with a small aspect ratio or indeed for nearly any motion in a stratified fluid, the
horizontal gradient of non-hydrostatic pressure, vertical acceleration and horizontal coriolis terms can be neglected.
The vertical momentum equation is reduced to the hydrostatic balance equation:

gρ′ +
∂p′

∂z
= 0 (2.43)

Following the linearization procedure as for the non-hydrostatic gravity waves, the system can be approximated:

∂2p′

∂z2
+ g

∂ρ′

∂z
= 0 (2.44a)

∂uh
∂t

+ fok̂ ∧ uh +
1

ρo
∇hp

′ = 0 (2.44b)

∇.u = 0 (2.44c)

∂ρ′

∂t
+ w

∂ρ̄

∂z
= 0 (2.44d)

Again, the amplifying matrix method can be used to derive the natural modes of motions:

det

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣















−m2 0 0 0 ıgm
ı
ρo
k −ıω −fo 0 0

ı
ρo
l fo −ıω 0 0

0 ık ıl ım 0

0 0 0 −ρoN
2

g −ıω















∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0 (2.45)

or
ωm

(

m2(ω2 − f2) − (k2 + l2)N2
)

= 0 (2.46)

Again, three roots exists, one pertaining to the steady geostrophic state. The remaining pair of roots correspond
to hydrostatic inertia-gravity waves:

ω2 = f2 + (k2 + l2)
N2

m2
(2.47)

which is a slightly simpler form than the non-hydrostatic inertia-gravity waves. Note, however, that the approximated
dispersion relation for horizontally long waves of the non-hydrostatic model corresponds to that of the hydrostatic
gravity waves. This is self-consistent in that the hydrostatic approximation was made in the limit of small aspect
ratio of motion.

2.4.3 Rossby Waves

Rossby waves are motions deriving from the slow evolution of the geostrophically adjusted fluid. The conventional
derivation is given in the context of the shallow water equations in a later chapter. Here the more general method
described above will be used to derive all three natural modes together; the pair of inertia-gravity waves and the
Rossby wave.

Ignoring non-linearities, the equations describing the evolution of horizontal divergence,D = ∇h.uh, and vorticity,
ζ = k̂.(∇h ∧ uh), are:

∂D

∂t
− fζ + βu+

1

ρo
∇

2
hp = 0 (2.48)

∂ζ

∂t
+ fD + βv = 0 (2.49)

Replacing the momentum equations with the above divergence and vorticity equations, and adding the definitions
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of divergence and vorticity, the system expressed in the amplifying matrix form is:























−m2 0 0 0 ıgm 0 0
−1
ρo

|k̂|2 −ıω −f 0 0 β 0

0 f −ıω 0 0 0 β
0 1 0 ım 0 0 0

0 0 0 −ρoN
2

g −ıω 0 0

0 −1 0 0 0 ık ıl
0 0 −1 0 0 −ıl ık











































p′

D
ζ
w
ρ′

u
v





















= 0 (2.50)

The determinant of which gives:

ω3

f3
+

2βk

f |k|2
ω2

f2
−

(

1 + Lρ|k|2 − ı
βl

f |k|2
)

ω

f
− βLρ

f
Lρk = 0 (2.51)

where L2
ρ = N2/(f2m2) is the square of the Rossby radius of deformation.

In the special case of β vanishing, the steady root and a pair of hydrostatic inertia-gravity waves are recovered.
More generally, for motion such that β

f |k|
� 1 (i.e. the wave lengths are small compared to the planetary radius, the

distance over which planetary vorticity varies) then the inertia-gravity modes are the approximate non-zero roots of
the above dispersion relation:

ω2

f2
≈ 1 + L2

ρ(k
2 + l2) (2.52)

The near zero root, that has appeared consistently as a zero root to this point, can be obtained by assuming that
the frequency is small compared to the inertial frequency (this is consistent with it being a slow motion with a near
zero frequency). Neglecting terms of second order or higher leaves the dispersion relation:

ω =
−βL2

ρk

1 + L2
ρ|k|2 − ı βl

f |k|2

(2.53)

Again, if the wave lengths are shorter than the planetary scale, the dispersion relation simplifies to:

ω ≈ −βk
1
L2

ρ
+ |k|2 (2.54)

It should be clear that for the long waves that do not satisfy these assumptions exactly, there is a significant
complex component to the frequency that indicates an exponential type of behaviour. The simple dispersion relations
derived conventionally are thus only approximate and most accurate for the shorter waves. Nevertheless, a great
deal of the ocean circulation can be understood in terms of the plain wave propagation described here.

More importantly for this study, the linear wave-like behaviour of these natural modes of motion should be
reproduced by numerical models that claim to explicitly resolve the processes involved. As will be seen, models often
fail to accurately represent these motions.

2.5 Summary and comments

The Navier-Stokes equations, that describe all classes of motion in the ocean, were derived and later summarised in
section 2.1. Ill conditioning and subsequent scaling of the equations justified making the Boussinesq approximation.
The fast acoustic modes were filtered by making the flow non-divergent (incompressible). The non-hydrostatic version
of the model is then Boussinesq and incompressible.

Except where the stratification and aspect ratio of the flow are sufficiently small, the hydrostatic approximation
is quite valid. Inertia-gravity waves are superficially modified by the hydrostatic approximation if the horizontal
wave length is sufficiently short.

The Rossby wave and pair of inertia-gravity waves make up the three natural modes of the single constituent fluid
(i.e. the two thermodynamic variables, potential temperature and salinity, are replaced with one variable, potential
density). It was stated that these waves motions are responsible for setting up many of the features present in the
circulation of the world oceans. For instance, the anisotropic propagation of Rossby waves gives rise to the Western
intensification of boundary currents.
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Most important to this study, the proper behaviour of these natural modes of motion should be reproduced
by numerical models that claim to explicitly resolve the processes involved. As will be seen, models often fail to
accurately represent these motions. In particular, the shortest resolvable inertia-gravity waves in the model to be
described in chapter 3, fail to oscillate inertially. This makes the model particularly susceptible to grid-scale noise.
Much of this study is devoted to developing a solution to this problem.
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Chapter 3

A Navier-Stokes Ocean Model

Here, the numerical model based on the non-hydrostatic, incompressible Navier-Stokes equations (2.11) is described.
First, the terminology which is used throughout this and all subsequent chapters is established. Then the continuous
and discrete formulations of the model. The conservation properties of the discrete model are described. The model
is then applied and the strengths and weaknesses of it reviewed. Examples of applications and the problematic results
associated with the Coriolis term are shown.

Chapters 4 and 5 discuss the problems associated with the Coriolis term on a C grid and present a correction to
this problem. Chapter 6 discusses the re-formulation of the model using finite volumes, and the ability to shave cells
to represent topography.

3.1 Finite difference methods

Finite differencing tries to reduce the truncation error in the evaluation of the governing equations. To express the
equations in terms of the discrete dependent variables, the variables are linked through Taylor expansions about
appropriate points in space (or time if the method is being applied to the time-stepping).

For example, let the discrete dependent variables fi be carried at discretely separated positions xi, with intervals
∆xi+ 1

2
(see figure 3.1). The discrete variables are assumed to match the continuous function that they represent at

the appropriate points.
The Taylor expansion of the continuous function about xi is:

fi±1 = fi ± f ′(xi)∆xi± 1
2

+ f ′′(xi)
∆x2

i± 1
2

2!
± f ′′′(xi)

∆x3
i± 1

2

3!
+ · · · (3.1)

The spatial derivative, at xi, of the continuous function, f ′(x) = ∂f
∂x , can be approximated in terms of the discrete

variables fi−1, fi and fi+1:

f ′(xi) =
fi+1 − fi
∆xi+ 1

2

−
∆xi+ 1

2
f ′′(xi)

2!
−

∆x2
i+ 1

2

f ′′′(xi)

3!
− . . . (3.2)

or

f ′(xi) =
fi − fi−1

∆xi− 1
2

+
∆xi− 1

2
f ′′(xi)

2!
−

∆x2
i− 1

2

f ′′′(xi)

3!
+ . . . (3.3)

Truncating this expression to the known quantities, i.e. neglecting terms involving higher derivatives of f , yields
what is often called ‘side differencing’:

f ′(xi) ≈
fi+1 − fi
∆xi+ 1

2

or f ′(xi) ≈
fi − fi−1

∆xi− 1
2

(3.4)

where the truncation errors are of order O( 1
2∆x). This is termed first order accurate, referring to the power of ∆x in

the truncation error. As the resolution of the model is increased, the truncation error gets smaller and the discrete
model approaches the continuous system.
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f(x)

x
x i-1 x i x i+1

fi-1

f i

fi+1

Figure 3.1: The continuous function f(x) is described by the discrete variables fi that match the function at the
discrete position xi.

Returning to the two untruncated Taylor expansions, they can be combined to eliminate the second derivative
terms leaving second order truncation terms:

f ′(xi) ≈

∆x
i− 1

2

∆x
i+1

2

fi+1 + (
∆x

i+ 1
2

∆x
i− 1

2

−
∆x

i− 1
2

∆x
i+1

2

)fi −
∆x

i+1
2

∆x
i− 1

2

fi−1

∆xi+ 1
2

+ ∆xi− 1
2

(3.5)

Here the truncation error is O( 1
3!∆xi− 1

2
∆xi+ 1

2
). For the less general case of regular grid spacing, ∆x = ∆xi− 1

2
=

∆xi+ 1
2
, then the scheme reduces to a more intuitive form:

f ′(xi) ≈
fi+1 − fi−1

2∆x
(3.6)

This is referred to as ‘centered differencing’ and is clearly preferable to ‘side differencing’ due to the dramatic
decrease in truncation error; O( 1

2∆x) � O( 1
3!∆x

2). To obtain an equivalent accuracy with the first order scheme,
as the second order scheme with N points, one would require 3N 2 points. The dramatic improvement in accuracy is
due to the centered evaluation of the gradient.

A further improvement in accuracy of a model can be obtained by ‘staggering’ model variables. In general, odd
powered derivatives are staggered with the even powers. For example, consider evaluating ∂f

∂x in terms of fi and fi+1

at a position x = αxi + (1 − α)xi+1, where 0 ≤ α ≤ 1 which lies on or between the two nodes. Taylor expansion
about x and eliminating the undefined f(x) terms yields:

∂f

∂x

∣

∣

∣

∣

α

=
fi+1 − fi

∆x
− (1 − 2α)∆x

2!
f ′′ − (1 − 3α+ 3α2)∆x2

3!
f ′′′ − · · · (3.7)

The first truncation term indicates first order accuracy. The limits of α = 0, 1 correspond to the first order accurate
side differencing described earlier. The special case of α = 1

2 , where the staggering is centered, causes the first
truncation term to vanish where upon the scheme becomes second order accurate with a factor of four improvement
over the previous second order scheme; O( 1

4.3!∆x
2):

f ′(xi+ 1
2
) ≈ fi+1 − fi

∆x
(3.8)

Staggered second order accurate finite differencing involves the same number of points in a finite difference stencil
as first order side differencing, and less points than centered unstaggered differencing. It is the most accurate second
order scheme and uses the smallest stencil.
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3.2 Finite difference notation and rules

Before describing the spatial discretisation of the model, some notation and elementary relations will be established.
The notation used here is based upon that used by Arakawa and Lamb [AL77].

The centered, staggered finite difference operators will be denoted:

δxφ ≡ φi+ 1
2
,j,k − φi− 1

2
,j,k (3.9a)

δyφ ≡ φi,j+ 1
2
,k − φi,j− 1

2
,k (3.9b)

δzφ ≡ φi,j,k+ 1
2
− φi,j,k− 1

2
(3.9c)

and the respective interpolation or averaging operators:

φ
x ≡

φi+ 1
2
,j,k + φi− 1

2
,j,k

2
(3.10a)

φ
y ≡

φi,j+ 1
2
,k + φi,j− 1

2
,k

2
(3.10b)

φ
z ≡

φi,j,k+ 1
2

+ φi,j,k− 1
2

2
(3.10c)

Staggered, second order differencing for the node i will be written:

φi+ 1
2
− φi− 1

2

∆xi
=

1

∆x
δxφ (3.11)

where ∆x is defined for the interval i.
The difference and interpolation operators can be shown to satisfy the following rules:

δζδηφ = δηδζφ (3.12a)

δζφ
η

= δζφ
η

(3.12b)

φ
ηζ

= φ
ζ
η

(3.12c)

δζ(φψ) = φ
ζ
δζψ + ψ

ζ
δζφ (3.12d)

δζ(φ
ζ
ψ) = φδζψ + ψδζφ

ζ
(3.12e)

φψ
ζ

= φ
ζ
ψ
ζ

+
1

4
δζφδζψ (3.12f)

φ
ζ
ψ
ζ

= φψ
ζ

+
1

4
δζ(ψδζφ) (3.12g)

where ζ and η can be any coordinate and need not be different. φ and ψ are model variable or expressions that
must be evaluated at the same points in the model.

One further piece of short-hand that is not conventional is:

o φo2x ≡ φi− 1
2
,j,kφi+ 1

2
,j,k (3.13a)

oφo2y ≡ φi,j− 1
2
,kφi,j+ 1

2
,k (3.13b)

oφo2z ≡ φi,j,k− 1
2
φi,j,k+ 1

2
(3.13c)

which satisfies the relation:

φ
ζ
φ
ζ

=
1

2
φ2
ζ

+
1

2
o φ o2ζ (3.14)

This last product operator is introduced to keep the notation concise when conservation of second moments is derived

later. The operator
√

1
2 o φo2ζ is the geometric mean between two neighbouring points.

3.3 Continuous formulation of model

The Inviscid, Adiabatic and Incompressible Boussinesq equations of motion were derived in chapter 2. The process
of discretisation introduces sub-grid scale eddy terms that have to be parameterised in order to close the system. The

27



non-divergence of the flow allows the Lagragian advective operator to be written as the divergence of an advective
flux. The continuous equations become:

∂u

∂t
+

1

ρo

∂

∂x
(ps + pnh) = Gu (3.15a)

∂v

∂t
+

1

ρo

∂

∂y
(ps + pnh) = Gv (3.15b)

∂w

∂t
+

1

ρo

∂

∂z
(ps + pnh) = Gw (3.15c)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (3.15d)

∂θ

∂t
= Gθ (3.15e)

∂S

∂t
= G

S
(3.15f)

ρ′ = ρ(θ, S,−gρoz) − ρo (3.15g)

∂

∂z
ph = −gρ′ (3.15h)

where the source terms or Gs are given by:

Gu = +2Ω(v sinφ− w cosφ) − ∇.(uu) − 1

ρo

∂

∂x
ph +

1

ρo

∂τ (x)

∂z
+ ∇.(ν∇u) (3.16a)

Gv = −2Ωu sinφ− ∇.(vu) − 1

ρo

∂

∂y
ph +

1

ρo

∂τ (y)

∂z
+ ∇.(ν∇v) (3.16b)

Gw = +2Ωu cosφ− ∇.(wu) − +∇.(ν∇w) (3.16c)

Gθ = −∇.(θu − κθ∇θ) + H (3.16d)

G
S

= −∇.(Su− κ
S
∇S) + Q

S
(3.16e)

(3.16f)

The rigid lid approximation and no flux through solid boundaries is expressed:

w(z = 0) = u · n̂ = 0 (3.17)

Making use of the continuity equation, diagnostic equations for both the surface pressure and non-hydrostatic
pressure can be derived from the momentum equations. The surface pressure equation is only accurate in the
hydrostatic limit of the model:

∇h.H∇hps =
∂

∂x

0
∫

−H(x,y)

Gu dz +
∂

∂y

0
∫

−H(x,y)

Gv dz (3.18)

For the non-hydrostatic model, a further elliptic equation for the non-hydrostatic equation is solved. Included in the
source term of the equation is the residual from the 2-D inversion to correct for any inaccuracies:

∇
2pnh =

∂

∂x
Gu +

∂

∂y
Gv +

∂

∂z
Gw −

(

∇
2
hps − ∇h · Gh

z
)

(3.19)

3.4 Spatial discretisation of model

The finite differencing will be described in two sections; one describing the spatial distribution and finite difference
schemes, the second will be concerned with the time-stepping and related issues.

The model variables are staggered in the three dimensional equivalent of an Arakawa C grid (see figure 3.2). The
tracers are all carried at the p point.

Notice that the staggering of variables both introduces and removes the need for spatial interpolation of different
terms in the model. For example, the advective flux of tracers need not involve interpolation of the flow whilst
evaluation of the Coriolis terms involves spatial averaging.
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Figure 3.2: The three dimensional distribution of model variables. The variables S and θ are also carried at the p
points.

The discrete hydrostatic equation is:
δzph = −gρ′∆zz (3.20)

and can be integrated from the top down using the upper boundary condition of ph(0) = p
Atmos

.
The discretisation of the momentum equations is:

∂u

∂t
=

−1

ρo∆x
δx(ps + pnh) +Gu (3.21a)

∂v

∂t
=

−1

ρo∆y
δy(ps + pnh) +Gv (3.21b)

∂w

∂t
=

−1

ρo∆z
δz(ps + pnh) +Gw (3.21c)

where the Gs are discretised as:

Gu = 2Ω(
vxy sinφ

+wxz cosφ
)

− 1
∆xδx(u

xux)
− 1

∆yδy(v
xuy)

− 1
∆z δz(w

xuz)

− 1
ρo∆xδxph + 1

ρo∆z δzτ
(x) +∇.ν∇u

Gv = −2Ωvx sinφ
y

− 1
∆xδx(u

yvx)
− 1

∆yδy(v
yvy)

− 1
∆z δz(w

yvz)

− 1
ρo∆yδyph + 1

ρo∆z δzτ
(y) +∇.ν∇v

Gw = +2Ωuxy cosφ

− 1
∆xδx(u

zwx)
− 1

∆yδy(v
zwy)

− 1
∆z δz(w

zwz)

+∇.ν∇w

(3.22)

and φ is evaluated at p latitudes. The eddy viscosity terms have the form:

∇.ν∇φ =
1

∆x2
δxν

(x)δxφ+
1

∆y2
δyν

(y)δyφ+
1

∆z2
δzν

(z)δzφ

but they can be made more general.
The contributions to the rate of change of zonal kinetic energy is obtained by multiplying Gu by u. The vertical

component of Coriolis introduces a portion from each of four neighbouring v points:

1

4
2Ω sinφj vi±1,j± 1

2
,k ui+ 1

2
,j,k (3.23)

The contribution of the meridional velocity to the kinetic energy at one of the four neighbouring v points, i, j+ 1
2 , is:

−1

4
2Ω sinφj ui+ 1

2
,j,k vi,j+ 1

2
,k (3.24)
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In the summation over the entire model, the vertical Coriolis terms as written do not violate the kinetic energy
budget. A similar analysis shows that this is true of the horizontal Coriolis terms and pressure gradient terms also.
The eddy viscosity terms do extract energy from the system, as required.

The depth integrated flow is non-divergent (since the model has a rigid lid):

1

∆x
δx

0
∫

Hu

u dz +
1

∆y
δy

0
∫

Hv

v dz = 0 (3.25)

where the boundary conditions are implicitly satisfied wherever H = 0.
Substituting in the discrete momentum equations gives:

1

∆x
δxHu

1

∆x
δxps +

1

∆y
δyHv

1

∆y
δyps =

1

∆x
δx

0
∫

Hu

Gu dz +
1

∆y
δy

0
∫

Hv

Gv dz (3.26)

which has ignored any accelerations due to non-hydrostatic pressure gradients.
The local non-divergence of the flow is represented discretely as:

1

∆x
δxu+

1

∆y
δyv +

1

∆z
δzw = 0 (3.27)

and the boundary conditions of no normal flow at solid bounadries is applied here.
Again, substituting in the discrete momentum equations gives:

(

1

∆x2
δxδxpnh +

1

∆y2
δyδypnh +

1

∆z2
δzδzpnh

)

= (3.28)

+

(

1

∆x
δx(Gu − 1

∆x
δxps) +

1

∆y
δy(Gv −

1

∆y
δyps) +

1

∆z
δzGw

)

This last equation is only solved if the model is in the non-hydrostatic regime.
The discretisation of the thermodynamic Gθ and G

S
are:

Gθ =

− 1
∆x2 δx(uθ

x − κ
(x)
θ δxθ)

− 1
∆y2 δy(uθ

y − κ
(y)
θ δyθ)

− 1
∆z2 δz(uθ

z − κ
(z)
θ δzθ)

+ H (3.29a)

G
S

=

− 1
∆x2 δx(uS

x − κ(x)
S
δxS)

− 1
∆y2 δy(uS

y − κ(y)
S
δyS)

− 1
∆z2 δz(uS

z − κ(z)
S
δzS)

+ Q
S

(3.29b)

3.4.1 Conservative advection

For non-divergent flow, the continuous equations have the property that all moments of a conserved tracer, φ, are
conserved:

∂φ
∂t + ∇.φu = 0

∇.u = 0

}

⇒ ∂φn

∂t
+ ∇.φnu = 0 ∀ n = 1, 2, . . . (3.30)

The advection operator is written as the divergence of advective fluxes

∂φ

∂t
+

1

∆x
δx(φ

x
u) +

1

∆y
δy(φ

y
v) +

1

∆z
δz(φ

z
w) = · · · (3.31)

which guarantees conservation of the total first moment of the scalar in the discrete model:

∂

∂t

∫ ∫ ∫

φ dV =
∂

∂t

∑

i,j,k

φi,j,k = 0 (3.32)
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The x component of the flux form can be re-arranged using rule 3.12e:

δx(φ
x
u) = φδxu+ uδxφ

x
(3.33)

and the same can be done for the y and z terms. Substituting into the advection term gives:

∂φ

∂t
+

1

∆x
uδxφ

x
+

1

∆y
vδyφ

y
+

1

∆z
wδzφ

z
+ φ

(

δxu

∆x
+
δyv

∆y
+
δzw

∆z

)

= · · · (3.34)

where the last term vanishes if the flow is non-divergent according to this definition.
Multiplying by φ gives:

∂ φ
2

2

∂t
+

1

∆x
φuδxφ

x
+

1

∆y
φvδyφ

y
+

1

∆z
φwδzφ

z
= · · · (3.35)

Considering only the x direction, the advective term can be written:

φuδxφ
x

= uφ
x
δxφ

x

− 1

4
δx (uδxφδxφ) (3.36)

where use has been made of 3.12g. The last term can be re-written using a special case of 3.12f:

− 1

4
δx (uδxφδxφ) = δx

(

u(φ
x
φ
x − φ2

x
)
)

(3.37)

and then introducing the unconventional notation via 3.14:

φuδxφ
x

= δx

(

u
1

2
o φo2x

)

− φ2

2
δxu (3.38)

Repeating the procedure for the other two contributions gives a flux form for the second moment of the scalar:

∂ φ
2

2

∂t
+

1

∆x
δx(u o φo2x) +

1

∆y
δy(v o φo2y) +

1

∆z
δz(w o φo2z) −

φ2

2

(

δxu

∆x
+
δyv

∆y
+
δzw

∆z

)

= · · · (3.39)

where once again, if the flow is non-divergent the last term vanishes.
The same advection scheme is applied to the momentum equations, though here, the advecting flow must be

interpolated appropriately. To advect u in the conservative manner just described, the advecting u∗, v∗ and w∗ must
be interpolated from u, v and w in such a way as to be non-divergent.

u∗ = ux v∗ = vx w∗ = wx (3.40)

Expanding the divergence of the advecting flow and making use of the commutativity between interpolation and
difference operators yields:

δxu
∗

∆x
+
δyv

∗

∆y
+
δzw

∗

∆z
=
δxu

x

∆x
+
δyv

x

∆y
+
δzw

x

∆z
=
δxu

∆x
+
δyv

∆y
+
δzw

∆z

x

= 0 (3.41)

Therefore, the total of zonal, meridional and vertical velocity contributions to the kinetic energy are conserved by
the advection operator.

Higher moments of momentum and scalars are not conserved. Higher order differencing and forms of advection
could perhaps be used to achieve this. Here, the efficiency and simplicity of the numerical model was deemed more
important than conservation of higher moments.

3.5 The time-stepping scheme (Adams-Bashforth II)

Consider the horizontal momentum equations in an abbreviated form:

∂

∂t
u = P (p) + G(u,x, t) (3.42)

where P contains the horizontal pressure gradient and is therefore a function only of the pressure field. All other
terms that appear in the horizontal momentum equations are grouped into G which will then be a function of the
velocities, space and time.
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To arrive at a time-stepping scheme, integrate equation 3.42 over a finite period of time, ∆t:

u(to + ∆t) − u(to) = +

to+∆t
∫

to

P (t) dt +

to+∆t
∫

to

G(t) dt (3.43)

Here after, time levels to−∆t, to−1
2∆t, to, to+

1
2∆t and to+∆t will be denoted by the superscripts n−1, n−1

2 , n, n+1
2

and n+1 respectively. Due to the left hand side of 3.43, the velocities are defined at integer time levels, i.e. n−1, n,
etc. The function G(t) is thus most naturally evaluated at these time levels while the pressure variable is free to be
staggered in time (ie. carried at n−1

2 , n+1
2 etc). The latter is convenient since the integral over the period n to n+1 of

some function can most conveniently be approximated as ∆t times the value of the function at the mid-point, n+1
2 .

The integral of the function G(t) involves evaluations at the end points of the period and so the most accurate
approximation involving just two time levels is a trapezoidal scheme. Here the integral of a function is ∆t time the
mean of the function evaluated at the two end points n and n+1. This is a semi-implicit method meaning that some
of the unknown variables at n+1 are on the right hand side. Therefore, the equations must be re-arranged and solved
as a set of simultaneous equations.

The function G typically involves spatial operators and non-linear terms. A semi-implicit evaluation of this
integral then requires sophisticated methods to solve for future variables.

Explicit evaluation methods for the integral of G would appear to be cheaper and less complicated. The Adams-
Bashforth method (AB2) is a quasi-second order method that involves a third time-level:

(n+1)∆t
∫

n∆t

f(t) dt ≈ ∆t
(

f (n) + ( 1
2 +ε){f (n) − f (n−1)}

)

= ∆t
(

( 3
2 +ε)f (n) − ( 1

2 +ε)f (n−1)
)

(3.44)

which amounts to a linear extrapolation in time to a point, n + 1
2 + ε that is just into the future of the mid-point

n+1
2 .
The final form of equation 3.43 using the above methods reads:

1

∆t

(

u(n+1) − u(n)
)

= P (n+ 1
2
) (3.45)

+ (
3

2
+ε)G(n) − (

1

2
+ε)G(n−1)

The tracer equations are stepped forward in a similar fashion:

1

∆t

(

φ(n+1) − φ(n)
)

= (
3

2
+ε)S(n) − (

1

2
+ε)S(n−1) (3.46)

where S contains all other terms.

3.6 Model Algorithm

The integration procedure is as follows:

1. Evaluate the density perturbation
ρ′ = ρ(θ(n), S(n),−gρoz)

2. Integrate the hydrostatic equation for ph

ph = −g
z

∫

z=0

ρ′
z
dz

3. EvaluateG
(n)
u , G

(n)
v (and G

(n)
w if non-hydrostatic) using variables from time level n and the hydrostatic pressure.

4. Evaluate the accelerations

G∗
u = (

3

2
+ ε)G(n)

u − (
1

2
+ ε)G(n−1)

u

G∗
v = (

3

2
+ ε)G(n)

v − (
1

2
+ ε)G(n−1)

v
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If non-hydrostatic

G∗
w = (

3

2
+ ε)G(n)

w − (
1

2
+ ε)G(n−1)

w

5. Solve the elliptic problem

δxHuδxps + δyHvδyps = δx

0
∫

Hu

(
u(n)

∆t
+G∗

u) dz + δy

0
∫

Hv

(
v(n)

∆t
+G∗

v) dz

for the surface pressure, ps. This guarantees that the depth integrated flow will be non-divergent at the next
time level.

6. If non-hydrostatic, solve the elliptic problem

[δxδx + δyδy + δzδz]pnh = δx(
u(n)

∆t
+G∗

u − δxps) + δy(
v(n)

∆t
+G∗

v − δyps) + δz(
w(n)

∆t
+G∗

w)

for the non-hydrostatic pressure, otherwise let pnh = 0.

7. Update horizontal velocities:

u(n+1) = u(n) + ∆t

(

G∗
u −

1

ρo
δx(ps + pnh)

)

v(n+1) = v(n) + ∆t

(

G∗
v −

1

ρo
δy(ps + pnh)

)

8. Integrate the continuity equation for w

w(n+1) = −
z

∫

H

(δxu
(n=1) + δyv

(n+1)) dz

9. Evaluate the Gs for θ and S using the latest velocities.

10. Update the thermodynamic variables

θ(n+1) = θ(n) + ∆t

(

(
3

2
+ ε)G

(n)
θ − (

1

2
+ ε)G

(n−1)
θ + H(\)

)

S(n+1) = S(n) + ∆t

(

(
3

2
+ ε)G

(n)
S − (

1

2
+ ε)G

(n−1)
S + Q(\)

S

)

11. Update indices: n→ n+ 1 and repeat procedure for the next time-step.

3.7 3-D Elliptic Inversion

The diagnostic equation for pressure is a three dimensional Poisson equation and once discretised, takes the form of
a sparse matrix equation: A p = f

Despite the sparse nature of A, the inverse A−1 is a dense matrix which reflects the elliptic nature of the problem.

Direct evaluation of the inverse A−1, even for a moderately sized grid, is impractical due to the storage of A−1 and

to the number of operations required when multiplying A−1f . Instead, the sparse matrix equation is solved using a
pre-conditioned conjugate gradient algorithm.

The algorithm uses an approximate inverse, Ã
−1

(called the pre-conditioner) to find a correction to the current
estimate of the solution. Repeated iteration converges in a finite number of steps to within a finite tolerance, ε. The
pre-conditioner is used in each iteration. The convergence rate is improved as the pre-conditioner approaches the
true inverse, but obviously, the sparser the pre-conditioner is, the fewer the number of computations required per
iteration.

A pre-conditioner was designed that is efficient in both storage and number of operations and is a good approxi-
mation to A−1. This is accomplished by taking advantage of the geometry of the ocean. The ocean is typically only
a few kilometres deep but as much as several thousand kilometres wide. This leads to a dominance in the Laplacian

operator, ∇2
3
, by the vertical contribution, ∂2

∂z2 . In the sparse matrix corresponding to the 3D Laplacian, just three
of the diagonals dominate the seven non-zero diagonals. Retaining just these three diagonals, LU decomposition can
be applied rather than storing the inverse of the tri-diagonal. This also reduces the number of computations.
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Figure 3.3: Flow diagram for the pre-conditioned conjugate gradient algorithm

Figure 3.4: Schematic of the ocean domain, decomposed into columns (dashed lines) to which individual processors
are dedicated. The shaded regions represents land and the irregular boundaries of the ocean. The stencil represents
the local connectivity of the Laplacian operator. The solid dots within the stencil represent the dominant coefficients
in the Laplacian and the only connection in the pre-conditioner.

3.8 Computational Aspects of Model: Data parallel architectures

We concentrate our code development on the CM-5, a distributed memory architecture. The code is written in
CM-Fortran, a vendor release of Data Parallel Fortran or Fortran 90.

The distributed memory architecture of the CM-5 means that inter-processor communication is an important
factor in programming the machine efficiently. The decomposition of arrays into the machines memory can be chosen
to reduce the number of cross-processor transfer of information.

The most costly task in the model is the elliptic inversion (whether 2-D or 3-D). The decomposition and the
algorithm were both designed to optimize this stage of the model; a significant part of the CPU time is spent in the
conjugate gradient algorithm described above. The two principal operators involved here are the Laplacian operator
and the pre-conditioner. The Laplacian operator entails nearest neighbour connections between grid points in all
three spatial directions (white and black points in figure 3.4). The pre-conditioner connects grid-points only in a
vertical line (black points only in figure 3.4). Accordingly, the domain is decomposed into vertical columns, that
reach from the top to the bottom of the ocean. This means that vertically aligned points in the model are resident
on the same processor thus reducing the communication to zero for the pre-conditioning stage; half of the algorithm.
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3.9 Applications of the model

The model has been developed for use at all scales of oceanographic interest. For example, the non-hydrostatic
version of the model is applicable to the study of convective overturning. The hydrostatic version of the model can
be used to study larger scales right up to the global scale.

By way of illustration of the versatility of the model, two experiments at extreme ends of the spectrum scales are
briefly described. The first is a high resolution simulation (∆x = 500m) of open ocean convection and the latter is
a comparatively low resolution study (∆x ∼ 100km) of the North Pacific Ocean.

3.9.1 Baroclinic instability of a chimney (convection site)

The non-hydrostatic model is initially at rest with a weak stratification (N 2 = 5 × 10−8 s−2) in a box 64 km ×
64 km × 2 km. The horizontal and vertical resolutions are 500 m and 100 m respectively. Cooling is continuously
applied at the surface in a disc of radius 8 km (with a random spatial component). The fluid convectively overturns,
fluxing heat upward from the interior to balance the forcing. A mean radial gradient in temperature is established
which becomes baroclinically unstable. At some point it becomes more efficient for the fluid to flux heat laterally
than vertically so that baroclinic instability begins to dominate.

Figure 3.5 shows the density anomaly at z=-250m after 10 days. The sharp gradients indicate the front, formed
at the edge of the convective zone or chimney, that is undergoing baroclinic instability. This figure is reproduced
courtesy of Helen Jones of Legg et al., 1995 [LJVPO].

The model behaves very well in this high resolution limit. There is little grid scale noise. The parallel design of
the conjugate gradient algorithm used to solve the 3D elliptic problem is very effective.
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Figure 3.5: Density anomaly at z=-250m at day 10 in a convection experiment. Reproduced courtesy of Helen Jones
(see text).
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3.9.2 Climatological spin-up of the North Pacific Ocean

An extended regional calculation is made to obtain a state of the North Pacific Ocean suitable for initializing
subsequent integrations. Here, a realistic stratification is desired and so the model is forced with observational data.

The GCM is integrated in hydrostatic mode for the Pacific Ocean (31◦S to 61◦N, 122◦E 293◦E). It has realistic
coast-lines and bottom topography. Bottom and side walls are insulating. A no-slip (free-slip) condition is used at
side walls (bottom). The horizontal grid resolution is 1◦. There are 20 levels, with a minimum layer thickness of 25
m at the top to a maximum thickness of 500 m at the bottom.

At the surface, the model is relaxed to climatological values of temperature and salinity [Lev82] with a relaxation
time scale of 25 days. At the southern boundary, the relaxation is made over a 5o zone with a time scale of 5 days
at the boundary, decreasing linearly to 100 days at 26◦S.

The model was initialized from climatological annual mean temperature and salinity distributions [Lev82] and
a resting flow field. It was integrated for 17 years with annual mean temperature, salinity and surface wind stress
forcing. From year 18 onwards, monthly temperatures, seasonal salinities and monthly winds [TOL89] were used.
The forcing fields were updated daily by linearly interpolating from the monthly or seasonal data. Surface heat and
freshwater fluxes [Obe88] were introduced in the surface layer starting in year 29. The model time step is 1 hour.
The mixing and diffusion coefficients are presented in table 3.1.

Figures 3.6, 3.7 and 3.8 show the state of the model at the end of year 43. The solution exhibits the main features
of the observed circulation including the Kuroshio and Oyashio Currents.

This integration used an implementation of the Cd scheme that will be described in chapter 5. Without this inno-
vation, the above integration would not have been possible since the unmodified C grid is susceptible to development
of grid scale noise.

To demonstrate the nature of the problem inherent in an unmodified C grid model, the integration was carried
on for just one more month after year 43 using the unmodified C grid version of the GCM. Figures 3.9 and 3.10 show
the vertical velocity at the end of the extra month. Grid length waves emanate from the boundaries. The waves
are predominant at high latitudes where the Rossby radius of deformation is not resolved. With time, the noise
propagates through out the model and eventually masks the large scale signal. Note that at the upper level, the
ocean is relatively well stratified and that the noise has not reached the interior whilst in the deep, weakly stratified
ocean, the noise has penetrated to the Equator.

Horizontal Mixing νh 5 × 103

Vertical Mixing νz 10−3

Horizontal Diffusion κh 5 × 103

Vertical Diffusion κz 3 × 10−5

Table 3.1: GCM mixing and diffusion coefficients for the North Pacific spin-up. Units are m2 s−1.
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Figure 3.6: Pressure (in m) at z=-12.5 m at end of year 43.
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Figure 3.7: Temperature (in oC) at λ=171.5E at end of year 43.
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Figure 3.8: Salinity (in psu) at λ=171.5E at end of year 43.
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Figure 3.9: Vertical velocity at the base of the top layer in the model after one month of integration with the Cd

scheme switched off. Note the presence of grid length waves. Contour interval is 0.01 mm s−1.
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Figure 3.10: Vertical velocity at z=-3200m in the model after one month. Only the zero contour is shown. The grid
length noise is more prevalent at depth because of the weaker stratification.
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3.9.3 Conventional treatments of grid scale noise

There have been many attempts in the past to control noise level in ocean models, most frequently in ‘C’ grid
formulations that are particularly sensitive to noise at low resolutions.

Several methods that were implemented during the development of the global ocean model are mentioned below
but this should by no means be considered a definitive comparison.

Deformation dependent diffusion is a method described by Smagorinsky [Sma63], Deardorff [Dea71] and Smith
and Bleck [SBB90] in which the lateral diffusion parameter is a function of the local deformation of the flow. In
principle, the deformation field reflects the amplitude of grid-scale noise and acts to smooth the model fields where
the noise is manifest. The scheme is physically appealing in that it leaves the physics unaffected except where noise
is generated. In practice, a large diffusion coefficient is needed to effectively reduce the noise level and the explicit
(in time) evaluation procedure easily violates the numerical stability criteria. An implicit implementation can be
employed here but was not investigated.

Biharmonic diffusion This is a commonly used method that is more scale selective than Laplacian diffusion.
The method is appealing in that the large scale dynamics is left untouched. In practice again, large coefficients are
required but with the limited coefficients allowed for stability (in the explicit model) the method was found to be at
least as effective as divergence damping.

Divergence damping This method is based on some understanding of the source of the noise [Xu94]. A non-
physical term is added to the horizontal momentum equations; Dtu+ ... = ∇hλD where D = ∇h.uh is the horizontal
divergence. On taking the curl of the momentum equations, it should be apparent that the vorticity dynamics is
left unaffected whilst the divergence equation (the poor representation of which is the source of the noise) has an
additional diffusion term. This scheme seemed appealing because of this ability to selectively damp noise in the
divergence field and in practice seemed to be quite effective in reducing the noise level. A large coefficient, λ, is
required but not so large as to cause numerical instability. The only cause for concern was the unfortunate effect at
the equator where the dynamics are as much a function of the horizontal divergence field as they are of the vorticity.
The sharp upwelling patterns at the equator become very smoothed. In principle, λ could be made a function of
latitude to overcome this problem but this was not investigated.

More drastic methods can also be used, such as periodic filtering of the model fields. This would at least be honest
in that it deals directly with the noise rather than via the introduction of some “artificial” terms. In practice, none
of the above methods work perfectly. They control the problem by reducing the noise level. They all manage this
by damping. Wherever there is a source of noise, damping is not good enough. Balancing a source against damping
results in a finite amplitude signal.

Instead, the source of the problem should be re-considered. The principle issue here is the gridding. For the ‘C’
grid, the ability to support grid-scale noise is a direct consequence of the spatial averaging required to evaluate the
Coriolis terms. Before deriving a method by which this problem is avoided, it is necessary to revisit the theory that
describes the grid-noise phenomenon in the model. The next chapter discusses shallow water theory, the propagation
of inertia-gravity waves and the finite difference representation of these waves before describing a method that avoids
the grid-noise problem.
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Chapter 4

Numerical Representation of
Inertia-Gravity Waves

Here, we discuss the representation of inertia-gravity waves in finite difference models. The representation of Rossby
waves will be considered in the following chapter.

The first sections of the chapter describe Shallow Water theory. It is in this dynamical formulation that the nature
of inertia-gravity waves is most accessible. Further more, numerical issues (in particular, the choice of gridding) are
traditionally examined in this context.

Having developed an understanding of how the continuous model behaves, an analysis of discrete models on
various grids shows how the numerical waves behave as a function of scale. Of particular interest here, is the effect
of averaging used in evaluating the Coriolis term on the C grid. The averaging allows grid-scale noise to persist. The
noise is manifest in the divergence field and is excited in ocean models by the narrow layers of wind-driven upwelling
at boundaries.

The analysis of Arakawa and Lamb, 1977 [AL77], suggests that two particular formulations (the B and C grids
using their notation) are most suitable for modeling rotating fluids. To study gridding choices two numerical models
were built and integrated in a variety of configurations. The results of the integrations are consistent with the
predictions of the numerical analysis.

Whenever models are operating at sub-optimum resolutions, grid-scale noise results and is normally removed by
filtering or damping. Instead of dealing with the noise in this crude manner, a philosophy of dealing with the cause
of the problem is adopted. Section 4.6 describes a new numerical scheme for treating the Coriolis term on a C grid
that accurately represents the inertia-gravity waves and thus avoids the spurious grid-noise problems inherent in the
‘C’ grid.

The inertia-gravity waves are found to be well behaved at all resolutions using the new scheme. Despite this,
there is a new kind of grid-scale noise that appears in the presence of the planetary vorticity gradient, β. The reason
for this is that the scheme fails to accurately represent short Rossby waves. This problem will be discussed and dealt
with in the next chapter.

4.1 Shallow Water Theory

The dynamics of a homogeneous layer of fluid were briefly analysed in chapter 2. Here two such layers of different
density will be considered (see figure 4.1). The two layer system has two intrinsic modes; the barotropic and baroclinic
modes. The modes can be separated in the linear system. Although the behavior of linear internal inertia-gravity
waves (section 2.4.1) was shown to be quite analogous to the linear external gravity wave discussed previously, it is
more appropriate to derive the equations governing the baroclinic mode.

The inviscid, linear, Boussinesq momentum equations on a β-plane for a homogeneous layer are:

∂u

∂t
− fo(1 +

βy

fo
)v +

1

ρo

∂p

∂x
= 0 (4.1a)

∂v

∂t
+ fo(1 +

βy

fo
)u+

1

ρo

∂p

∂y
= 0 (4.1b)

gρ+
∂p

∂z
= 0 (4.1c)

∇h.uh +
∂w

∂z
= 0 (4.1d)
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Figure 4.1: The shallow water model comprises of two homogeneous layers of fluid (ρ1, ρ2) between rigid-lids, with a
free interface of perturbation elevation h. The pressure exerted by the rigid-lid is equivalent to a surface elevation η.

The rigid-lid at the surface exerts a pressure on the fluid of gρ1η, where η is the inferred displacement of the
surface. Integrating the hydrostatic relation between some arbitrary depth z and the surface z = 0 yields:

p(x, y, z) =

{

po + gρ1(η − z) ∀h−H1 < z < η
po + gρ1(η − h+H1) + gρ2(h−H1 − z) ∀H2 < z < h−H1

(4.2)

and consequently, horizontal gradients of pressure are independent of depth within the layers:

∇p1 = gρ1
ρo

∇η

∇p2 = gρ1
ρo

∇(η − h) + gρ2
ρo

∇h
(4.3)

The continuity equation can be applied to each layer to give the rate of change of elevation of the interface:

− ∂h

∂t
+ ∇ · (H1 − h)u1 = 0 (4.4)

+
∂h

∂t
+ ∇ · (h+H2)u2 = 0 (4.5)

These equations can be weighted by 1
H1

and 1
H2

respectively and added to give:

(

1

H1
+

1

H2

)

∂h

∂t
+ ∇ · (u2 − u1) = O(

hu2

H2
) + · · · (4.6)

where the non-linear contributions will be small if the interface perturbation is assumed to be small compared to H1

and H2 (h � H1, H2).
Defining:

û = u2 − u1

g∗ =
gρ1

ρo

g′ =
g

ρo
(ρ2 − ρ1)

H∗ =
H1H2

H1 +H2
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the shallow water equations for the baroclinic mode û can be written:

∂

∂t
û + fo(1 +

βy

fo
)k̂ ∧ û + g′∇h = 0 (4.7a)

∂h

∂t
+H∗

∇ · û = 0 (4.7b)

These equations are prognostic in all three dependent variables which makes the shallow water equations the
most simple to integrate numerically (due to the absence of any kind of elliptic inverse problem). For the purpose of
analysis, the linearity the equations is also very convenient.

If H1 < H2 then H∗ must fall in the range 1
2H1 ≤ H∗ < H1. Typically, the bottom layer will be much deeper

than the top layer (H1 << H2) and so H∗ ∼ H1, where a summer time upper-layer depth might be 30 m.
A representative density contrast is ρ2−ρ1

ρo
∼ 10−3 so that g′ ∼ 10−2. The gravity wave speed, which will be

derived shortly, is
√
g′H∗ ∼ 0.54ms−1, much slower than the external gravity wave speed

√
gH ∼ 10 − 100ms−1.

Assuming that û and v̂ scale in a similar fashion, then the equations can be non-dimensionalised and written in
terms of external parameters. The horizontal velocities are non-dimensionalised by a typical velocity scale U . Let
the horizontal length scale of the motion be L for a typical interface displacement of ho and the time-scale be f−1

o

then the non-dimensional equations may be written:

∂

∂t
u + (1 + βy)k̂ ∧ u +

g′ho
foLU

∇h = 0 (4.8a)

f−1
o hoL

H∗U

∂h

∂t
+ ∇ · u = 0 (4.8b)

where all the variables are now non-dimensional. Here, β is the non-dimensional planetary vorticity gradient,
β → βL

fo
.

The non-dimensional quantity in the momentum equations can be expressed:

g′ho
foLU

=
g′H∗

U2

h

H∗

U

foL
= RiδRo (4.9)

where Ri = g′H∗

U2 =
c2g
U2 is the Richardson number and Ro = U

foL
is the Rossby number. δ = h

H∗ is a small parameter
measuring the magnitude of perturbation elevation against the vertical scale height H∗.

Similarly, the non-dimensional number appearing in the continuity equation can be expressed:

f−1
o hoL

H∗U
=
ho
H

foL

U
= δR−1

o (4.10)

Since, the time-scales of interest are longer than f−1
o , then for the non-dimensional velocity to be order one, the

pressure gradient term should be order one also. The internal parameter δ can therefore be chosen:

δRiRo = 1 (4.11)

The non-dimensional shallow water equations are then:

∂

∂t
u + (1 + βy)k̂ ∧ u + ∇h = 0 (4.12a)

S−1 ∂h

∂t
+ ∇ · u = 0 (4.12b)

where the non-dimensional parameter S = RiR
2
o = g′H∗

f2
oL

2 =
L2

ρ

L2 is the Burger number, which is the square of the

ratio between the Rossby deformation radius and the length scale. This ratio will prove to be very relevant when an
analysis of the numerical models is made. The crucial quantity will be the Burger number of the grid-scale, better
termed the wave resolution.

The kinetic and potential energy take the forms KE = 1
2u · u, PE = 1

2S
−1h2. Total energy,

∫∫

KE + PE dA, is
conserved in the absence of external forces.

The shallow water equations derived here are analogous to the barotropic equations describing the external
gravity mode. The system exhibits all of the properties pertinent to an individual baroclinic mode of the hydrostatic
primitive equations. This model was derived for this property so that it can be used as a elementary setting to
analyse the numerical models.
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4.2 Inertia-Gravity Waves

The Coriolis terms in isolation act to make the flow move in inertial circles. The pressure gradient terms allow a
pressure anomaly to propagate as a gravity wave. In conjunction, both motions are described by a pair of inertia-
gravity wave modes as follows. The divergence, vorticity and continuity equations are:

∂

∂t
D − ζ + ∇

2h = 0 (4.13a)

∂

∂t
ζ +D = 0 (4.13b)

S−1 ∂

∂t
h+D = 0 (4.13c)

The inertia-gravity waves are best described in terms of the divergence field. Differentiating the divergence equation
and eliminating the vorticity and pressure terms yields a wave equation of the form:

∂2

∂t2
D +D − S∇

2D = 0 (4.14)

Substituting a plain wave solution of the form eı(kx+ly−ωt) into the wave equation yields the dispersion relation for
the inertia-gravity waves:

ω2 = 1 + S(k2 + l2) (4.15)

The frequency, ω, of a gravity wave is thus a monotonically increasing function in |κ| =
√
k2 + l2, with a minimum

frequency of ω = 1 corresponding to S = 0 or κ = 0. For long waves, S|κ|2 << 1, the frequency is approximately
ω ≈ 1 and so the dominant frequency is set by the Coriolis acceleration. For short waves, S|κ|2 >> 1, the frequency
becomes proportional to the wave number, ω ≈

√
S|κ|. In this limit, the pressure gradient terms are the predominant

ones controlling the wave propagation.
The group velocity, ∂ω

∂k
is:

cg =
S

√

1 + S|κ|2

(

k
l

)

and always points in the direction of the wave vector, κ. For the long waves the group speed is proportional to the
wave number cg ≈ Sκ while for short waves the group speed asymptotes to cg =

√
S 1

|κ|(k, l). Never does the group

speed approach zero for non-zero k or l.
This, then, is how linear inertia gravity waves propagate in the continuum. Although a discrete representation

cannot be expected to reproduce this behavior perfectly, it is useful to examine the dispersion relation and group
speed on the grid to assess the closeness of the numerical representation of the dynamics to that of the real ocean
and so qualitatively gauge the numerical scheme. A celebrated account of this analysis was given by Arakawa and
Lamb [AL77] which will be summarised later.

4.3 Damped wave motion

The inertia-gravity wave motions just described allow the fluid to adjust to a geostrophic state. In an inviscid
model, the gravity waves travel and reflect off boundaries, unimpaired by diffusion. Such a model would never
reach a steady state. Dissipation of some form must be represented. Accordingly, an arbitrary operator, F̂ , will
be introduced to represent the dissipation. Damping of the continuity equation can also be introduced, Ĥ , which
reflects the dissipation in the buoyancy equation of the primitive equations.

∂

∂t
u + k̂ ∧ u + ∇h = F̂ (u) (4.16a)

∂

∂t
h+ S∇ · u = Ĥ(h) (4.16b)

As before, the three dependent variables can easily be exchanged for two dependent variables by expressing the
equations in terms of divergence, vorticity and elevation, and then eliminating the vorticity:

(
∂

∂t
− F̂ )2D +D + (

∂

∂t
− F̂ )∇2h = 0 (4.17a)

(
∂

∂t
− Ĥ)h+ SD = 0 (4.17b)

43



h,u,v

u,v

u,vu,v

u,v

h hu

v

u

v

u

u

vv

u,v

u,v

u,v u,vh h

h h

h h

A

ED

CB

Figure 4.2: The variables of a model can be arranged in only five grids that maintain second order accuracy. Grids
A-D share the same grid-spacing. Grid E is equivalent to the B grid rotated through 45o and scaled by

√
2.

In the special case where Ĥ = F̂ , the gravity wave motion is easily found by eliminating h:

(
∂

∂t
− F̂ )2D +D + S∇

2D = 0 (4.18)

which gives the dispersion relation:
ω = ıF̂ ±

(

1 + S(k2 + l2)
)

(4.19)

The real, oscillatory part of ω is just the plain inertia-gravity wave contribution from the inviscid model;
±

(

1 + S(k2 + l2)
)

. The imaginary, decaying part is simply the damping rate of the operator for that particular
wave number. The inertia-gravity waves are damped, but the phase and group speeds of the oscillatory solution
remain unchanged.

4.4 Finite-differenced Inertia-gravity waves

Using centered finite differencing and the simplest single-level time stepping scheme, the shallow water equations can
be discretised on five distinct grids (see figure 4.2). Arakawa and Lamb [AL77], for the purpose of analysis, assumed
that the time-stepping scheme was perfect and retained the continuous time derivative. It is in fact quite simple
to consider discrete time-stepping but as long as the scheme is centered (and thus second order accurate), no new
consequences arise.

Scheme A:

δtu− vt + δxh
x

= 0 (4.20a)

δtv + ut + δyh
y

= 0 (4.20b)

S−1δth+ (δxu
x + δyv

y) = 0 (4.20c)

Scheme B:

δtu− vt + δxh
y

= 0 (4.21a)

δtv + ut + δyh
x

= 0 (4.21b)

S−1δth+ (δxu
y + δyv

x) = 0 (4.21c)
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Scheme C:

δtu− vxyt + δxh = 0 (4.22a)

δtv + uxyt + δyh = 0 (4.22b)

S−1δth+ (δxu+ δyv) = 0 (4.22c)

Scheme D:

δtu− vxyt + δxh
xy

= 0 (4.23a)

δtv + uxyt + δyh
xy

= 0 (4.23b)

S−1δth+ (δxu
xy + δyv

xy) = 0 (4.23c)

The E grid is omitted since it is equivalent to the B grid rotated through 45o and scaled by
√

2.
The divergence equations for each model are as follows:
A grid:

D ≡ δxu
x + δyv

y δttD +D
tt − S(δxxD

xx
+ δyyD

yy
) = 0 (4.24)

B grid:

D ≡ δxu
y + δyv

x δttD +D
tt − S(δxxD

yy
+ δyyD

xx
) = 0 (4.25)

C grid:

D ≡ δxu+ δyv δttD +D
xxyytt − S(δxxD + δyyD) = 0 (4.26)

D grid:

D ≡ δxu+ δyv δttD +D
tt − S(δxxD + δyyD)

xxyy

= 0 (4.27)

Substitution of a plane wave solution (exp ı(kx+ ly − ωt)) into the divergence equations yields:

A: ω2 = 1 + S(s2kc
2
k + s2l c

2
l ) (4.28a)

B: ω2 = 1 + S(s2kc
2
l + s2l c

2
k) (4.28b)

C: ω2 = c2kc
2
l + S(s2k + s2l ) (4.28c)

D: ω2 = c2kc
2
l + Sc2kc

2
l (s

2
k + s2l ) (4.28d)

where the abbreviations, sk = 2
∆x sin k∆x

2 , sl = 2
∆y sin l∆y2 , ck = cos k∆x

2 and cl = cos l∆y2 have been used for
brevity. In the limit of infinitely high spatial resolution, ck → 1 and sk → k, etc. Thus all the finite difference
dispersion relations approach the continuous limit though they may still contain extra turning points.

The common term Ss2k = 4S
∆x2 sin2 k∆x/2 is the discrete analogue of Sk2. The quantity 4S/∆x2 is the wave

resolution parameter, which appears in all the dispersion relations. It is the square of the ratio between twice the
dimensional Rossby deformation radius and the dimensional grid-spacing. If 4S/∆x2 = 1, the grid spacing is small
enough to resolve a single wavelength equal to the deformation radius. High resolution corresponds to 4S/∆x2 � 1
and low resolution to 4S/∆x2 � 1.

Figure 4.4 shows the non-dimensional frequency as a function of wave resolution, m = k∆x/π, n = l∆x/π for
high resolution models on the four different grids. For comparison, the analytic dispersion relation for the continuous
system is plotted in figure 4.3 for the same mode numbers.

The gradient of the surfaces is the group velocity and should always be directed away from the origin. At high
resolution, the discrete dispersion relations might be expected to approach the analytic result as the resolution
increases. This is always found but the discrete cases always contain extra minima at the highest wave numbers.

The A grid has three erroneous minima occurring at the two grid-scale wave length; m = 1, n = 1 and m = n = 1.
Between these points and the turning points (m = 1/2 and n = 1/2) the group velocity has the wrong sign. The
phase speed is underestimated because the frequency of motion is much lower than it should be.

The B grid has one extra minima for the checker board mode (grid-scale mode number in each direction, m =
n = 1). The group velocity has the wrong sign for short waves that satisfy m+ n > 1. Again, the phase speed and
frequency are severely underestimated but this time only in one quadrant.

The C grid underestimates the frequency of the highest modes. In the analytic case, the frequency reached
approximately 2.5 cycles whilst the peak C grid frequency is about 2 cycles. The group speed is always of the right
sign with the highest errors at high wave numbers.
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Figure 4.3: Non-dimensional frequency of the continuous spectrum is plotted against non-dimensional wave number
{m,n}. The discrete wave numbers allowed in the model are represented by the grid-lines. The wave numbers
correspond to the next figure where 4S

∆x2 = 2.

0 0.5 1
0

0.5

1

1.2

1.4

1.6

1.8

2

mn

w

A grid

0 0.5 1
0

0.5

1

1.2

1.4

1.6

1.8

2

mn

w

B grid

0 0.5 1
0

0.5

1

1.2

1.4

1.6

1.8

2

mn

w

C grid

0 0.5 1
0

0.5

1
0

0.5

1

1.5

2

mn

w

D grid

Figure 4.4: Non-dimensional frequency of the discrete waves is plotted against wave-resolution {m,n}. The Rossby
radius is resolved, 4S

∆x2 = 2. The discrete wave numbers allowed in the model are represented by the grid-lines.
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Figure 4.5: Non-dimensional frequency of the discrete waves is plotted against wave-resolution {m,n}. The Rossby
radius is not resolved, 4S

∆x2 = 1
2 . The discrete wave numbers allowed in the model are represented by the grid-lines.

The D grid exhibits the worst performance, having a minimum value of zero frequency for any grid scale mode
(m = 1 or n = 1). The group velocity behaves much like in the A grid, except that for the higher modes it is
considerably more negative, and thus more erroneous.

The conclusion one should draw from these four dispersion relations is that at high resolution, the C grid is the
only grid that represents energy propagation for all scales in the correct qualitative manner. On all other grids, the
group velocity points in the wrong direction and energy may accumulate.

Figure 4.5 shows the dispersion relation for the four models at low resolution (4S/∆x2 = 1
2 ). The A, B and D

grid models behave in the same qualitative manner as before, though now, because the range of frequencies is much
reduced, the fractional error in group speed and frequencies is similarly reduced.

The C grid model has changed its behavior. There are two extra minima corresponding to waves that are long in
one direction, short in the other. The group speed is pointed in the wrong direction for long waves. This last factor
renders the model much less accurate than other models since it is the large scale features which are erroneously
affected.

In summary, at high resolution, where the geostrophic adjustment process is resolved this analysis clearly suggests
that the ‘C’ grid is the most suitable grid. At low resolution, the C grid has severe problems and the ‘B’ grid seems to
be the best compromise. The error in the B grid frequency for high mode numbers is less significant at low resolution
because of the reduced range in frequencies.

The failing of the ‘C’ grid at low resolution is a consequence of spatial averaging of the Coriolis term which
introduces the cosines into the dispersion relations (4.28) for the gravity waves. The effect of the averaging operator
is to filter out the two grid-length wavelengths which leads to a vanishing of the Coriolis term in (4.28).

The invisibility of a two grid-length wave to the averaging operator is easily illustrated. Consider the spatial
pattern ... +1 −1 +1 −1 +1 ... to represent the two grid-length wave on a regularly spaced grid. Apply a spatial
average to obtain the value at the mid-points. The result is simply zero. For the ‘C’ grid, a two grid-length wave of
arbitrary amplitude can be added to a component of the flow without affecting the discrete evaluation of the Coriolis
term. Moreover, this wave remains fixed in space (zero group speed) and so may grow. Similarly, in the case of the
‘B’ grid, a checker board type pattern in the pressure field is ‘invisible’ to the pressure gradient term.

In summary then, the preferred grid depends on its resolution compared to the Rossby deformation radius. If
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this length scale is not resolved then the shortest resolved scales of motion are aware of the Coriolis effect and so the
’B’ grid is the better choice. If this length scale is resolved, then the shortest motions will be gravity waves and the
dominant process controlling their evolution will be the pressure gradient term and so the ‘C’ grid will be the better
choice.

This criterion works well if the deformation radius is relatively fixed, both in time and space. However, in baro-
clinic models of the atmosphere and oceans, the deformation radius is a function of latitude, the local stratification
and the vertical wave number of the particular baroclinic mode, L(m)

D
= N/f(φ)m−1, where m is the dimensional

vertical wave number, f(φ) is the local Coriolis parameter and N is the local Brunt-Vasala frequency. Thus, with a
fixed grid, there is the possibility of both resolving and not resolving the local deformation radius in separate parts
of a model, or for different vertical modes.

In the case of the GCM described in chapter 3, the model is used to study the global scale circulation. This
demands a coarse resolution because of the limitations of the computer. Hence a ‘B’ grid might be argued for. Here,
however, the model is also used to study convection which demands the the formulation on a C grid.

4.5 Numerical Shallow Water models

Having developed a linear tool to study grid-scale noise in the GCM, it remains to test the ideas in practice. Since
only two models, the ‘B’ and ‘C’ grids, are expected to be reliably accurate (depending on wave resolution), these
were the ones developed.

The shallow water models described earlier were second order accurate in time. This meant that the evaluation
of the Coriolis term was made in a semi-implicit manner. Implicit Coriolis terms on the A and B grids involves
simple algebraic manipulation of the discretised equations. On the C and D grids, because of the spatial averaging,
implementing implicit Coriolis terms involves finding the inverse of a matrix describing the spatial dependencies.

In order to compare models to examine the effects of gridding choice, these models should use the same algorithms
wherever possible in order to isolate the cause of any differences. The C grid restricts the modeller to an explicit
evaluation of the Coriolis terms (for a reasonably efficient code). In all of the following models, the quasi-second
order Adams-Bashforth scheme is applied to evaluate the Coriolis terms.

The B and C grid models will now be described. The same grid resolutions are used in both whenever the models
are compared. The grid resolution is defined by the number of pressure points in each direction. Thus, the pressure
field is carried at the same physical locations in each model. Both models carry the normal velocity on the physical
boundaries. The B grid also carries the tangential velocity on the boundary and an extra boundary condition is thus
needed here. The simplest choice is that of no-slip.

The models are forced with an analytically described wind stress. Dissipation is parameterised by a linear friction
like term with time-scale λ−1. Had a higher order diffusion term been chosen, the grid-scale noise would be more
efficiently removed and the discrepancies between the two grids less obvious.

4.5.1 B grid shallow water model

The grid of the B grid model is defined by cells centered about the pressure point, h. For M ×N pressure points,
there are therefore (M + 1) × (N + 1) points that carry the velocities u and v, although 2(M +N) of these lie on
the boundary.

The time-stepping cycle is comprised of two prognostic steps; one stepping forward the continuity equation and
the other stepping forward the momentum equations.

The continuity equation is time differenced as described before; single time level with a centered in time and
space evaluation of the divergence field:

hn+ 1
2 = hn−

1
2 + ∆tS

(

δxun
y

+ δyvn
x)

(4.29)

No flux through solid boundaries is a necessary condition to evaluate the right hand side. The initial state is one of
no motion.

The next stage in the model time-step is to step forward the momentum equations as follows:

un+1 = un + ∆t
(

+(1 + εβy)v
(n+ 1

2
) − δxhn+ 1

2

y

+ τx − λun
)

(4.30a)

vn+1 = vn + ∆t
(

−(1 + εβy)u
(n+ 1

2
) − δyhn+ 1

2

x

+ τy − λvn
)

(4.30b)

where the parenthesized superscript (n+ 1
2 ) denotes the Adams-Bashforth extrapolation: u(n+ 1

2
) = ( 3

2 + εAB)un −
( 1
2 + εAB)un−1. No flow normal to solid boundaries is imposed in the continuity equation.
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Low High
resolution resolution

Burger number S 1.0× 10−4 6.25× 10−2

Planetary vorticity gradient β 0.0 0.0
Friction λ 3 × 10−2 3 × 10−2

Time step ∆t 0.2 0.2
Adams-Bashforth parameter εAB 0.1 0.1
Grid spacing ∆x = ∆y 1/10 1/10

Wave resolution 2
√
S/∆x 1/5 5

Table 4.1: External parameters used in the comparison of the B and C grid shallow water models. High resolution
means that the Rossby deformation radius is resolved whilst Low resolution means that it is not.

4.5.2 C grid shallow water model

As in the B grid model, the C grid is defined by cells centered about the pressure point, h. For M × N pressure
points, there are therefore (M + 1) ×N points that carry the zonal velocity, u, and M × (N + 1) points that carry
the meridional velocity, v.

The time-stepping cycle is as for the B grid. The continuity equation is time differenced with a single time level
with a centered in time and space evaluation of the divergence field:

hn+ 1
2 = hn−

1
2 + ∆tS (δxu

n + δyv
n) (4.31)

The vanishing of the normal flux through solid boundaries is applied quite naturally.
The momentum equations are stepped forward as follows:

un+1 = un + ∆t
(

+(1 + εβy)v(n+ 1
2
)
xy

− δxh
n+ 1

2 + τx − λun
)

(4.32a)

vn+1 = vn + ∆t
(

−(1 + εβy)u(n+ 1
2
)
xy

− δyh
n+ 1

2 + τy − λvn
)

(4.32b)

where the parenthesized superscript (n) again denotes the Adams-Bashforth extrapolation: u(n) = ( 3
2 + εAB)un −

( 1
2 + εAB)un−1.

4.5.3 Shallow water model results

The B and C grid models described above were configured to mimic a double gyre on an f-plane. The model
extents were x : {0 ≤ x ≤ 1} and y : {−1 ≤ y ≤ 1}. The applied wind stress was circular and non-divergent,

τ = k̂ ∧ ∇(sinπx sinπy) where the appropriate discrete operator was used to evaluate the curl.
The external parameters of the models are listed in table 4.1. The Burger number is defined using the physical

zonal extent of the basin, S = L2
D
/L2. The wave resolution is thus 2

√
S/∆x and was 5 for the high resolution run

and 1/5 for the low. The symmetric forcing and absence of β effect (εβ = 0) means that the solutions should be
symmetric.

Low resolution: Figures 4.6 and 4.7 show the low resolution B and C grid models at t = 100. The wave resolution
is 2

√
S/∆x = 1/5. At this resolution the B grid reproduces the analytical solution very well. The pressure field

and divergence patterns in the B grid both reflect the structure of the forcing. The C grid however is clearly being
influenced by boundary effects. The large values of upwelling and downwelling at the boundaries alternate as one
moves from the boundary. In the corners, the alternating zonal and meridional patterns interfere to produce a
checker-board pattern. All three of the short wave combinations (meridional, zonal, checker-board) correspond to
the minimum frequencies in the dispersion relation of the C grid. The erroneous pressure field in the C grid is also
driving fast flows which bear no relation to the more reasonable circulation of the B grid.

These integrations mimic the previous low resolution integrations of the GCM. The grid-scale noise is similar in
character. The conclusion here is that a GCM developed on a B grid would perform better at low resolution.

High resolution: The high resolution integrations tell a different tale. Figures 4.8 and 4.9 show the high resolution
B and C grid models at t = 100. The resolution is now 2

√
S/∆x = 5. The pressure field and circulation both appear
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Figure 4.6: Low resolution (4S/∆x2 = 1/5) integrations of the B grid (left) and C grid (right) shallow water models.
Shown are pressure (contours) and velocities (arrows) at time t = 100. Contour interval for pressure is 0.05. Note
that the models are still spinning up and so the flow is ageostrophic. At this resolution, the IG waves should behave
better in the B grid than in the C grid. The B grid pressure field reflects the structure of the forcing whilst the C
grid is being disturbed by boundary effects.

to be symmetric and consistent with each other. The B grid pressure maximum is a few percent weaker than the C
grid, the latter being the more reliable model at this resolution.

The divergence patterns are, however, very different. The B grid has a very strong checker-board pattern that
is an order of magnitude larger than the large scale divergence pattern of the C grid. Only the checker-board mode
seems to have been excited, as predicted by the minima in the B grid dispersion relation.
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Figure 4.7: Low resolution (4S/∆x2 = 1/5) integrations of the B grid (left) and C grid (right) shallow water models.
Shown is the horizontal divergence at time t = 100. Contour interval is 5. The flow is ageostrophic at this stage in
the integration so the divergence is still large. The C grid clearly has more signal at the grid scale than does the B
grid.
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Figure 4.8: High resolution (4S/∆x2 = 5) integrations of the B grid (left) and C grid (right) shallow water models.
Shown are pressure (contours) and velocities (arrows) at time t = 100. Contour interval for pressure is 1. The models
are approaching the steady state so the flow is nearly geostrophic. But for slightly different maximum values, the
models would appear to be in good agreement. The divergence patterns (next figure) show that this is not the case.
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Figure 4.9: High resolution (4S/∆x2 = 5) integrations of the B grid (left) and C grid (right) shallow water models.
Shown is the horizontal divergence at time t = 100. Contour interval is 0.5 for the B grid and 5 for the C grid.
The flow is nearly geostrophic at this stage in the integration so the divergence is small. The C grid clearly has no
grid-scale noise. The B grid has a grid-scale signal, one order of magnitude larger than the smooth signal of the C
grid.
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4.6 The Explicit Oscillator Algorithm

In both B and C grid formulations, problems arise through the need to interpolate variables to their ‘unnatural’
positions. A 2∆x wave is invisible when viewed through the averaging operator x implying that the physics
represented by that term cannot act at that particular wave number. Thus on the B grid, a 2∆x wave cannot be
aware of the presence of pressure gradient forces normal to the wave vector, though this is relatively unimportant at
large scales. Similarly on the C grid, a 2∆x wave cannot feel Coriolis effects. In short, averaging is an undesirable
feature in both these finite difference models.

In the case of the C grid, examination of equation (4.26) suggests that if one could ensure that spatial averaging

did not occur in the oscillation term, f 2D
tt
, then the dispersion relation would approach the analytic limit to the

maximum extent possible using second order finite differencing. This can be achieved as follows. Consider the forced
oscillator form of the horizontal momentum equations:

u = uo
v = vo

}

t = 0 (4.33a)

∂
∂tu− fv = X
∂
∂tv + fu = Y

}

t ≥ 0 (4.33b)

Here, X = X(x, y, z, t) and Y = Y (x, y, z, t) contain all other terms in the horizontal momentum equations. This
is completely equivalent to the system:

u = uo
v = vo

∂
∂tu− fv = X
∂
∂tv + fu = Y















t = 0 (4.34a)

∂2

∂t2 u− f ∂
∂tv = ∂

∂tX
∂2

∂t2 v + f ∂
∂tu = ∂

∂tY

}

t ≥ 0 (4.34b)

By substituting for the acceleration f ∂
∂t (u, v) in equations 4.34b from 4.33b, the complete system can be written

as a set of four initial conditions and two oscillator equations coupled through the forcing functions X and Y :

u = uo
v = vo

∂
∂tu− fv = X
∂
∂tv + fu = Y















t = 0 (4.35a)

∂2

∂t2u+ f2u = ∂
∂tX + fY

∂2

∂t2 v + f2v = ∂
∂tY − fX

}

t ≥ 0 (4.35b)

A discrete form for 4.35b might take the form:

δttu+ f2utt = δtX + fY
txy

(4.36a)

δttv + f2vtt = δtY − fX
txy

(4.36b)

and so propagation of the inviscid inertia-gravity waves would be determined by:

1

f2
δttD +D

tt − L2
ρ(δxxD + δyyD) = 0 (4.37)

which leads to the dispersion relation:

4

f2∆t2
sin2 ω∆t

2
= cos2

ω∆t

2
+

4L2
ρ

∆x2

(

sin2 k∆x

2
+ sin2 l∆x

2

)

(4.38)

Unlike their counter-parts on a C grid, equation 4.37 does not have any averaging operators at all. This is because
the pressure terms within the interpolated operators of 4.36 cancel and so do not feature in 4.37. For this reason, it
can be expected that the dispersion relation will not suffer from the deficiencies of the C grid formulation.
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Assuming a continuous time derivative, the amplifying matrix method for finite difference equations can be
applied to the formulation (4.36) of the inviscid shallow water equations (for which X = −g′δxh, Y = −g′δyh):







−ω2 + f2 0 2g′

∆x(ωsk − ıfslckcl)

0 −ω2 + f2 2g′

∆x(ωsl + ıfskckcl)
ı 2H∆xsk ı 2H∆xsl −ıω











uo
vo
ho



 eı(kx+ly−ωt) = 0 (4.39)

Setting the determinant of the amplification matrix to zero now yields five modes:

ω = 0 (4.40a)

ω = ±f (4.40b)

ω = ±f
√

1 +
4L2

ρ

∆x2
(sin2 k∆x

2
+ sin2 l∆x

2
) (4.40c)

The new pair of modes (ω = ±f)is a consequence of manipulating the momentum equations into the form (4.35b).
A free mode of arbitrary amplitude satisfies both sides of the equation, unless X and Y have some asymmetric
properties. However, it should be noted that the dispersion relation for the inertia-gravity waves now is as close to
the analytical relation as is possible with second order finite differencing. This has only been achieved before by
Eliasen [MA76] using the D-D double grid scheme.

It would seem that the above integration scheme has advantages over the standard procedure on a C grid.

• The 2∆x wave can now feel the rotating frame and so cannot be excited as a stationary wave.

• The group speed is now of the right sign for all wave numbers (a property the B grid lacks).

• Elimination of the interpolated Coriolis terms permits a very simple implementation of a fully implicit coriolis
term at no computational expense (on the C grid, this would normally require iteration of some sort - see Xu
1994 [Xu94]).

The potential advantages offered by the integration procedure certainly warrant investigation but as it stands,
the existence of the extra mode pair potentially prohibits application of the scheme. A method that to all intents
and purposes eliminates the mode is described next.

4.6.1 Implicit Coriolis: damping of the Extra Inertial Mode

The simplest treatment for the extra mode exploits the ability to now treat the Coriolis terms implicitly. Instead of
equations 4.36, the finite difference scheme is:

(1 + ∆t2f2)un+1 − 2un + un−1

∆t2
=
Xn+ 1

2 −Xn− 1
2

∆t
+ fY n+ 1

2

xy

(1 + ∆t2f2)vn+1 − 2vn + vn−1

∆t2
=
Y n+ 1

2 − Y n−
1
2

∆t
− fXn+ 1

2

xy

(4.41)

The time dependent part of the inertia-gravity waves is now damped according to e−ıω∆t = e−ıωRe
∆teωIm

∆t

where ω = ω
Re

+ ıω
Im

are given by:

(1 + ∆t2f2)e−ıω∆t = 1 ± ıf∆t or
tanω

Re
∆t = ±f∆t

ω
Im

∆t = − ln |1 + ∆t2f2| (4.42)

The inertial oscillations have a modified frequency but are damped for all ∆t > 0 which makes the scheme
unconditionally stable (thus allowing large time-steps). The natural frequencies of the shallow water system are now
given by:

ω = 0 (4.43a)

2

∆t
sin

ω∆t

2
= ±f + ıλ (4.43b)

2

∆t
sin

ω∆t

2
= ±f

√

1 +
4L2

ρ

∆x2
(sin2 k∆x

2
+ sin2 l∆x

2
) + ıλ (4.43c)

where λ is the amplitude decay factor per time step.
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4.6.2 Comparison to the standard models

Figures 4.10 and 4.11 show the circulation, pressure and divergence fields at t = 100, for a C grid model that evaluates
the momentum equations in the manner described above. The external parameters were identical to the analogous
B and pure C grid integrations. A consequence of implementing the method just described is that the damping rates
due to the implicit evaluation of Coriolis and the Adams-Bashforth extrapolation of the previous two models are
different. This should not affect the final steady state but may change the convergence rate and phase of transients.

We conclude from these integrations that this ‘oscillator’ scheme does effectively correct the source of grid-scale
noise resulting from inertia-gravity waves on the C grid at low resolution. At high resolution, the solution is unaffected
(ie. is as accurate as the pure C grid) though the phase of the solution will obviously only match that of an implicit
C grid model.

The scheme is, however, flawed for a physical reason which has not yet been discussed. Figure 4.12 shows the
double gyre circulation on a β-plane obtained using the above scheme. A two-grid length wave, parallel to the
meridional boundaries is clearly evident and seems to emanate from the western boundary.

A brief explanation of its origins is as follows. In the long term, the flow should become geostrophically balanced.
Normally, on a ‘C’ grid, geostrophic balance takes the form:

fux
y

= −δyh fvy
x

= δxh (4.44)

Now, the steady state form of equation 4.36 defines the geostrophic flow as:

fu = −δyh
xy

fv = δxh
xy

(4.45)

The averaging operator now appears in the slowly evolving geostrophic component of the flow. Grid-scale noise in the
pressure field is filtered by the interpolation and not felt by the geostrophic circulation. Indeed, the solution (figure
4.12) shows a perfectly smooth Sverdrupian circulation, despite the high noise level in the pressure and divergence
fields.

In summary, just as the Coriolis term on a C grid is invisible to grid scale noise in the flow field, the pressure
gradient term in the geostrophic balance is invisible to grid scale noise in the pressure field. This implies that the
shortest Rossby waves are poorly represented.
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Figure 4.10: Low resolution (4S/∆x2 = 1/5) integrations of the explicit oscillator scheme on the C grid. The tick
marks indicate the grid-spacing. Shown are the circulation and pressure fields (left) and the horizontal divergence
(right) at time t = 100. Contour intervals are 5 and 1 for the pressure and divergence respectively. All aspects of
the fields are similar to those of the B grid integrations. The grid-scale noise normally associated with the C grid at
this resolution is no longer apparent.
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Figure 4.11: High resolution (4S/∆x2 = 5) integrations of the explicit oscillator scheme on the C grid. The tick
marks indicate the grid-spacing. Shown are the circulation and pressure fields (left) and the horizontal divergence
(right) at time t = 100. Contour intervals are 5 and 1 for the pressure and divergence respectively. The divergence
field is as smooth as, though out of phase with, the divergence pattern of the pure C grid integration.
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Figure 4.12: Explicit Oscillator scheme at high resolution (4S/∆x2 = 1/2) integrations on a β-plane. Shown are the
circulation and pressure fields (left) and the horizontal divergence (right) at time t = 100. Contour intervals are 2.5
and 1 for the pressure and divergence respectively. Despite the good performance of inertia-gravity waves, a two-grid
length wave, parallel to the meridional boundaries, emanating from the western boundary is prevalent.
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4.7 Summary

The GCM suffered from grid-scale noise when the Rossby radius of deformation was not resolved. An analysis of the
behavior of inertia-gravity waves in numerical models led to an understanding of the origin of the noise.

An alternative “oscillator” formulation of the momentum equations was proposed for implementation on the
C grid. When compared with the solutions from the B and normal C grids, the scheme appears to successfully
represent the short inertia-gravity waves on the f plane. However, in the presence of a planetary vorticity gradient,
the approach fails to represent Rossby waves adequately.
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Chapter 5

Numerical Representation of Rossby
Waves and the Cd scheme

Using the methods that were employed to understand inertia-gravity waves on numerical grids, the behaviour of
Rossby waves can also be analysed. Rossby waves are a consequence of the Taylor-Proudman theorem and the
geometry of the earth1. Motions of sufficiently large scale can “feel” the variation in the Coriolis parameter. Because
of the longer spatial scales, the time scales involved are typically longer than the rotation period of the earth.

The following section develops shallow water theory further to study the Rossby wave mode of motion. The
equivalent discrete analysis is then applied to grids studied in the previous chapter. Inspired by the “explicit
oscillator” scheme developed for inertia-gravity waves, a new approach (the Cd scheme) is described that also treats
Rossby waves with fidelity. The new scheme is analysed, tested and compared to the standard models. Finally, it is
implemented in the GCM and its performance evaluated.

5.1 Rossby Waves

In chapter 4, the shallow water equations were derived assuming that the horizontal scale of motion was small enough
that variations in the Coriolis parameter could be assumed negligible, β � 1. On the basin scale, this assumption
must be relaxed. Further, the time-scale associated with these large spatial scales is much longer than the rotation
period, 1

foT
� 1.

Allowing the variation in Coriolis parameter introduces Rossby waves into the model. The flow to the first two
orders in some arbitrary small parameter, ε, can be written:

u = uo + εu
1
+O(ε2) (5.1)

Substituting into the shallow water equations 4.12 and keeping only the order one terms yields:

ˆ̂
k ∧ uo + ∇h = 0 (5.2a)

S∇.uo = 0 (5.2b)

which are self consistent equations describing a quasi-geostrophic flow. The difference between a quasi-geostrophic
model and a geostrophic model is that a reference Coriolis parameter is used in quasi-geostrophy, rather than the
local value, in defining the geostrophic flow.

Defining the zeroth order flow by 5.2 and then substituting back into the shallow water equations and retaining
all terms of order 1

foT
, Ro, β and ε yields:

1

foT

∂

∂t
uo + εk̂ ∧ u

1
+ βyk̂ ∧ uo = 0 (5.3a)

1

foT

∂

∂t
h+ εS∇.U

1
= 0 (5.3b)

which describe the slow evolution of the quasi-geostrophic flow in the presence of β. The ageostrophic component
of velocity can be eliminated by taking the curl of the momentum equation to form the vorticity equation and

1Strictly speaking, Rossby waves propagate in a Potential Vorticity gradient which does not necessarily require β.
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substituting from the continuity equation:

1

foT

∂

∂t
ζo + βvo −

1

foT

1

S

∂

∂t
h = 0 (5.4)

The vorticity of the quasi-geostrophic flow can be written ζo = ∇
2h and so equation 5.4 can be written in terms

of one variable, yielding the potential vorticity equation:

1

foT

∂

∂t
∇

2h+ β
∂

∂x
h− 1

foT

1

S

∂

∂t
h = 0 (5.5)

The picture of this mode then, is one of a flow field in quasi-geostrophic equilibrium with the pressure gradients
(the zeroth order balance), and a slowly evolving pressure field (the first order balance). The dispersion relation for
linear plane Rossby waves is obtained directly from 5.5:

ω =
−βSk

1 + S(k2 + l2)
(5.6)

Notice that the denominator takes the form of the square of the inertia-gravity wave frequency. The non-
dimensional2 frequency is plotted as the first surface in figures 5.1 and 5.2. The β effect is the cause of the anisotropic
propagation.

The phase velocity:
(

ω/k
ω/l

)

=
βS

1 + S(k2 + l2)

(

−1
−k/l

)

(5.7)

is always pointed towards the west with a maximum westward velocity of εβS (in dimensional units cφmax = βL2
D

).
The phase velocity behaves as 1/f 2 being larger near the equator than at the poles.

The group velocity:
(

∂ω
∂k
∂ω
∂l

)

=
βS

(1 + S(k2 + l2))2

(

k2 − l2 − 1
S

2kl
S

)

(5.8)

can be directed either eastward or westward depending on the sign of k2−l2−1/S. For short zonal waves k2 > l2+1/S,
the group velocity has an eastward component whilst for long zonal waves k2 < l2 + 1, the zonal group velocity is
westward. Thus, whilst all wave fronts propagate westward, only long waves transmit energy westward. Short waves
transmit energy eastward. This anisotropy is one interpretation of the phenomena of western boundary intensification
[Ped79].

The turning point in zonal group speed ( ∂ω∂k = 0) occurs at Sk2 = 1 + Sl2. The maximum frequency thus occurs

at l = 0, k = 1/
√
S with a frequency β

√
S/2. In dimensional units this is a maximum frequency of βL

D
/2 and is

typically of the order of a few cycles per month.

5.2 Finite-differenced Rossby waves

The quasi-geostrophic scaling applied in the previous section to obtain the Rossby wave mode of motion can be applied
to the finite difference models. The analysis (see Fox-Rabinovitz [FR91] and Wajsowicz [Waj86]) is summarised as
follows.

For the A grid:

Geostrophic: vg = δxh
x

ug = −δyh
y

(5.9a)

PV equation:
∂

∂t
(δxxh

xx
+ δyyh

yy − 1

S
h) + β(δxh

xyy − ∆y2

4
δxyyh

x
) = 0 (5.9b)

Dispersion: ω =
εβSskck(c

2
l + ∆y2s2l /4)

1 + S(s2kc
2
k + s2l c

2
l )

(5.9c)

For the B grid:

Geostrophic: vg = δxh
y

ug = −δyh
x

(5.10a)

PV equation:
∂

∂t
(δxxh

yy
+ δyyh

xx − 1

S
h) + βδxh

x
= 0 (5.10b)

Dispersion: ω =
εβSskck

1 + S(s2kc
2
l + s2l c

2
k)

(5.10c)

2Time was non-dimensionalised with respect to f in chapter 4.
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For the C grid:

Geostrophic: vg
xy = δxh ug

xy = −δyh (5.11a)

PV equation:
∂

∂t
(δxxh+ δyyh− 1

S
h
xxyy

) + βδxh
xyy

= 0 (5.11b)

Dispersion: ω =
εβSskckc

2
l

c2kc
2
l + S(s2k + s2l )

(5.11c)

For the D grid:

Geostrophic: vg = δxh ug = −δyh (5.12a)

PV equation:
∂

∂t
(δxxh+ δyyh− 1

S
h) + βδxh

xyy
= 0 (5.12b)

Dispersion: ω =
εβSskckc

2
l

1 + S(s2k + s2l )
(5.12c)

For the explicit oscillator scheme on a C grid:

Geostrophic: vg = δxh
xy

ug = −δyh
xy

(5.13a)

PV equation:
∂

∂t
(δxxh+ δyyh− 1

S
h) + βδxh

xyy
= 0 (5.13b)

Dispersion: ω =
εβSskckc

2
l

1 + S(s2k + s2l )
(5.13c)

It is interesting to note that the explicit oscillator scheme, despite a very different representation of the physics,
exhibits the same Rossby wave dispersion as the D grid.

One observation about the dispersion relations, as written, is that the denominator of the expressions for the
frequency take the form of the dispersion relation of the inertia-gravity waves for the respective grid. Therefore, the
denominator is likely to have some artificial zero points creating singularities in the frequency. In fact, this does not
become a problem since wherever a singularity might occur, the numerator has an artificial zero that vanishes more
rapidly.

Figures 5.1 and 5.2 show the discrete dispersion relations plotted for high and low wave resolutions respectively.
Included in the the diagram is the dispersion relation pertaining to the Eliassen time-staggered grid that will be
described later in this chapter.

Both the high and low resolution dispersion relation for the A grid have artificial turning points. Simply put,
the shorter A grid Rossby waves bear no resemblance in dispersion properties to the continuum. Of the other
high resolution dispersion relations (figure 5.1) only the B grid exhibits a qualitative difference to the continuum.
This takes the form of artificially fast zonal group speed for long meridional waves. The B, C and D grids have
zero frequencies for zonal grid length waves but since the continuum has very low frequencies here, the qualitative
behaviour is unchanged.

As was the case for the inertia-gravity waves, the dispersion relations for the different grids dramatically change
their behaviour as one moves from high to low resolution. Figure 5.2 shows the frequency for short zonal waves.
None of the grids reproduce the behaviour of the continuum plot properly.

All the models except the B grid have artificially high meridional group speeds. This means that the models are
able to meridionally redistribute energy in an artificial manner.

One point in favour of the C grid at low resolution is that for short meridional waves, the zonal group speed is
much closer to the continuum than the B grid (i.e. the artificial turning point is at a shorter wave number on the
C grid than on the B grid). Indeed, the B grid has the wrong sign for several of the shortest zonal wave numbers
whilst the C grid is in error for only the shortest. This has implications for western boundary intensification in the
models. If waves that are longer than the grid-scale can transmit energy eastward then the western boundary layer
may be artificially wider as a result.

It is interesting to note that for the D grid, despite a very poor representation of inertia-gravity waves, the Rossby
waves seem to be well represented. This is due to the natural geostrophic balance that has no spatial averaging in it.
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Figure 5.1: Rossby wave dispersion relations for the continuum and high resolution finite difference models
(A,B,C,D,DD) with a wave resolution of 2

√
S/∆x = 3.

5.3 Time staggered grids

It is should be clear from the results of using the explicit oscillator scheme that both classes of discrete wave motion
need to be taken into account; mis-representation of the inertia-gravity waves generates erroneous divergence patterns
on a short time scale whilst mis-representation of Rossby waves generates spurious standing waves on a much longer
time scale.

Of the gridding schemes discussed so far, none of them satisfactorily meets both requirements at all wave reso-
lutions. To devise a scheme that can achieve this goal, one might begin by considering one that performs well at
just one scale. Here, the C grid performs particularly well at high wave resolution and the B grid is perhaps to be
favoured at low resolution (this decision is based upon the accurate meridional propagation of energy rather than the
scale of the western boundary current). However, since the non-hydrostatic physics in the GCM is most naturally
described on a C grid, the following discussion will concentrate upon the C grid structure.

There are in fact many gridding schemes that can be introduced when more than one time step is used in the
time-stepping algorithm. This involves staggering variables not only in space but also in time. This was already
an implicit feature of the single time step schemes of the previous B and C grid models. The pressure variable was
staggered in time with the velocity variables allowing second order finite differencing in both time and space for the
gravity waves.

Five gridding schemes derived from the five Arakawa grids were described by Eliassen [MA76, FR91]. The method
shifts the grid diagonally at alternating time-steps. Figure 5.3 shows the three dimensional distribution of variables
in space and time for the five grids. The primed notation indicates that the grid is shifted diagonally in space from
the unprimed position. The models are described as follows:
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Figure 5.2: Rossby wave dispersion relations for the continuum and low resolution finite difference models
(A,B,C,D,DD) with a wave resolution of 2

√
S/∆x = 1/3.

Scheme AA’:

δtu
t − vxy + δxh

y
= 0 (5.14a)

δtv
t + uxy + δyh

x
= 0 (5.14b)

δth
t
+ S(δxu

y + δyv
x) = 0 (5.14c)

IG dispersion: ω2 = c2kc
2
l + S(s2kc

2
l + s2l c

2
k) (5.14d)

Scheme BB’:

δtu
t − vxy + δxh

x
= 0 (5.15a)

δtv
t + uxy + δyh

y
= 0 (5.15b)

δth
t
+ S(δxu

x + δyv
y) = 0 (5.15c)

IG dispersion: ω2 = c2kc
2
l + S(s2kc

2
k + s2l c

2
l ) (5.15d)

Scheme CC’:

δtu
t − v + δxh

xy
= 0 (5.16a)

δtv
t + u+ δyh

xy
= 0 (5.16b)
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Figure 5.3: The Eliassen time horizontally staggered grids, AA’,BB’,CC’,DD’,EE’

δth
t
+ S(δxu

xy + δyv
xy) = 0 (5.16c)

IG dispersion: ω2 = 1 + Sc2kc
2
l (s

2
k + s2l ) (5.16d)

Scheme DD’:

δtu
t − v + δxh = 0 (5.17a)

δtv
t + u+ δyh = 0 (5.17b)

δth
t
+ S(δxu+ δyv) = 0 (5.17c)

IG dispersion: ω2 = 1 + S(s2k + s2l ) (5.17d)

Again, the EE’ grid is a rotated and scaled (by
√

2) version of the BB’ grid and so omitted. All the above models
use explicit evaluation of both Coriolis and pressure terms. The spatial interpolation of these terms can actually be
reduced or even avoided by semi-implicit (centered over two time levels) evaluation. For example the Coriolis terms
of the AA’ grid could replace the −xy with a −2t with no loss of efficiency or accuracy. Here, only the fully explicit
models will be considered to allow an easy transfer of algorithms to more sophisticated models.

Before continuing with a closer look at these time staggered grids, there are a number of cautionary points:

• The storage requirements of the computer system can be as much as doubled because there is a duplication of
variables.

• There is a duplication of physical boundary conditions.

• There is a tendency for the two alternating grids to decouple (in the manner of a leap-frog computational
mode); this can be alleviated by adding filtering terms.

The decoupling can be thought of as a consequence of the splitting of each of the natural modes of the system.
So there might be two geostrophic modes and two pairs of inertia-gravity modes. The pair may look identical in
dispersion qualities but the reciprocal pairs are linearly independent.

The grid that draws our attention is the DD’ grid. No interpolation operators appear in the finite difference
equations and thus the inertia-gravity wave dispersion relation is the same as that of the explicit oscillator scheme
of the previous chapter.
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Figure 5.4: The single step C grid compared to the time staggered grids DD’ CD

The DD’ grid, despite its name, turns out to be based on the space-time structure of the normal C grid. Figure
5.4 shows the two grids side by side. It is clear that the DD’ grid is just two C grid models superposed with the
Coriolis terms evaluated using the more natural velocities. Thus the accurate gravity wave representation of the C
grid is maintained and the pure inertial oscillation behaviour is corrected. The Rossby wave dispersion relation of
the DD’ grid is also an improvement upon the C grid:

ω =
εβSskcl

1 + S(s2k + s2l )
(5.18)

and is plotted in the earlier figures 5.1 and 5.2.
The artificial zero frequency of zonal grid-scale waves, common to all the previous models at low resolution, is no

longer apparent. This means that the scale of the western boundary will be of the right size or as small as the grid
can resolve. Again at low resolution, the DD’ grid still renders an artificially large meridional component of group
velocity, not present on the B grid. In summary, the high resolution properties of the DD’ grid are very similar to
the C grid, and, overall, appears to be an improvement upon the C grid.

5.4 The Cd grid scheme: the CD hybrid

A further degree of freedom in devising a scheme would be to change the spatial grid for alternate time-steps rather
than simply shift it the grid diagonally. For example, a B grid could be staggered in time with a C grid, with the
pressure points either spatially aligned or diagonally shifted. The full range of permutations is beyond description.
However, one such combination of grids, inspired by the explicit oscillator scheme, is the CD grid shown in figure
5.4.

Here, the pressure variable is at the same point in space for all time levels. The horizontal velocities switch
positions in time. The finite difference equations now have to be written for each grid, producing six prognostic
equations:

δtu
t
C
− v

D
+ δxhD

= 0 (5.19a)

δtv
t
C

+ u
D

+ δyhD
= 0 (5.19b)

δthD

t
+ S∇.u

C
= 0 (5.19c)

δtu
t
D
− v

C
+ δxhC

xy
= 0 (5.19d)

δtv
t
D

+ u
C

+ δyhC

xy
= 0 (5.19e)

δthC

t
+ S∇.u

D

xy = 0 (5.19f)

As was alluded to earlier in the discussion about decoupling, there are six natural modes in these staggered
systems, a result of six prognostic equations. The four inertia-gravity modes in this CD grid are:

ω2 = 1 + S(s2k + s2l ) (5.20a)

ω2 = 1 + Sc2kc
2
l (s

2
k + s2l ) (5.20b)

One pair of inertia-gravity modes is clearly preferable to the other. The first pair takes the form of the explicit
oscillator and DD’ grids. The second pair contains cosines (c2kc

2
l ) resulting from spatial averaging of the gravity term.
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The issue of duplicated physics should be considered at this point. Not only is the number of modes doubled,
but the duplicates (5.20b) are poor because they involve spatial averaging (signified by the cosines). A step towards
reducing the number of natural modes, and towards decreasing the duplication of variables, is to eliminate the
pressure variable at the C grid time level, as is shown in figure 5.5.

The system is reduced to five prognostic variables and equations:

δtu
t
C
− v

D
+ δxh = 0 (5.21a)

δtv
t
C

+ u
D

+ δyh = 0 (5.21b)

δth
t
+ S∇.u

C
= 0 (5.21c)

δtu
t
D
− v

C
+ δxh

xyt
= 0 (5.21d)

δtv
t
D

+ u
C

+ δyh
xyt

= 0 (5.21e)

(5.21f)

with the five natural modes being:

ω = 0 (5.22a)

ω2 = 1 + S(s2k + s2l ) (5.22b)

ω2 = 1 (5.22c)

The remarkable aspect about these natural modes is that despite spatial interpolation operators in the prognostic
equations, no such operators appear in the dispersion relations.

However, there remain two extraneous modes now taking the form of inertial oscillations. To filter out this pair of
modes, a further reduction in prognostic variables would be necessary. Since this would recover one of the previous
single time level models, the next best treatment is to damp the modes.

There are two ways to achieve this. The first is to over-extrapolate the Coriolis terms on the D grid to dampen
the inertial oscillations.

un+ 1
2

D
= un−

1
2

D
+ ∆t

(

−k̂ ∧ u
n+ε

AB
C − ∇h

xyt
)

(5.23)

where the n+ ε
AB

extrapolation takes the form un+ε
AB = (1 + ε

AB
)Un − ε

AB
un−1.

It should be emphasized that this Adams-Bashforth extrapolation is not necessary for the Cd scheme to be stable.
It is introduced solely for the purpose of the damping the inertial oscillations which are easily excited.

The second damping method is to tie or couple the D grid variables to the C grid variables over some finite period
of time longer than one time step. Here, a coupling term is introduced into the D grid momentum equations of the
form:

∂

∂t
u

D
+ . . . = −Ĉ(u

D

t − u
C

xy) (5.24)

where Ĉ is some operator yet to be determined.
Without the coupling, the scheme has two artificial inertial modes and a geostrophic balance much like the explicit

oscillator scheme (uC = −ˆ̂
k ∧ ∇h). The Rossby waves disperse according to:

ω =
−εβSskckc2k

1 + S(s2k + s2l )
(5.25)
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which is the same as for the D grid and explicit oscillator scheme. In fact, on closer examination, the scheme is just
the integral form of the second order equations employed in devising the explicit oscillator scheme.

If one fully relaxes the D grid velocities to the C grid in one time step, then they become equal, by definition,
to the spatial average of the C grid velocities for all time. In this limit, the scheme becomes the normal single time
level C grid.

For the case of coupling on a time scale longer than the inertial period but shorter than the period of the fastest
Rossby wave (εβ

√
S/2 < λ < 1), the inertia-gravity waves will be relatively unaffected since the motion is on a much

shorter time-scale than the relaxation. So the good short time scale performance of the explicit oscillator scheme is
reproduced here. On time-scales longer than the relaxation, the D grid velocities are fully relaxed to the interpolated
C grid values so the geostrophic balance takes the form of the C grid: uxy = −k̂ ∧ ∇h.

This would yield the optimum attributes of the two inherent grids. It then remains to determine the form that
the coupling operator should take.

5.5 Determining the optimal coupling

Damped inertia-gravity waves are described by the continuous equations:

∂

∂t
u + k̂ ∧ u + S∇h = −F̂ (u) (5.26a)

∂

∂t
h+ ∇ · u = −Ĥ(h) (5.26b)

where D̂ and Ĥ are dissipative operators, yet to be specified. The corresponding divergence equation is:

[

(F̂ +
∂

∂t
)2 + 1 − S(Ĥ +

∂

∂t
)∇2

]

∇ · u = 0 (5.27)

The finite difference equations using the Cd scheme, including the coupling term Ĉ(u
D
− uxy

C
, are:

∂

∂t
u

C
+ k̂ ∧ u

D
+ S∇h = −F̂ (u

C
) (5.28a)

∂

∂t
u

D
+ k̂ ∧ u

C
+ S∇h

xy
= −F̂ (uxy

C
) − Ĉ(u

D
− uxy

C
) (5.28b)

∂

∂t
h+ ∇ · u

C
= −Ĥ(h) (5.28c)

where Ĉ is still arbitrary.
The divergence (∇ · u

C
) equation, that governs the dispersion of the discrete inertia-gravity waves, is:

[

(F̂ +
∂

∂t
)(Ĉ +

∂

∂t
) + 1 − S(Ĥ +

∂

∂t
)∇2

]

∇ · u
C

+ (F̂ − Ĉ)ζ
xy

C
= 0 (5.29)

which has a new term involving vorticity on the C grid. This term vanishes only if:

Ĉ = F̂ (5.30)

which indicates that the coupling should take the form of the dissipation in the momentum equations. The divergence
wave equation then looks very much like the continuous system with no interpolation operators.

The natural modes of the system on an f-plane are given by:

(

(F̂ +
∂

∂t
)2 + 1

) {(

(F̂ +
∂

∂t
)2 + 1

)

(Ĥ +
∂

∂t
) − (F̂ +

∂

∂t
)S∇

2

}

h = 0 (5.31)

The first factor gives rise to the inertial oscillations, now damped both by the explicit dissipation and that
implied in the Adams-Bashforth time-stepping. The second factor corresponds to the damped inertia-gravity waves
corresponding to 5.27. There are no spatial interpolation operators here, so the inertia-gravity waves should not have
any artificial signs in phase and group speed.
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Experiment I Experiment II
Burger number S 6.25× 10−4 6.25× 10−4

Planetary β 0.3 0.3
Bottom friction ε 3 × 10−2 0

Mixing ν 0 3 × 10−2

Baroclinic damping εh 1 × 10−3 1 × 10−3

Resolution ∆x 0.1 0.1
Time step ∆t 0.2 0.2

Adams-bashforth εAB 0.1 0.1
Stommel layer ε

β 0.1 0.1

Wave resolution 2S
∆x

1
2

1
2

Table 5.1: Parameters for the double gyre integrations of the B grid, C grid and Cd models.

The behaviour of Rossby waves in the coupled Cd scheme can be obtained by following the procedure outlined
at the beginning of this chapter. The zeroth order balance gives:

k̂ ∧ u(0)
D

= −S∇h (5.32a)

k̂ ∧ u(0)
C

= −S∇h
xy

(5.32b)

D(0)
D

= D(0)
C

= 0 (5.32c)

At the next order, the vorticity equation is:

∂

∂t
ζ(0)

D
+D(1)

C
+ βv(0)

y

C
= −F̂ (ζ

D
)(0) (5.33a)

∂

∂t
h+D(1)

C
= −Ĥ(h) (5.33b)

For the special case of Ĥ = F̂ , the resulting dispersion relation is:

(ıF̂ + ω) =
−εβSskckc2l

1 + S(s2k + s2l )
(5.34)

which is that of the D grid. The D grid Rossby wave dispersion properties are like the C grid at high resolution, and
a smoother version of the same at low resolution.

5.6 Shallow water model results

The B grid, C grid and Cd shallow water models were each integrated on a β-plane in a double gyre configuration.
The parameters used are listed in table 5.1. The wave resolution was 2S

∆x = 1
2 (low resolution) so the B grid solution

can be considered robust.
There are two aspects of the Cd method that need to be validated. The transient response or behaviour of waves

has been analysed and can be verified by comparing the models in the process of adjustment or spin-up. The steady
state solution also depends on the particular finite differencing and so comparison of the steady states should also
be made.

Figure 5.6 shows the solutions at t = 40, which is early in the spin-up of the integrations in experiment I. The
C grid divergence and vorticity fields display the characteristic noisy response, and even the pressure field has some
features that are not in the B grid solution. All the Cd fields are very similar to the B grid solutions in both structure
and magnitude.

Figure 5.7 shows the steady state solutions for each model in experiment I. The solutions are all broadly similar.
The divergence and pressure fields all have the same structure and magnitude. The boundary structure of vorticity
is the only main difference. The Cd grid and B grid solutions are more similar with each other than than with the
C grid.

Experiment II was conducted to test that the success of the scheme was independent of the form of the dissipation
in the momentum equations. Lateral mixing replaced the Newtonian damping term. Figures 5.8 and 5.9 show a
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snapshot and the steady state as before. The noise level of the C grid is less apparent becaus of the scale selective
dissipation. Nevertheless, it is still discernible that the Cd grid is in much better agreement with the B grid than is
the C grid.
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Figure 5.6: Surface elevation h with velocity vectors, vorticity ζ and divergence D for the three models B, C and Cd

at t = 40 in experiment I. The solutions are in the early stage of adjustment. Note the noise in the divergence field
of the C grid.
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Figure 5.7: Surface elevation h with velocity vectors, vorticity ζ and divergence D for the three models B, C and Cd

at t = 5000 in experiment I. The solutions are the steady state. The C grid vorticity field has a different boundary
structure to the B and Cd grid solutions.
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Figure 5.8: Surface elevation h with velocity vectors, vorticity ζ and divergence D for the three models B, C and
Cd at t = 40 in experiment II. The solutions are in the early stage of adjustment. Note the substantial difference in
pattern and magnitude of the vorticity field on the C grid.
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Figure 5.9: Surface elevation h with velocity vectors, vorticity ζ and divergence D for the three models B, C and Cd

at t = 5000 in experiment II. The solutions have reached steady state.
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5.7 Implementation of the Cd scheme in the GCM

The complete procedure applied to a baroclinic model will now be described. All terms excluding the pressure
gradient and Coriolis terms are collected into a vector G.

Define u
C

to fall at the integer time levels (n−1, n, n+1) and define the pressure variable to fall at the half-integer
levels (n−1

2 , n+1
2 ) as before. Now introduce new horizontal velocities u

D
to fall at the same half integer time levels

as the pressure but are positioned in the D grid configuration.
At the beginning of the time-step to step forward for the n+1 C grid velocities, all variables at time n−1 1

2 , n−1,
n−1

2 and n are known.
u

D
at n+1

2 is estimated by writing a centered single level time-stepping scheme in terms of u
C

and G at time level
n. Note that the pressure gradient terms have to be extrapolated forward in time in an analogous manner to the
quasi-second order method AB2 (to avoid an implicit evaluation of the pressure at this stage). The zonal component
of the D grid momentum equations is:

u
(n+ 1

2
)

D

∆t
=
u

(n− 1
2
)

D

∆t
+G

(n)
u

xy

+
1

∆x
δx(

3

2
+ ε

AB
)P (n− 1

2
) − (

1

2
+ ε

AB
)P (n−1 1

2
)

xy

+f
x
((1 + ε

AB
)v(n)

C
− ε

AB
v(n−1)

C
) (5.35)

+F̂

(

u
D
− 1

2
(u

(n)
C + u

(n−1)
C )

xy
)

The operator F̂ is the same as the dissipation operator used within the vector G.
The C grid velocities are then found as in the conventional scheme except that now the Coriolis term is written

as the vector C:
u(n+1)

C

∆t
=
u(n)

C

∆t
+ (

3

2
+ ε

AB
)G(n)

u − (
1

2
+ ε

AB
)G(n−1)

u +
1

∆x
δxP

(n+ 1
2
) + Cu (5.36)

where Cu is defined:

Cu =











f( 3
2 + ε

AB
)v

(n)
C − ( 1

2 + ε
AB

)v
(n−1)
C

yx

if C grid is used

f
x
v
n+ 1

2
D if Cd grid is used

(5.37)

It should be apparent from this formulation that the D grid velocities only enter the model through the Coriolis
term and are not used anywhere else. Obviously, if the C grid evaluation of Coriolis is used then the D grid velocities
are redundant and need not be stepped forward.

The North Pacific integration in chapter 3 was used as the context in which to discuss problems inherent in the
‘C’ grid at coarse resolution. Figures 5.10 and 5.11 show the vertical velocity in the GCM for the same experiment
but with the Cd scheme implemented. They correspond to figures 3.9 and 3.10 that were dominated by grid length
waves in the unmodified C grid version of the model, just one month after the Cd scheme was switched off.

The scheme no longer allows grid scale noise to persist in the model. The major features of the Pacific circulation,
such as the Kurishio and strong Equatorial upwelling, are unaffected by the scheme.

5.8 Discussion

Form of the Coupling During the development of the Cd scheme, it was not immediately realised that there was an
optimum form for the coupling operator. Instead, the simplest possible form of Newtonian relaxation (−λ(u

D
−u

C

xy)
was chosen. The relaxation time-scale was at first chosen using a somewhat subjective selection criteria. A connection
between the grid-scale dissipation rates and the optimum choice of λ was empirically established. The implications
of using such a coupling were that:

• all modes, both horizontal and vertical, would ‘feel’ the same damping rate. This could produce smoother than
expected flows, with slower currents.

• for a poorly chosen λ, some modes could be excessively dissipated or tend to become de-coupled. The former
manifests itself by smoothing the flow whilst the latter appears as a checker-board mode in the pressure field.

• there was an extra parameter for the model that had to be determined prior to integration.

All of these factors rendered this simple coupling method undesirable. The proposed method, of coupling using the
dissipation operator, suffers from none of these problems.
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Figure 5.10: Vertical velocity at the base of the top layer in the model after one month. Contour interval is 0.01 mm
s−1.
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Figure 5.11: Vertical velocity at z=-3200m in the model after one month. Contour interval is 0.05 mm s−1.

Barotropic mode If a Newtonian relaxation term were used to do the coupling, then all modes (including the
barotropic mode) would feel the damping effect. The proposed optimum coupling method (using the same form
and strength as the dissipation in the momentum equations) is scale selective and has no additional damping effect
on the circulation. A potential problem arises if the dissipation is predominantly in the vertical and the horizontal
mixing is weak. The barotropic mode is only dissipated by horizontal mixing however and the slower rate means
that the coupling is weaker. At 1 degree resolution, it is therefore quite possible to have a coupling rate of the order
of months, using typical horizontal mixing parameters. The barotropic mode is bound to de-couple over this long
period. The linear relaxation method would remove this de-coupling.

This eventuality has not been explored here but if it should be a problem, it is quite legitimate to separate
the flow into barotropic and baroclinic components for the purpose of evaluating the Coriolis term. This could be
done be making the separation just before evaluating Coriolis, and then re-combining the two components after
the evaluation. The barotropic Coriolis term could be evaluated as on a conventional C grid since the barotropic
deformation radius (

√

gH/f2) is almost always resolved in ocean models.
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Damping time-scales The avoid de-coupling of the two grids, the explicit dissipation in the momentum equations
must be strong enough. For integrations on a β-plane (or sphere), the minimum dissipation required for stability is
determined by the resolution. The Munk layer width goes like δmunk ∼ (Ah

β )1/3 so for a given resolution, the lateral

mixing must be larger than Ah > β∆x3. The dissipation rate on the grid-scale is then T∆x ∼ ∆x2

Ah
which therefore

goes like T∆x ∼ (β∆x)−1. This gives a time-scale around six days at 1◦ resolution which is longer than the inertial
period but shorter than any likely rate of de-coupling. At higher resolution, this imposed time-scale gets longer, but
since, at higher resolution, the unmodified C grid is to be preferred and the Cd scheme can be switched off.

3-D Divergence on the D grid The shallow water equations are not exactly analogous to the primitive equations
on which the GCM is based. The C grid velocities are non-divergent at each step. This is not true of the D grid
velocities. If the D grid velocities become erroneously divergent it is conceivable that the stretching of vortex tubes
may be in error. However, in practice, the D grid velocities have been close enough to the C grid that the difference
is insignificant. The vorticity balance was modelled well enough in the experiments described.

Energetics The energetics of the scheme are far from satisfactory. Inspection of the Coriolis term reveals that the
scheme can not conserve energy. The Coriolis acceleration should be perpendicular to the velocity. The velocities
used to evaluate that acceleration are held on the D grid. The kinetic energy equation involves the scalar product
of the D grid velocities with the C grid velocities, and should vanish according to the continuous analogue. The two
velocities on C and D grids might be similar, but it is not guaranteed that they are the same and so the Coriolis
acceleration and C grid velocity are not necessarily perpendicular. i.e. u

D
∧ u

C
6= 0.

Despite this apparent inability to conserve energy, actual integration of the scheme shows that energy leakage is
quite minimal. The only reason for this is that on time-scales longer than f−1, the D grid velocities are very close to
the C grid velocities, as intended. Extended integrations of the shallow water models always reached a steady state
and extended integrations of the GCM have not revealed any energetic problems.

Time-step limitation The method is fully explicit in Coriolis and therefore has a time-step limitation of 1.5 hours.
This limitation is set by the inertial frequency and the only way to avoid this is to move to an implicit formulation.
Coriolis on a C grid with conventional implicit time-stepping involves the substantial modification of the elliptic
operator that appears in the pressure equation. Here, this is most likely also true if the Cd scheme were evaluated in
some implicit manner. It is possible that the D grid velocities could be integrated in a split time-stepping manner,
using a small time-step for the D grid, and a long time step for the C grid. This may have some computational
advantages sine the D grid equations are linear and fully explicit.

5.9 Summary

An analysis of Rossby wave behaviour in numerical models showed that the gridding determines the resulting disper-
sion properties. No one grid has ideal behaviour. The best grid, in terms of inertia-gravity wave and Rossby wave
propagation, is the Eliassen DD’ grid.

A numerical scheme (Cd ), based on the time-staggering method used in the Eliassen DD’ grid, is developed. The
resulting scheme results in well behaved inertia-gravity and Rossby waves on a C grid. The method was designed
so that it should involve only minor changes to an existing C grid model. The computational cost of the scheme is
minimal.

Comparison of the Cd scheme with the B and normal C grids is conducted with numerical shallow water models.
The results show that at low-resolution, where the C grid fails, the Cd scheme behaves as well as the B grid.

The Cd scheme introduces two new variables; a second pair of horizontal velocity components carried on a D grid.
They are integrated forward in parallel with the rest of the model and affect the model only through the evaluation
of the Coriolis term. The D grid velocities are coupled to the C grid by means of a scale selective relaxation. The
justification for the whole procedure is that it selectively retains the beneficial aspects of the C grid whilst improving
the representation of the Coriolis term.

The Cd scheme was implemented in the GCM. Extended integrations for the North Pacific integration show that
the scheme has clearly remedied the inertia-gravity wave problem associated with the spatial averaging of the Coriolis
term on the C grid.
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Chapter 6

Representing Topography: the finite
volume approach

Topography in atmospheric models has often been treated by use of σ co-ordinates (sigma) which follow the terrain.
The method is well suited to smoothly varying, low-lying topography. It can become hydrostatically inconsistent if
the slope is of the order or larger than the aspect ratio of of model grid spacing. Special consideration of the horizontal
discretisation must be made to avoid this. A major failing of the σ co-ordinate system is that the inaccuracies arising
from the projection of gravity onto the horizontal components of the model spontaneously generate motion. That
is, a resting ocean, in the presence of sloping bottom, may begin to move. The motion is driven by truncation errors
in the evaluation of horizontal pressure gradients on sloping co-ordinate surfaces.

Terrain following co-ordinates do ease the representation of boundary conditions but at the same time they tend
to complicate the form of the elliptic problem; cross-terms appear due to the projections onto the transformed
system of the horizontal and vertical. Nevertheless, terrain following co-ordinates have successfully been used in
ocean modelling (see Haidvogel et al. [HWY91] and Mellor [Mel92]), though the application of such models has been
limited to regional studies. In the context of a general purpose circulation model, physical co-ordinates tend to be a
more direct and robust approach.

The earliest attempts to model the world ocean circulation either assumed a flat bottomed ocean (see Takano,
1974 [Tak74]) or approximated the topography by choosing layer depths to coincide with the bottom depth. (see
Bryan, 1969 [Bry69]).

Figure 6.1 illustrates some of the main methods of representing topography. The simplest, though coarsest,
representation is the step-topography (top-left) used in the Bryan code. The number of layers used in the vertical is
a function of horizontal position, and the depth of the ocean is truncated to “fit” the model layers. A simple algorithm
to determine whether a cell is land or water is to measure the fraction of land/water in the real bathymetry and
either empty or fill it in according to whether it is more than or less than 1

2 land. This conserves the volume of ocean
only in an approximate statistical sense.

An obvious improvement (top-right) on standard step-wise representation is to allow the thickness of the bottom
layer to vary (see Semtner and Mintz, 1977 [SM77]). The representation is still step-wise, though the volume of the
water column is better represented and thus the volume of ocean is too. However, such an approach was deemed an
unwanted complication in the model formulation since the variable vertical resolution of the bottom layer required
extra storage and careful consideration of the finite differencing. These objections no longer apply due to recent
advances in computer technology.

Here, a finite volume approach will allow variations in the lateral and vertical extent of cells neighbouring a
solid boundary. In principle, the volume and associated facial areas that define a 3-D grid of boxes, overlaid on
high-resolution topography, can be used. In practice, a minimum volume size must be imposed to maintain stability.
This is done by rounding the volume of the cell to some small number. The stability requires simply that a volume
not be too small that the effective grid-size violate a CFL criterion.

In the following sections, the finite volume approach will be described and applied to the incompressible Navier-
Stokes equations. The resulting model is then tested by modelling two distinct problems of oceanic relevance and
interest; barotropic flow over a tall sea-mount and simulation of the topographic β effect in a homogeneous layer of
fluid.

The results from these experiments suggest that the finite volume method has some advantages over the conven-
tional methods mentioned above. It use, however, may demand a smaller time-step to satisfy a more stringent CFL
criteria.

79



“step” “lopped”

“terrain-following” “shaved cell”

Figure 6.1: Four methods of representing topography in numerical models. The shaded region represents the land
mask as seen by each model. The cross-gridded lines are the model cells defined by the co-ordinate system. Top-left:
step-wise representation of topography where the ocean depth is truncated to fit the model layer depths. Top-right:
A variation on step-wise topography “lops” the bottom layer to better approximate the volume of a column of ocean.
Bottom-left: σ co-ordinates use a terrain following co-ordinate transformation such that the model domain is regular.
Bottom-right: The proposed finite-volume approach can, in principle, take account of the observed volume of each
column in the ocean.

6.1 Formulations in numerical modeling

A numerical model attempts to represent a continuous system by some finite set of variables and algebraic equations.
The state of the system and the governing equations are truncated. The finite difference and finite element techniques
approach the formulation process from different ends of the spectrum.

In finite differencing, the primary objective is to reduce the truncation error of the discrete equations. A brief
overview of finite difference methods was given in section 3.1 and a description of short-hand notation was out-lined
in section 3.2. In the Galerkin approach (of which finite element methods are one), the focus is on the representation
of the state of the system. The governing discrete equations are then deduced from this truncated representation of
the state.

In many cases, the resulting algebraic equations derived using finite difference and finite element techniques have
many similarities and, indeed, can be identical. The interpretation of the discrete model variables (ie. representation
of the state) in the two methods can be very different, however.

The finite volume technique, as described in this chapter, can be considered to lie between these two methods.
It is equally concerned both with the truncation error of the governing equations and with the representation of the
state. As in finite element and finite difference representations, the finite volume approach can yield a very similar
final algorithm if applied to a domain which is uniformly gridded.
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Figure 6.2: A schematic of a shaved cell. The regular (unshaved) cell defined by the grid is depicted by the dotted
lines. The solid surface of the topography intersects the volume changing the shape/size of the volume of fluid and
the six areas through which fluxes are exchanged with neighbouring cells. Despite the apparent complexity in shape
of the shaved cell, there are still only seven attributes of the cell that are needed to evaluate the net accumulation
of fluxes into the volume; the volume and six areas of the open cell/cell interfaces.

6.2 Finite volume method

The concept behind the finite volume technique is to integrate the principle governing equations over finite volumes
into which the model has been divided. The resulting integrated expressions involve either volume averages of the
state variables or the area integrals of flux incident at the surface of the volume (by the Gauss divergence theorem).
It is these expressions of volume/area average quantities that are used to define the representation of the state of the
system.

The ocean is first carved up into consecutive finite volumes of the form of hexahedrons (boxes). The volumes fit
tightly together and have their faces aligned such that the normal vectors are pointed along one of the independent
orthogonal co-ordinate axis. The volumes are quasi-regular in that looking along one co-ordinate, the separation of
faces normal to that co-ordinate is invariant along the remaining two axis. ie. zonal grid-spacing can vary in x only,
meridional grid-spacing can vary in y only and vertical spacing varies in z only. This is the only arrangement of
variable grid-spacing that allows each face of a volume to be aligned with the orthogonal co-ordinate system.

The nodes that are nominally at the centres of the volumes are labeled i, j, k and the volume itself designated
Vi,j,k. Each face defining a hexahedron is shared between two consecutive volumes. The eastern face of volume Vi,j,k
has area Au

i+ 1
2
,j,k

, the northern face has area Av
i,j+ 1

2
,k

and the upper face has area Aw
i,j,k+ 1

2

.

Solid boundaries that intersect an otherwise regular cell modify the volume of fluid and the areas of the open

cell/cell interfaces as depicted in figure 6.2. The surface area of the solid interface never enters the problem. The
alignment of the open faces with the orthogonal coordinate system is not affected by the introduction of topography.
Mean quantities within the volume evolve according to the net accumulation of fluxes through the open faces. The
fluxes in the model will be defined to be the mean value over the open area. If a face is entirely closed off, this is
simply represented as the area of the face vanishing. The boundary condition of no flux through solid boundaries is
implicitly met by budgeting only with fluxes through open areas.

The pivotal equation in the incompressible Navier-Stokes equations, concerning the finite volume approach, is the
continuity equation (incompressibility condition). The continuity equation expresses non-divergence of the flow; zero
net accumulation of volume flux. In other words, integrating the continuity equation over a finite volume expresses
the fact that the volume itself is constant.

In the following sections, the finite volume approach will be applied to the model equations as described in
chapter 2. The method will be implemented by adapting a finite-difference code. One aspect of this finite-difference
code is that the algorithm used to solve the elliptic problem is the pre-conditioned conjugate gradient method. As
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implemented, the method is limited to solving positive definite, symmetric matrix problems. This requirement will
limit the form that the finite volume momentum equations can take because the finite volume approach can otherwise
lead to an asymmetric matrix problem. We therefore apply the finite volume approach to the continuity and tracer
equations but use a less general approach when forming the finite volume momentum equations. The form of the
momentum equations will be found that both leads to a symmetric elliptic problem and conserves energy.

6.2.1 Continuity equation and boundary conditions

The continuity equation is the pivotal equation when applying the finite volume approach to the incompressible
Navier-Stokes equations. Integrating continuity over the volume Vi,j,k yields:

∫ ∫ ∫

Vi,j,k

∇ · u dV =

∫ ∫

u · n̂ dA = 0 (6.1)

No normal flow is imposed at solid interfaces, and at the rigid-lid at the surface. This is naturally applied in the
integral divergence form of the continuity equation as written above. The elliptic equation for pressure, that arises
from substituting the momentum equations in to the incompressibility condition as written, automatically has the
appropriate boundary conditions if use is made of 6.1.

The integrated expression,
∫∫

u · n̂ dA, involves only fields evaluated on the surface of the volume. Divergence
within the interior of the volume is budgeted for implicitly. The area integrals applied to the normal component of
velocity can be written in terms of the area and mean value of the velocity component. For example, the eastern
face contribution to the budget is:

∫ ∫

Au

i+ 1
2

,j,k

u dy dz ≡ Aui+ 1
2
,j,kui+ 1

2
,j,k (6.2)

which is simply the definition of the mean value of u on the eastern face multiplied by its area Au
i+ 1

2
,j,k

.

The integral form of the continuity, for the finite volumes defined above, then takes the form:

Au
i+ 1

2
,j,k

ui+ 1
2
,j,k − Au

i− 1
2
,j,k

ui− 1
2
,j,k

+ Av
i,j+ 1

2
,k
vi,j+ 1

2
,k − Av

i,j+ 1
2
,k
vi,j− 1

2
,k

+ Aw
i,j,k+ 1

2

wi,j,k+ 1
2

− Aw
i,j,k+ 1

2

wi,j,k− 1
2

= 0 (6.3)

where the averaging operator has been dropped from the velocities. In short-hand difference notation this is:

δx(A
uu) + δx(A

vv) + δz(A
ww) = 0 (6.4)

In order to satisfy continuity exactly, the momentum variables in the model are appropriately defined as averages
over respective faces of the volume.

If this is so, then it should be understood that the model variable ui+ 1
2
,j,k, for example, contains no information

about the continuous u field within the volume itself. In the x direction, the representation of the continuum u field
looks like a series of delta functions at discrete intervals. Much as in finite differencing, the y-z mean of continuum
u matches the model variables at these discrete nodes in the x direction.

Although the foundation of a discretised model have been laid, it should be emphasized that at this stage, in
satisfying the integral form of continuity, the discrete model variables are an exact representation of the continuum.
There is no truncation error in the evaluation of continuity so long as the model velocities are defined to be the
means over their respective areas.

6.2.2 Tracers

Just as continuity is succinctly handled in the finite volume approach, conservation of tracers is likewise naturally
represented. In an incompressible fluid, advection of tracer concentrations (salinity, temperature, etc...) can be
written as the divergence of advective fluxes (cf. salt conservation):

∂

∂t
S + ∇ · (Su) = Q

S
(6.5)
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where Q
S

represents real sources and sinks (such as molecular diffusion, riverine discharge, chemical reactions, etc...)
of the passive tracer S. Integrating over the same finite volume, Vi,j,k, as was used for continuity, gives:

∂

∂t

∫ ∫ ∫

Vi,j,k

S dV +

∫ ∫

uS.n̂ dA =

∫ ∫ ∫

Vi,j,k

Q
S
dV (6.6)

The first term suggests that the volume mean of the tracer is a suitable discrete variable. This has the facility
of unambiguously and directly budgeting for the total amount of tracer in the model, though conservation of higher
moments might need further consideration.

The divergence of advective fluxes can be evaluated much as described previously for the continuity equation.
Here, however, the flux is the area average of a product of other model variables as opposed to the product of area
averaged model variables (vS = vS + v′S′). This integral must be expanded and expressed in terms of available
quantities. This will require the parameterization of an eddy flux, as will be shown later.

Evaluation of the source term is dependent upon the particular tracer being considered and will not be dealt with
in full detail. In general, most sources and sinks can be written as the divergence of a flux, the flux often being a
boundary condition on the model associated with the forcing.

Returning to the advection term, the area integral of the flux through the eastern face can be written:
∫ ∫

Au

i+ 1
2

,j,k

uS dy dz = Aui+ 1
2
,j,k ui+ 1

2
,j,kS

Au

+

∫ ∫

Au

i+ 1
2

,j,k

u′S′ dy dz (6.7)

where the primes denote deviations of the continuum field from the mean value on the face.

There are two issues of closure here; one involves expressing S
Au

in terms of the volume averaged variable Si,j,k
and the other requires parameterization of the eddy flux u′S′yz. The latter has historically been an important issue
and many parameterization schemes have been developed to express u′S′yz in terms of the mean quantities. These
should be applicable here even though traditionally the eddy flux is averaged over three spatial dimensions and time.

A finite difference approach of minimizing the truncation error in evaluating S
Au

could be used which would
favour some high order interpolation scheme. However, a property of the continuous system is that it conserves
higher moments under advection. Here, conservation properties are deemed more important than accuracy since the
principle behind the finite volume approach is one of conservation of volume.

Suppose the advection terms are differenced as:

V
∂S

∂t
+ δx(A

uuS
x
) + δy(A

vvS
y
) + δz(A

wwS
z
) (6.8)

then conservation of the second moment can be shown as follows.

S
(

δxA
uuS

x
+ δyA

vvS
y

+ δzA
wwS

z
)

= S2 (δxA
uu+ δyA

vv + δzA
ww)

+S
(

AuuδxS
x

+AvvδyS
y

+AwwδzS
z
)

= S2 (δxA
uu+ δyA

vv + δzA
ww)

S
x
AuuδxS

x

+ S
y
AvvδyS

y

+ S
z
AwwδzS

z

−1

4

(

δx
(

Auu(δxS)2
)

+ δy
(

Avv(δyS)2
)

+ δz
(

Aww(δzS)2
))

=
S2

2
(δxA

uu+ δyA
vv + δzA

ww)

+δx

(

Auu
1

2
o So2x

)

+ δy

(

Avv
1

2
o So2y

)

+ δz

(

Aww
1

2
o So2z

)

where oSo2x is the geometric product between neighbouring nodes. The notation is described in section 3.2.
The first contribution vanishes since the advecting flow is non-divergent. The second is the discrete analogue of

∇ · 1
2S

2u and has no net contribution when summed over the model.
In difference notation, the full form of the tracer equation is:

∂S

∂t
+

1

V

(

δxA
u(uS

x
+ u′S′) + δyA

v(vS
y

+ v′S′) + δzA
w(wS

z
+ w′S′)

)

= Q (6.9)
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Figure 6.3: The shaving of cells at a boundary causes difficulties in defining the centre of a volume for finite difference
purposes. In the top row, all the both water-filled cells are regular. The centre of a volume is well defined and the
gradient of properties at the interface between cells easily defined. For the middle and bottom rows this definition
appears to break down. The bottom row in particular shows the regular centre of a cell apparently within solid land.

The divergence of eddy fluxes must obviously conserve the total amount of tracer. Conservation of the second
moment is conditional on the particular parameterization of sub-grid scale processes. A commonly used parame-
terization of the sub-grid scale eddy flux is as a down gradient flux. For example, the zonal eddy flux would be
parameterised and evaluated as:

u′S′ ≈ −κ∂S
∂x

≈ − κ

∆x
x δxS (6.10)

Note that no weighting by volumes is used since the gradient should be a function of the difference in model variables
only.

6.2.3 Momentum Equations

The momentum equations are integrated over finite volumes (labeled V u, V v and V w) that are centered on the faces
of the pressure/tracer volume (Vi,j,k) used earlier.

In this study, we had to limit the form that V u, V v and V w could take for the following reason. The finite
volume method will later be tested by adapting a finite difference code in which the elliptic problem is solved using
a pre-conditioned conjugate gradient algorithm. This algorithm will only work if the problem is symmetric. To
guarantee symmetry, discretisation of the pressure gradient will be considered first. An arbitrary choice of V u, V v

and V w will destroy the symmetry of the elliptic operator. The form of V u, V v and V w is consequently chosen with
care such that it retains symmetry of the elliptic problem and also conserves energy. Thereafter, the discretisation
of Coriolis and advection terms will be found so that energy is conserved, bearing in mind the special form of the
volumes V u, V v and V w.

Pressure gradients

One might evaluate the pressure gradient by taking the difference between the mean pressures in two neighbouring
volumes and dividing by the separation of the centre position of the volumes. This makes sense for regularly shaped
volumes, but if, as is intended, the volumes acquire irregular shapes, then the centre becomes a little more difficult
to define.

Figure 6.3 shows a schematic of some arbitrary topography or coast-line. The grid of volumes, or cells, is regular.
The boundary cells have been shaved to represent the topography. For the top row, the horizontal gradient of
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properties between water-filled cells is apparently easily defined by the separation of the centres of the cells. The
centres are less obviously defined in the middle and bottom rows. The bottom row in particular has the regular cell
centre within land.

In the continuous formulation, a diagnostic elliptic equation for the pressure was found from continuity and the
momentum equations. It takes the form:

∇.F = ∇.G − ∂

∂t
∇.u (6.11)

where the last term vanishes due to the incompressibility condition. The left hand term becomes the elliptic operator
(∇2) on substituting F = ∇p with the right hand side providing the source.

As written, the problem has an infinite set of solutions F that satisfy the lateral boundary conditions since a
non-divergent vector field can be added to F . However, the elliptic problem, ∇

2p = ∇ · G, can be equivalently
expressed:

∇.F = ∇.G (6.12a)

∇ ∧ F = 0 (6.12b)

This is a well posed problem that has a unique solution [GB79]. The very fact that system 6.12 is equivalent to the
elliptic equation for pressure and has a unique solution suggests that the particular representation of F in a discrete
sense does not change the solution, so long as that discretisation satisfies the zero curl condition.

Since it is F that ensures the non-divergence, rather than the particular discretisation of F , there is some
flexibility in its choice of discretisation. Therefore, for the convenience of creating a symmetric elliptic problem, a
fixed grid spacing is used to evaluate the pressure gradient.

This might seem to ignore the role of the boundaries and boundary conditions in the elliptic problem. However,
as was mentioned in the context of the continuity equation, the boundary conditions are applied to the continuity
equation in the process of integrating it over finite volumes. Shaving cells modifies the areas and volumes of the cells
which are explicitly required in the resulting elliptic problem.

The simplest, discrete form of the pressure gradient, that gives rise to a symmetric elliptic problem, is used:

∂u

∂t
+

1

ρo

1

∆x
x δxp (6.13a)

∂v

∂t
+

1

ρo

1

∆y
y δyp (6.13b)

∂w

∂t
+

1

ρo

1

∆z
z δzp (6.13c)

Energy conservation requires an analogue of the property:

u · ∇p = ∇ · (pu) − p∇ · u = ∇ · (pu) (6.14)

which means that the pressure gradient should not contribute to the global energy budget.
The discrete form of 6.14 is:

V uu

∆x
x δxp

x

+
V vv

∆y
y δyp

y

+
V ww

∆z
z δzp

z

=

δx

(

px V
uu

∆x
x

)

+

δy

(

py V
vv

∆y
y

)

+

δz

(

pz V
ww

∆z
z

)

−

pδx

(

V uu

∆x
x

)

+

pδy

(

V vv

∆y
y

)

+

pδz

(

V ww

∆z
z

)

(6.15)

where use of 3.12e has been made.
The last term should vanish by continuity and this can only happen if:

V u = ∆x
x
Au (6.16a)

V v = ∆y
y
Av (6.16b)

V w = ∆z
z
Aw (6.16c)
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Equations 6.16 exclude the possibility of using arbitrary volumes for the velocity variables, even where the volumes
abut a solid wall. For the scheme to be energy conserving, the effective volumes for velocity variables must be chosen
as in 6.16. However, the effects of topography are still reflected in the volume and face areas used in the continuity
and tracer equations.

In review, the form of the pressure gradient terms is restricted by a computational preference for a symmetric
elliptic problem. The finite volumes used in the discrete momentum equations must consequently take a particular
form to conserve energy.

Non-linear terms

The form of the advection scheme is determined by considering the conservation properties of the advection operator
in the continuum. Total kinetic energy should be conserved and this is only possible if the advecting fluxes are the
non-divergent as defined by the continuity equation.

Suppose, the terms in the zonal momentum were differenced as:

∂

∂t
u+

1

V u
(δx(U

∗ux) + δy(V
∗uy) + δz(W

∗uz)) (6.17)

where U∗, V ∗ and W ∗ are area integrated velocity components. To conserve
∑

V uu2, the advecting fluxes, U ∗, must
be non-divergent according to δxU

∗ + δyV
∗ + δzW

∗ = 0. The advecting fluxes must therefore be defined:

U∗ = Auu
x

V ∗ = Avv
x

W ∗ = Aww
x

(6.18)

Notice that Auu, Avv and Aww are recurring quantities in the continuity equation and tracer advection.
The discrete form for the advection terms in the zonal momentum equation is:

∂

∂t
u+

1

V u

(

δx(Auu
x
ux) + δx(Avv

x
uy) + δx(Aww

x
uz)

)

(6.19)

where it should be remembered that V u = Au∆x
x
.

Coriolis terms

Integrating the sinφ Coriolis terms over the volumes of the respective velocities variables gives:

V ui+ 1
2
,j,k

∂

∂t
ui+ 1

2
,j,k −

∫ ∫ ∫

fv dV (6.20a)

V vi,j+ 1
2
,k

∂

∂t
vi,j+ 1

2
,k +

∫ ∫ ∫

fu dV (6.20b)

The variables u and v are carried at different grid-points which means that they must be spatially interpolated in
the horizontal directions. f is normally defined at p latitudes and so must be included within the interpolation when
being used at v points1. In order to be energy conserving, some volume common to the neighbouring u-v points must
be used. The most obvious volume to use in each interaction between four neighbouring u-v points is the p volume
Vi,j,k.

An energy conserving form for the discrete Coriolis terms is:

V u
∂

∂t
u − fV vy

x
(6.21a)

V v
∂

∂t
v + fV ux

y
(6.21b)

As written, the Coriolis terms do not generate spurious volume integrated kinetic energy. For regular, unshaved
cells, the scheme is that described by Arakawa and Lamb, 1977 [AL77, HW80]. Further, f can vary in any direction
which is potentially useful for global integrations in which the poles might want to be shifted2.

Use of the Cd scheme for evaluating the Coriolis terms in the finite volume model destroys the ability to identically
conserve energy. Since energy conservation is a property on which the discretisation of the momentum equations is
based we prefer to not employ the Cd scheme when using the finite volume code. The Cd scheme was therefore not
used in any of the experiments even though a crude implementation of the scheme has been made by using straight,
unweighted interpolation where required.

1Taking f outside the interpolation operator and interpolating it separately, spuriously generates kinetic energy. See Arakawa and
Lamb, 1977 [AL77].

2Shifting poles into solid land reduces the restrictive CFL criteria resulting from high zonal resolution near the poles
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6.2.4 Numerical stability

The linear numerical stability of each individual term in the model can be analyzed. This does not guarantee overall
stability but it is invariably a good guide for choosing the model and numerical parameters.

The quasi-second order Adams-Bashforth scheme (ABII) is used for all terms except the pressure gradient. The
analysis of this scheme is complicated but it suffices to satisfy a CFL criteria similar to a forward in time discretisation
for non oscillatory terms.

On a regular grid, a time-lagged diffusion term (forward in time, centered in space - FTCS) is differenced as:

1

∆t
(φn+1 − φn) =

κ

∆x2
(φni−1 − 2φni + φni+1) (6.22)

Substituting in a solution of the form e−λteıkx yields:

e−λ∆t − 1 =
κ∆t

∆x2
(e−ık∆x − 2 + eık∆x)

=
κ∆t

∆x2
(2 cos k∆x− 2)

= −4κ∆t

∆x2
sin2 k∆x

2

e−λ∆t = 1 − 4κ∆t

∆x2
sin2 k∆x

2
(6.23)

For the scheme to be stable, the amplification factor e−λ∆ must be less than 1 in absolute magnitude; |e−λ∆| ≤ 1.
This leads to the stability criterion:

2κ∆t

∆x2
≤ 1 (6.24)

For more than one dimension, each dimension contributes a term on the left hand side of the inequality of the same
form.

Note that for the upper limit (satisfying the equality), the amplification factor is negative. This implies that λ
is imaginary and so the solution is oscillatory. To ensure that all wave numbers decay without spurious oscillations,
one must satisfy the criterion:

4κ∆t

∆x2
≤ 1 (6.25)

In principle, at the upper limit of this inequality, a pure grid length wave (k = π/∆x) is instantaneously damped to
zero amplitude.

This simple example is presented as an analogue for analyzing the stability of the discretisation described in this
chapter. The general form for diffusion in the finite volume model is:

∂

∂t
φ =

∆t

V
δx(

κA

∆x
δxφ) (6.26)

where V , A, κ and ∆x can all be functions of x. For convenience, define:
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so that the amplification equation can be written:
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(6.27)

If γ varies across a grid-cell, the amplification factor has an imaginary component. The stability condition for each
wave number is:

(

1 − 2(γi+ 1
2

+ γi− 1
2
) sin2 k∆x

2

)2

+ 4(γi+ 1
2
− γi− 1

2
)2 sin2 k∆x

2
(1 − sin2 k∆x

2
) ≤ 1 (6.28)
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The maximum value of the left hand side is at k = π/∆x if γ is always positive (as it should be). The overall stability
criterion is therefore:

2(γi+ 1
2

+ γi− 1
2
) =

4∆t

V

(

κA

∆x

)x

≤ 1 (6.29)

which must be satisfied at each point in the model. For regular gridding the criteria reduces to 6.24.
The Courant number for the advection terms is equivalently:

∆t

V
uA

x
(6.30)

where A
x
/V , in both 6.29 and 6.30, takes the role of a grid length, ∆x.

The stability criterion 6.29 has implications for shaving cells to represent topography. Volumes can not be
allowed to become arbitrarily small without adversely requiring a smaller time-step. To be able to shave cells in an
unrestricted manner would require an implicit evaluation of most terms in the model. An alternative is to limit the
minimum volume of a cell to some fraction of an unshaved cell. This is done by either filling or emptying the cell
with land by some small amount.

6.2.5 Comment on Accuracy

The accuracy of the finite volume method is second order in the interior. This is qualified because the areas and
volumes are regular in the interior and so the scheme is equivalent to a second order, finite different rendition of the
model.

The accuracy of models at solid boundaries is a long disputed issue (see Dukowicz and Dvinsky, 1992 [DD92]).
At the boundaries, shaving cells is analogous to changing the grid-size. This means that the differencing is no longer
centered so the accuracy must drop to first order for shaved cells at the boundaries.

6.3 Testing the finite volume approach

Two experiments, each of a very different nature, have been chosen to illustrate the potential of this finite volume
approach for the treatment of topography. The experiments involve well known interactions with topography.

Topographic β effect: Steady, inviscid and linear flow of a homogeneous rotating fluid must, by the Taylor-
Proudman theorem, follow contours of f/H . Variations in f/H can be due to a planetary vorticity gradient,
β, or to a sloping bottom.

Flow over a Gaussian bump: The interaction of a zonal flow with tall isolated sea-mounts have been modelled
extensively. The circulation resulting from stratified flow over a tall Gaussian bump in a periodic channel is
modelled; solutions from the SPEM code (σ co-ordinate) and the finite volume approach are compared.

6.3.1 Topographic β

We configured the model on a β-plane with one homogeneous, flat-bottomed layer and forced by a sinusoidal wind-
stress. The resulting flow is the Stommel solution; zonally asymmetric due to the anisotropic propagation of Rossby
waves in the planetary potential vorticity gradient. On an f-plane, shallowing of the basin towards the north creates
an equivalent PV gradient. This is modelled by shaving the bottom off the layer as a function of latitude. The
resulting circulation can be made identical to the β-plane solution if the layer depth is appropriately chosen.

If the Rossby number is small, the potential vorticity of a homogeneous layer is f/H , where f is the Coriolis
parameter and H is the depth of the fluid.

On a β-plane, the potential vorticity and its meridional gradient are, for a flat bottomed ocean of depth Ho:

Q =
fo + βy

Ho
;

∂Q

∂y
=

β

Ho
(6.31)

On an f -plane with variable H , the meridional potential vorticity gradient is:

Q =
fo
H(y)

;
∂Q

∂y
=

−fo
H(y)2

∂H

∂y
(6.32)
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Experiment I II

Dimension for x km 0 to 2000 0 to 2000
Dimension for y km -2000 to 2000 -2000 to 2000
Grid spacing ∆x km 100 100
Grid spacing ∆y km 100 100
Time step ∆t s 3600 3600
Depth H(y) m 4000 4000

1+1.6×10−7y

Coriolis f(y) s−1 10−4 + 1.6 × 10−11y 10−4

Horizontal viscosity
A

H

m2s−1 5000 5000

Table 6.1: Parameters for the two experiments to model planetary (I) and topographic (II) β effects.

To obtain the same PV and gradient in the both models, H in the latter must vary in the following way:

H(y) =
Hofo
fo + βy

(6.33)

The model was integrated with shaved cells in two experiments, the parameters of which are listed in table 6.1.
The wind stress was the same in each experiment; τ (x) = τo cos 2πy/Ly. The maximum stress was τo = 2 dyne cm−2.

The horizontal viscosity was chosen such that the Munk layer (∼ (A
H
/β)1/3) was just resolved by the grid.

The slope used in experiment II meant that the depths of the basin at the north and south ends respectively were
3/4 and 1 1

2 or the depth used in experiment I.
The solutions from the two integrations are shown in figures 6.4 and 6.5. The solutions are essentially linear

(Ro � 1). They are very similar and thus verify that the shaved cell approach can represent smooth topographic
variations.
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Figure 6.4: Pressure and velocity vectors at t = 1 yr for the flat bottomed β-plane integration.
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Figure 6.5: Pressure and velocity vectors at t = 1 yr for the sloping bottom f-plane integration.
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Figure 6.6: Schematic flow over an isolated topographic feature.

6.3.2 Flow over a Gaussian bump

Comparison with analytic solution

The analytical solution for quasi-geostrophic flow over topography was obtained by Huppert [Hup75]. The solution
is most valid for low topography and low Rossby number flow. The analytic solution from Huppert describes the
steady state and is outlined in Appendix C.

The finite volume model was set up in a 400 km × by 300 km channel with 5 km horizontal resolution and 8 levels
in the vertical, each 562.5 m thick. A Gaussian bump, of height 225 m (5% of the channel depth) and e-folding scale
25 km, was placed in the centre of the channel. The bottom layer was shaved appropriately to retain the volume
and cross-sectional areas of the domain.

The model was initialized with a uniform zonal flow of 5 cm s−1. A cyclonic eddy is generated near the bump
and advected downstream. An anti-cyclonic eddy remains over the topographic feature.

The barotropic stream function with the mean zonal flow removed is shown at day 60 in figure 6.7. The Gaussian
bump is centered in the figures. For comparison, the analytic steady state solution has been subtracted from the
model output and the residual shown in figure 6.8. The analytic steady state solution assumes that the cyclonic
eddy has shed and been advected downstream to an infinite distance. In the numerical calculation, the domain is
periodic and so the eddy re-enters the channel from upstream. The difference between the model and analytic results
is dominated by the cyclonic eddy and is otherwise quite small.
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Figure 6.7: Barotropic stream function at day 60 with constant zonal flow removed.
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Figure 6.8: Barotropic stream function at day 60 with analytic solution removed.
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FVGCM SPEM

Barotropic in-flow uo cm s−1 25 25
Zonal resolution ∆x km 5 4.1∗

Meridional resolution ∆y km 5 6.1∗

Nominal ocean depth H m 4500 4500
Height of bump h m 4050 4050

Length scale of bump L km 25 25
Stratification NH

fL 1.5 1.5

Horizontal Viscosity A
H

∇
2
h m2 s−1 100 0

A4∇
4
h m4 s−1 0 5 ×10−9

Vertical Viscosity A
V

∂2

∂z2 m2 s−1 10−3 0

Horizontal Diffusion κ
H

∇
2
h m4 s−1 10 0

κ4∇
4
h m2 s−1 0 1 ×10−9

Vertical Diffusion κ
V

∂2

∂z2 m2 s−1 10−5 0
Time step ∆t s 600 432

Table 6.2: Parameters for the the comparison experiment to SPEM. The resolution in the SPEM integration is
approximate. A stretched co-ordinate was used to increase resolution over the bump.

Comparison with SPEM code

A comparison of the finite volume code with SPEM (version 3.0) was recently made possible by Dan Goldner
(MIT/WHOI Joint Program, 1995). He made available some output from an experiment he conducted using SPEM
to study flow over a seamount (Fieberling).

A Gaussian bump was placed in a periodic channel of width 300 km and length 400 km. The bump had a
characteristic length scale of 25 km and was centred in the channel. It rose to a height of 90% the depth of the ocean
(i.e. to within 450 m of the surface).

The finite volume code was configured to match the SPEM integration as much as possible. SPEM uses a
spectral representation in the vertical. 8 modes were used in SPEM so 8 levels of the finite volume model were
chosen, equally spaced since the stratification was initially constant. SPEM is formulated using σ co-ordinates as a
vertical co-ordinate. It used stretched co-ordinates in the horizontal to selectively increase resolution. A horizontal
resolution of 5 km was chosen for the finite volume model as an approximate mean of that in the SPEM resolution.

SPEM used bi-harmonic dissipation, a form not yet implemented in the finite volume code at the time of this
work. The bi-harmonic dissipation gave a time-scale of 35 hrs at length scale of 5 km. The horizontal mixing
co-efficient was chosen to give a longer diffusive time-scale of 70 hrs, reducing the damping at longer scales.

The models were initialized with a barotropic inflow of 25 cm s−1. The flow in both models is immediately
deflected to the left (see figures 6.9 and 6.10) as it passes over the bump. In time, an anti-cyclonic and cyclonic eddy
are formed, the latter of which is shed off the bump and advected down stream (see figures 6.11, 6.12, 6.13 and 6.14).

The effect of the topography in steering the flow is similarly represented in both models. The shedding and
advection of the cyclonic eddy is somewhat slower in the finite volume code. The differences are most likely due to
the differences in resolution, both vertical and horizontal. The discrepancies in dissipation may also be responsible.
Bi-harmonic dissipation has not yet been implemented in the finite volume code. There was no available output from
SPEM that did not use bi-harmonic viscosity.

The principle result is that the finite volume formulation can represent order one topographic variation. The
difference in detail between the two integrations are almost definitely mostly due to the details of the individual
models (such as different advection schemes, co-ordinate systems and resolution).

It is not clear, with out conducting a series of integrations with more direct control of SPEM, whether the accuracy
of the finite volume method should be brought into question. Such a series of tests should definitely be made, but
have not yet been done so. Nevertheless, it is clear that the effect of topography on the zonal flow are definitely
realised by the finite volume approach.

Comparison of shaved cells vs step topography

The most important question regarding the use of shaved cells to represent topography is: How do the results
compare to the conventional step-wise representation? Here, we repeat a similar experiment to the low Rossby
number calculation of section 6.3.2 to answer this question.
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Figure 6.9: Barotropic stream function Ψ from the SPEM integration at t = 10 days. Contour interval = 30
Sverdrups.
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Figure 6.10: Barotropic stream function Ψ from the shaved cell integration at t = 10 days. Contour interval = 30
Sverdrups.
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Figure 6.11: Depth Integrated Relative Vorticity in the SPEM integration, t = 10 days.
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Figure 6.12: Depth Integrated Relative Vorticity in the shaved cell integration, t = 10 days.
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Figure 6.13: Density anomaly at z = −4000 m in the SPEM integration, t = 10 days. Contour interval = 0.01 kg
m−3.
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Figure 6.15: Schematic of the bottom two layers in the eight layer integrations using first “step-topography” and
then “shaved-cells” to represent a Gaussian bump. The regular model cells are indicated by the dotted grid. The
continuous curve is the Gaussian topography to be modelled. The large pill-box curve is the “best” representation
of the Gaussian that can be managed using step-wise topography. Since the graphical presentation of areas and
volumes is awkward, the curve used to calculate the volumes and areas is presented. The curve is described on a
grid of three times higher resolution than that of the model. It should be apparent to the eye that the volumes and
areas used in the finite volume calculation are consequently for more representative of the “true” volumes and areas
than in the step-wise calculation.
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The Gaussian bump now has a height of 15% of the fluid depth. Figure 6.15 shows the analytic, step-wise
and finite-volume representations of the Gaussian function. The model cells are depicted by the dashed grid. The
horizontal resolution of 5 km amply resolves the 25 km exponential scale of the Gaussian function. The analytic
function penetrates the second deepest layer of the model. The step-wise representation of the Gaussian bump is
as a pill-box, of crudely the same volume, that fills cells in the bottom layer of the model. The stair-case curve is
the numerical approximation to the analytic function used for calculating the volumes and areas used in the finite
volume method.

The volumes and areas are calculated as follows. The analytic function is evaluated on a fine grid of three
times higher resolution and these values are used as the height of pill-boxes. The volumes of the pill-boxes are then
summed up over each model cell and the result is used for the volume of the model cell. The face area of model cells
is calculated by summing up the face areas of the fine-grid pill-boxes abutting a model face. As the resolution of the
fine-grid is increased, the method asymptotes to an analytic method of evaluating the volumes and areas.

The models were initialised and integrated as before. Figures 6.16 and 6.17 show the potential temperature at a
depth of 3656 m (corresponding to the second deepest layer) at the end of 1 day. In the shaved cell integration (6.17),
the anti-cyclonic eddy is moving clockwise around the bump whilst the cyclonic eddy is beginning to be influenced
by the mean zonal flow. The step-wise integration is significantly different. The anti-cyclonic eddy has not been
carried clockwise around the bump, possibly because of the angularity of the feature. The strength of the eddies is
approximately the same, though they are closer in separation, presumably because the feature is narrower. In short,
the solution for the step-wise representation of the Gaussian bump bears minimal resemblance to the solutions of
the previous sections. Indeed, the solution must presumably look more like that for flow over a cylinder, since that
is what the topography of the model looks like.

In this example, the horizontal scale of topographic variation was resolved. To resolve the Gaussian bump
accurately in the vertical, the conventional step-wise method would require about 30 layers in place of the bottom
1.5 layers. The finite volume method allows the model to realise the slowly varying height of the bump even though
most of the variation occurs within just one equivalent model layer.
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Figure 6.16: Potential temperature at z=-3656 m and t=1 day using the step-wise representation of topography.
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Figure 6.17: Potential temperature at z=-3656 m and t=1 day using the shaved cell representation of topography.
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6.4 Conclusions

A finite volume approach to modelling the ocean has been outlined. The final form of the scheme was dictated by
considerations of energy conservation. The opportunity for implementing such a technique arose because the original
model was formulated on a C grid.

The motivation for developing the finite volume model was to improve the representation of topography. In
particular, topography controls the circulation by modulating the passages through which basins communicate.
Wave interaction with finite slopes also influences the circulation.

Two experiments illustrated the effects of topography and the potential of the scheme to model them better.
The topographic β effect was succinctly illustrated. Taylor cap formation was modelled and the results compared
to an almost equivalent SPEM integration. The details of the simulations differed and it is supposed, though not
demonstrated, that these differences led to the different shedding time of the cyclonic eddy.

A third set of experiments compared the shaved-cell method with the conventional step-wise representation of
topography. The results clearly indicate that the finite volume approach is an improvement over step-wise topography.

The accuracy of the scheme is left in question, a conclusion drawn from the comparison with SPEM code.
Nevertheless, the reproduction of analytic solutions and the clear improvement over step-wise topography suggest
that the shaved cell method could substantially improve the representation of topographic effects in existing height
coordinate models.
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Chapter 7

Concluding remarks

Of the ocean models in existence, most can be grouped into one of two categories; large scale circulation models and
small scale process study models.

Large scale circulation models are designed for studying the slow large scale circulation patterns of gyres and the
meridional overturning. They are typically used:

• to study the role of wind and thermal forcing in determining these large scale patterns.

• to study interactions with the atmosphere.

• to understand the role of the ocean in the climate system.

• in a diagnostic role with observations to estimate the present state of the ocean circulation.

Process study models, on the other hand, are used to study the dynamical behaviour of the oceans on regional and
smaller scales which often involve resolving relatively fast processes (such as gravity waves). These include studies
of the convective overturning process, the nature of dynamical instabilities, the formation of boundary layers and
subsequent interaction with the atmospheric boundary layer, coastal dynamics and forecasting on a regional basis.

Large scale models and process study models differ in horizontal resolution and often also differ in physics. The
large scale studies are inevitably carried out at low resolution; the Rossby radius of deformation is typically 20-60 km
whilst affordable horizontal resolutions tend to be around 50 km upwards. Process studies are normally carried out
at resolutions that at least resolve the geostrophic eddy scale and, if necessary, resolve the convective plume scale,
depending on the process being studied.

None of the existing numerical models are well suited to work at both ends of the spectrum. The particular
physics and numerical formulation are decided by the scale at which the model will be applied. A large scale model
is not well suited for use at the small scale and vice versa. This means that the models are also potentially ill-suited
for use in the middle ground, i.e. at the resolutions that are comparable to the scale of transition for validity of
the physical approximations. In particular, the validity of the primitive equations at the mesoscale and smaller is
questionable.

There are two main reasons for this “spectral gap” in numerical models:

• The smaller scale physics is computationally more expensive to resolve. The non-hydrostatic physics requires
the inversion of a three-dimensional elliptic operator whilst hydrostatic physics inverts a two dimensional
problem. For this reason, a non-hydrostatic model has not been used to study the large scale circulation.

• The different extremes in horizontal resolution dictate that different grids be used for large and small scale
models. As was explained in chapter 4, coarse resolution models tend to be built on an Arakawa ‘B’ grid
and high resolution models (and non-hydrostatic models) are normally built on an Arakawa ‘C’ grid. The
application of a ‘C’ grid model at low resolution, or a ‘B’ grid model at very high resolution are prone to
grid-scale problems that normally inhibit the forward integration of the models.

Part of the motivation behind building a new ocean circulation model was to build one applicable to both ends
of spectrum of spatial scales, and thus build one applicable in the middle ground. Such a model then allows us to
evaluate when certain physical approximations become invalid. By no means do we expect the global circulation to
be substantially affected by non-hydrostatic effects, but regional calculations, for example at the Equator, will quite
possibly be dependant on the inclusion of quasi- or non-hydrostatic physics. The advantage of such a versatile model
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is that the transition between small, regional and global scale calculations is not complicated by the use of different
codes.

The non-hydrostatic model, described in chapter 3, can be integrated forward at low resolution on a global scale.
This is only affordable because of the nature of the pre-conditioner used in the conjugate gradient algorithm. Though
the results are not shown here, the non-hydrostatic physics is found to have an insignificant effect on the large scale
circulation. This is as expected from conventional understanding and scaling analyses. The question still remains,
at what scale does non-hydrostatic physics begin to play a role? This is not just concerned with the role of vertical
inertial effects in the ocean but also with the role of the horizontal Coriolis terms at low latitudes.

7.1 The Cd scheme

An example of the problems arising from using the Arakawa ‘C’ grid at low resolution was given at the end of chapter
3. The nature of the problem is connected with the spatial averaging of the Coriolis term on a ‘C’ grid. This is a
well documented phenomena and is described and explained in chapter 4.

A new scheme is described and tested in chapter 5 that alleviates this problem. The Cd scheme allows the ‘C’
grid model to be integrated forward without any spurious noise problems. It has little computational overhead and
involves only the introduction of two new horizontal velocity variables, carried on a ‘D’ grid, which are step forward
in parallel to the C grid model. These new variables are used in the evaluation of the Coriolis term for the C grid.
We view the scheme as a tool used to improve the representation of the Coriolis term without directly modifying the
rest of the model.

The model code is consequently now applicable at both high and low resolutions. The Cd scheme is, however,
switched off at high resolutions since it is not needed. As it stands, the model has only gone part way towards the
goal of applicability at high and low resolutions since the use of the Cd scheme at low resolutions means that it is
not quite the same model as used at high resolution.

7.2 Shaved cells

Strictly speaking, the opportunity to explore the use of shaved cells to represent topography is a result of the model
being formulated on an Arakawa ‘C’ grid. The finite volume approach naturally results in a ‘C’ grid arrangement of
model variables.

Conventional height co-ordinate models represent topography by fitting the bathymetry to the discrete depths of
the model layers, resulting in “step-wise” topography. As an alternative, the finite volume approach allows model
cells to be shaved to fit the topography.

The model is re-formulated in chapter 6 using the finite volume approach. In practice, the resulting algebraic
equations on a regular grid are essentially the same as for the finite difference model described in chapter 3. The
resulting discretisation of the finite volume model depends on a restriction imposed on the nature of the elliptic
problem.

A pre-conditioned conjugate gradient algorithm is used to solve the elliptic problem. The algorithm is applicable
because the matrix is symmetric. It was desired that this property be retained for the purposes of efficiency. This
meant that the finite volume approach could not be applied in a completely general manner to the momentum
equations. Nevertheless, the effects of topography are captured in the discrete form of the continuity and tracer
equations. The criteria for the discretisation of the momentum equations is based primarily on consideration of
energy conservation.

Two distinct examples of oceanographic interest are used to demonstrate the potential of using shaved cells
to represent topography. The topographic β effect is modelled and the solution compared to a Stommel solution
obtained on a β-plane. The solutions are indistinguishable.

The interaction of flow with an isolated topographic feature is modelled by placing a Gaussian bump in a channel
with a barotropic zonal flow. A low Rossby number solution is compared to an analytic solution and shown to
be favourably accurate. Comparison of a high Rossby number solution with one obtained using the SPEM code
demonstrates that the shaved cell representation allows the model to realise the effects of extreme topography. Two
equivalent integrations, one using a step-wise representation of the topographic feature, the other using the shaved
cell method, are compared. The shaved cell method clearly represents the topography more accurately than the
conventional step-wise method.

The method is thus shown to be able to resolve both shallow and deep changes in topography, even with a small
number of levels in the vertical. The same will apply in the horizontal, meaning that coastlines can be represented
using the same shaved cell method. One consequence for global ocean modelling is that despite the usually course
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horizontal resolution, certain features in the coast-lines may still be realised by the circulation. For example, coastlines
are conventionally represented by meridional or zonal barriers whilst the shaved cell method will allow a coast to
be diagonal across meridians. Just as the height of topography is conventionally made to fit the model depths, the
positions of coasts are moved to fit the model grid. This implies that passages are either widened or narrowed. The
shaved cell method does not have this problem. Indeed, the shaved cell method allows a passage to be narrower than
the grid-size. Clearly, the dynamic processes involved in flow through passages, such as hydraulic control, are not
resolved but the ability to transport properties through the passage is retained. Whether the transports are accurate
is not clear at this point.

7.3 Future development of model

The model is currently being used for a wide range of applications, from studies in convection, though studies of
mixed layer dynamics, up to regional simulations and global simulations. Much of this work is possible because of
the parallel implementation of the model. The parallel design of the non-hydrostatic model is satisfactorily optimal.
The two-dimensional solver does not take advantage of the parallel architecture due to the choice of mapping to the
processors.

A move to a free surface formulation is planned that we anticipate will improve the performance of the two-
dimensional solver. Dukowicz and Smith, 1995 [DS94], point out that elimination of the rigid-lid approximation has
several advantages; among others it computes the surface height directly, allowing comparison with and assimilation
of altimetry data and it improves the accuracy of the representation of long Rossby waves.

This issue is raised here because this model has a significant advantage over some others in the use of a free
surface. The free surface formulation re-introduces the external inertia-gravity mode which is filtered out by the
rigid-lid approximation. The external mode has a phase and group speed of

√
gH, as shown in section 2.3.1. The

important point is that the deformation radius,
√

gH/f2, is of the order of 1000 km. This means that the wave
resolution is inevitably very high. In this limit, a ‘B’ grid model is severely prone to a checker board mode in the
pressure field. In contrast, the ‘C’ grid model is very well suited for resolving the external gravity wave motion and
does so accurately.

7.4 Future directions in ocean modelling

Historically, the low resolution restrictions imposed by the computer technology has lead to an emphasis in the
development of sub-grid scale parameterizations. Even with the recent improvements in computer architectures,
there is still a need for better parameterizations of all sub-grid scale processes. This will always be the case until
computer technology advances far enough to allow large scale models to resolve the three dimensional turbulence
scales.

The need for future model development should also not be underestimated. The need for more versatile models
has been outlined. The general circulation model described here has been designed to be applicable at many scales.
However, there is a further degree of versatility that has yet to be made accessible which is the ability to model a
wide range of time-scales.

Much current and future climate research explores the natural variability and the predictability of the climate
system on time-scales from seasons upwards to centuries. There is much interest in devising methods to find and
characterize steady states of the thermohaline circulation, and the stability of these states to perturbations. The
above all involve extended prognostic integrations over periods long relative to the dynamical time scales of the
individual sub-systems.

In ocean models based upon the primitive equations, there remains a practical restriction on the time step required
for making long integrations. The restriction is due to the natural frequencies of the physics explicitly carried in
the model. One avenue of investigation has been to further approximate the physics, filtering out intermediate time
scale processes (eg. gravity waves) by careful scaling of the equations of motion. This has led to the development
of a whole class of intermediate models (eg. Balance Equations, Semi-geostrophic models, etc) that have proved
useful and certainly will be for some time to come. However, these intermediate models can be difficult to solve
and are often limited in their application to other than idealized studies. One example of a particularly successful
intermediate model is the Planetary Geostrophic Equations (see Maier-Reimer et al., 1993 [MRMH93]). This model
has been integrated for thousands of years in various studies of variability of the thermohaline circulation. However,
the model does have approximated physics and thus excludes the possibility of some processes.

An alternative to changing the continuous equations, is to integrate the unapproximated equations implicitly.
This technique has advantages since if the resolution is such that an otherwise implicit process is resolved, then it
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will be accurately represented. Implicit evaluation of physics often leads, however, to a more complicated numerical
algorithm, but interestingly one which often resembles the filtered models.

Implicit techniques are already frequently used to represent physics in ocean modeling. The simplest, common
example is the implicit evaluation of the Coriolis term in the models based on the Arakawa B grid, such as the GFDL
MOM code. This allows a time step longer than the half period of an inertial oscillation and in this case, the inertial
oscillation is damped.

Another example is that of filtering the external gravity wave. Here, an explicit free surface would typically
require a time-step of around 10 minutes. The rigid lid approximation filters this mode and makes the effective wave
speed infinite and produces an elliptic equation to be solved for the surface pressure at each longer time-step of the
model. If the free surface is treated implicitly then an elliptic problem again arises but slows the waves down to
whatever the resolution can sustain. For very long time steps, the rigid lid and implicit free surface models actually
converge in their formulation which is consistent with, and in some ways is a validation of, the approximation at
longer time scales.

There is, in fact, a great deal of similarity, from an algorithmic point of view, between filtered models and implicit
models based upon the HPEs. There is, as a result, some comparison in computational efficiency between the two
classes of model. Combined with the simple practical need to integrate the HPEs with long time steps, a return to
implicit methods is possible and certainly worth pursuing.

A certain proportion of the numerical knowledge needed to make models fully implicit already exists. Ocean
modellers have been taking advantage of some of these methods but as of yet, no physically complete model has been
written on an implicit basis. Atmospheric GCMs generally incorporate the gravity waves implicitly. The approach
used there would obviously be a sound starting point. Development of numerical methods concentrating on shifting
ocean models onto an implicit footing would be a significant improvement on our current ability to study the long
time scales mentioned before.

The objective of making ocean models fully or semi-implicit has several immediate applications:
i) Ocean models with very long time steps essentially become steady state solvers. The steady state is interesting

in its own right but is inevitably also a common starting point for many other studies such as sensitivity studies.
ii) Because the complete physics is still incorporated within the model, the same model used to find the initializing

steady state can be used in process studies, dependent upon the fast physics.
iii) The importance of the fast physics in climate variability and stability can be ascertained by using the same

model in its various degrees of implicitness.
As already mentioned, implicit physics often leads to a more complicated algebraic formulations of the model.

The solution techniques currently employed already outperform the equivalent explicit models. Indeed, the increase
in computational efficiency gained by use of modern techniques (multi-grid, pre-conditioned conjugate gradient) is
in fact comparable to that gained by recent innovations in computer hardware. Nevertheless, development and
application of these techniques in ocean modeling is only in its infancy and as of yet has only recently begun to take
advantage of the new parallel computer technologies.

The work of this thesis represents only a small step towards the goal of developing a fully versatile model. The
applicability of the model to many spatial scales is only a beginning. With no changes to the kernel necessary, the
code accommodates both periodic domains, curvi-linear coordinate systems, hydrostatic, quasi- and non-hydrostatic
physics. Perhaps the most beneficial innovation is the use of the finite volume formulation that not only allows very
easy inclusion of any arbitrary topography but further naturally handles the boundary conditions. The final code is
one that can be applied in a wide range of oceanic studies.
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Appendix A

Derivation of the Navier-Stokes
Equations of Oceanic Motion

Here, the Navier-Stokes equations that govern fluid flow will be derived in an inviscid context. The accompanying
thermodynamics will also be described to yield the fundamental equations that describe oceanic motions on a rotating
planet. The derivation is concise but accurate.

Excepting for the discussion on thermodynamics, the derivation is made in an Eulerian frame rather than the
conventional Lagrangian frame. The Eulerian frame is concerned with the rates of changes of quantities per unit
volume, which is a convenient property when formulating discrete, numerical models. The Lagrangian frame is more
conventional because the total derivative is the rate of change following a particle. It deals with with the change in
concentration of quantities, or mass of quantity per unit mass of fluid. The Navier-Stokes equations are summarised
in section 2.1.

A.1 Conservation of Mass

A fundamental principle in fluid mechanics is the conservation of mass. For a fluid of density ρ (density is mass per
unit volume), the rate of change of mass in a small volume, ∂

∂t

∫∫∫

ρdV , must equal the accumulation of mass flux
into the volume,

∫∫

ρu.n̂ dS. In the limit of infinitesimal volume, the statement of conservation of mass becomes:

∂

∂t
ρ+ ∇ · (ρu) = 0 (A.1)

The mass flux, ρu, that appears in the Eulerian form, is in fact the momentum density (momentum per unit
volume). This quantity will explicitly appear in the momentum equations and scalar conservation equations.

Although mass conservation is the most basic equation governing fluid flow, it is rarely used in the form of A.1
to model the ocean due to ill-conditioning of the system. The cause of this lies partly in the fact that typical density
variations are small compared to the mean value. Further, density variations due solely to the compressibility of the
fluid are even smaller. This means that the flow is approximately non-divergent and this condition will later replace
the continuity equation.

Conservation of mass can be written:

∂

∂t
ρ+ ∇ · (ρu) =

Dρ

Dt
+ ρ∇ · u = 0 (A.2)

where D
Dt is the Lagrangian or total derivative; the rate of change following the motion. For a non-divergent fluid,

∇ · u = 0, the density is conserved in the Lagrangian sense.
The non-divergence condition itself, ∇ · u = 0, is referred to as the continuity equation, the reason being that

non-divergence is a statement of continuity of volume. These issues will all be discussed later. In the mean time,
equation A.1 will be retained.

A useful relationship that might aid the reader for the rest of this derivation, transforms the Lagrangian or total
derivative to a true flux form Eulerian derivative by making use of the continuity equation. For any scalar field, φ:

ρ
Dφ

Dt
= ρ(

∂φ

∂t
+ u · ∇φ) =

∂(ρφ)

∂t
+ ∇ · (ρφu) (A.3)
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The total derivative is the rate of change following the parcel of fluid whilst the last form expresses the rate of change
for a fixed volume.

A distinct advantage of the flux form is that is can be immediately integrated over the volume of the fluid to
provide a statement of global conservation. For instance, in the absence of net internal sources and sinks, the total
amount of some property is governed by:

∂

∂t

∫ ∫ ∫

V

ρφ dV =

∫ ∫

S

ρφu.n̂ dS (A.4)

where φ can be any internally conserved scalar concentration or unity. The special case of φ = 1 indicates that the
total mass of the fluid can be changed only by an influx of matter through the interface enclosing the volume. For
the ocean, solid boundaries permit no normal mass flux whilst precipitation and evaporation act to add or detract
water from the system.

A.2 Conservation of momentum

Newton’s laws of motion state that linear momentum is conserved. For a fluid of density ρ, the relevant quantity
is momentum density ρu or momentum (Newton seconds, N s) per unit volume (m3). For an infinitesimal volume
dV = dx dy dz, the total rate of change of a component of momentum is the sum of the local rate of change (within
the volume) and the convergence of momentum fluxes (arising from differing rates of advection into the volume). It
will equal the net force acting in each direction:

∂

∂t
ρu + ∇ · (ρuu) =

∑

i

fi (A.5)

The forces acting on a fluid parcel are the pressure gradient force, the force due the gravitation of the earth and
the Coriolis and centripetal forces (resulting from being in a rotating frame of reference).

The first of these is an internal force. Pressure (force per unit area) acts on all parts of the fluid pushing equally
in each direction. Variations in pressure accelerate the fluid. The force acting on a volume dV = dx dy dz is the
change in pressure ∂p

∂x dx acting across the volume through the area dA = dy dz. The force per unit volume is thus
∂p
∂x or:

fp = −∇p (A.6)

The gravitational potential is a function of position only and the force acting on a unit volume is given by ρg
where g = ∇(GMe/r). Here, G is the gravitational constant, Me is the gravitating mass of the earth and r is the
distance from the centre of the earth.

The Coriolis force is a fictitious force but is very important in shaping the dynamics of the ocean. Linear
momentum conservation applies in an inertial frame of reference. The rate of change of some quantity, A, observed
in the inertial frame expressed in terms of the rate measured in the rotating frame is given by the relation:

D

Dt
A

i
=

D

Dt
A

r
+ Ω ∧ A

r
(A.7)

where the the subscripts i and r indicate the inertial and rotating frames. The ∧ is the vector cross product. Ω is
the rotation vector of the earth.

The velocity in the inertial frame is the velocity in the rotating frame of reference with a part due to the rotation
of the co-ordinate system:

u
i
= u

r
+ Ω ∧ x (A.8)

Using this relationship and noting that the total derivative of the position vector is the velocity in the inertial
frame, u

i
= D

Dtx, gives:
D

Dt
u

i
=

D

Dt
u

r
+ 2Ω ∧ u

r
+ Ω ∧ Ω ∧ x (A.9)

The middle term is the Coriolis acceleration and the last term is the centripetal acceleration. The later is only a
function of position and the equivalent force can be written as the gradient of a potential and is usually combined
with the gravitational potential to yield and effective potential or gravity, so that:

f c = −2Ω ∧ u (A.10)
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fg = −ρ∇Φ ; Φ = −GMe

r
− Ω2r2

2
cos2 φ (A.11)

The unapproximated form for the momentum equations is then:

∂

∂t
ρu + ∇ · (ρuu) + 2Ω ∧ ρu + ρ∇Φ + ∇p = 0 (A.12)

which can be written in Lagrangian form as:

ρ

(

Du

Dt
+ 2Ω ∧ u + ∇Φ

)

+ ∇p = 0 (A.13)

The kinetic energy density (kinetic energy per unit volume) is K = 1
2ρu · u. The kinetic energy equation can be

obtained by taking the scalar product of velocity with the momentum equation A.12.

∂K

∂t
+ ∇.F u = −ρu.∇Φ + p∇.u (A.14)

The flux on the left hand side is the mechanical energy flux

F u = Ku + pu (A.15)

comprised of an advective flux of kinetic energy density and an energy flux due to pressure forces. The source terms
in A.14 represent conversions to other forms of energy. −ρu ·∇Φ is the conversion between kinetic and gravitational
potential energy. p∇ · u is the work done by expansion of the fluid as it converts internal into kinetic energy.

A gravitational potential energy equation can be written:

ρu.∇Φ =
∂(ρΦ)

∂t
+ ∇.(ρΦu) − ρ

∂Φ

∂t
(A.16)

where the temporal variations in gravitational potential, ∂Φ
∂t , are due only to tidal effects.

The total, kinetic and gravitational potential, energy equation in the absence of tides is then:

∂

∂t
(K + ρΦ) + ∇.(F u + ρΦu) = p∇.u (A.17)

where the only source is the conversion from internal energy.

A.3 Conservation of salt

Mass conservation also applies to the constituents of sea water. The total mass of salt in the ocean is essentially
fixed over periods shorter than geological time scales, even though the local and mean salinity may vary in time and
space. Salinity, S, is the concentration of salt or mass of salt per unit mass of water. The salt density or mass of salt
per unit volume is ρS. For an infinitesimal volume, the rate of change of salt density must equal the accumulation
of salt mass flux, ρSu.

∂

∂t
ρS + ∇ · (ρSu) = 0 (A.18)

Making use of the continuity equation A.1, the salinity equation (referring to the Lagrangian form) is easily
obtained:

∂

∂t
ρS + ∇ · (ρSu) = ρ

DS

Dt
+ S

{

∂

∂t
ρ+ ∇ · (ρu)

}

= 0 ⇒ DS

Dt
= 0 (A.19)

These two equations apply equally well to any scalar quantity that has no sources and is itself a concentration.

A.4 Thermodynamics (Continuity of heat, conservation of energy and
potential temperature)

This section is based on the thermodynamics chapter for “Principles of Ocean Physics” by Apel [Ape87].
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The heat equation describes changes in heat content per unit volume, ρq:

∂

∂t
ρq + ∇ · (ρqu) = ∇.F q + H (A.20)

where q is the heat content per unit mass, F q is a non-advective heat flux (normally radiation heat flux) and H is
other heat sources (eq. thermal vents, body heating).

The first law of thermodynamics is a statement of conservation of the internal energy. In particular, it deals with
the change in internal energy resulting from a change in heat content (DqDt ) and the differential work done on the

system (−p DDt ( 1
ρ )). Written in Lagrangian form, the first law reads:

De

Dt
=
Dq

Dt
− p

D

Dt
(
1

ρ
) + µ

DS

Dt
+ L (A.21)

where e is the internal energy per unit mass, µ is the chemical potential of dissolved salts and L is the heat of
transformation.

The term representing the mechanical work done on the system can be written

p
D

Dt
(
1

ρ
) =

p

ρ
∇.u (A.22)

using the continuity equation.
The total internal, kinetic and gravitational potential energy equation is obtained by adding equation A.21 to

equation A.17:
∂

∂t
(K + ρΦ + ρe) + ∇. (F u + (ρΦ + ρe)u + F q) = H + ρL (A.23)

where conservation of salt has been assumed.
Neither the heat content nor internal energy are practical quantities since they can not be directly observed.

The observable thermodynamic variable is temperature, T , defined as the change in enthalpy per unit mass as the
entropy varies at constant pressure and salinity:

T ≡ ∂h

∂η

∣

∣

∣

∣

p,S

(A.24)

An equation of state connects the temperature to the entropy η, the pressure p and salinity S; T = T (η, p, S).
Variations in temperature can then be related to changes in entropy, pressure and salinity:

DT

Dt
=

∂T

∂η

∣

∣

∣

∣

p,S

Dη

Dt
+
∂p

∂η

∣

∣

∣

∣

η,S

Dp

Dt
+
∂S

∂η

∣

∣

∣

∣

η,p

DS

Dt
(A.25)

Before the temperature equation can be used, the first term must be made measurable since entropy is not an
observable quantity. At this stage the second law of thermodynamics can be introduced which states that the change

in entropy per unit mass is greater than the heat added divided by the temperature:

Dη

Dt
≥ 1

T

Dq

Dt
(A.26)

The equality strictly only holds for reversible processes but in practice, so long as the rates of change are slow so
that the system is close to equilibrium, the equality can be assumed.

The specific heat capacity at constant pressure is defined Cp,S = ∂q
∂T

∣

∣

∣

p,S
and can be recast using the second law

as:

Cp,S =
∂q

∂T

∣

∣

∣

∣

p,S

= T
∂η

∂T

∣

∣

∣

∣

p,S

(A.27)

The first term in the temperature equation can therefore be rewritten:

∂T

∂η

∣

∣

∣

∣

p,S

Dη

Dt
=

T

Cp,S

Dη

Dt
=

1

Cp,S

Dq

Dt
(A.28)

The other two coefficients in the temperature equation are:

∂T

∂S

∣

∣

∣

∣

η,p

=
1

Sπ
T

(A.29)
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∂T

∂p

∣

∣

∣

∣

η,S

= Γ(p, η, S) =
γ − 1

ραc2s
=

αT

ρCp,S
(A.30)

where
π

T
= 1

S
∂S
∂T

∣

∣

η,p
is the thermohalinity coefficient

Γ(p, η, S) is the adiabatic lapse rate

γ =
Cp,S

Cρ,S
is the ratio of specific heats

α = −1
ρ

∂ρ
∂T

∣

∣

∣

p,S
is the isobaric/isohaline thermal expansion coefficient

cs is the speed of sound, c2s = ∂P
∂ρ

∣

∣

∣

η,S

all of which can be measured.
Substituting all the above coefficients into the temperature equation yields:

DT

Dt
=

1

ρCp,S
(H− ∇.F q) + Γ(p, η, S)

Dp

Dt
+

1

Sπ
T

DS

Dt
(A.31)

The thermohalinity is very small and since salinity is conserved the term can be dropped with little need for
rigorous justification. Temperature is not conserved due to the compressibilty of the fluid. A more convenient
quantity is the potential temperature θ, defined as the temperature a parcel would have were it moved adiabatically
to some reference level:

θ ≡ T −
p

∫

po

Γ(p′, η, S) dp′ (A.32)

Potential temperature is then conserved except in the presence of external heating:

Dθ

Dt
=

1

ρCp,S
(H− ∇.F q) (A.33)

In the Eulerian form, the temperature equation reads:

∂

∂t
ρθ + ∇ · (ρθu) =

H− ∇.F q

Cp,S
(A.34)

The density of sea water is a function (measured empirically) of potential temperature (θ), salinity (S) and
pressure (p). The equation of state is normally written succinctly as:

ρ = ρ(θ, S, p) (A.35)

although it is represented by a high-order, emperically determined polynomial.

A.5 Pressure equation (prognostic)

The resulting system is seven equations in seven variables ρ, u, S, θ, p; continuity (A.1), momentum (A.12), salt
(A.18), temperature (A.34) and the equation of state (A.35). The system is not well suited for practical computations
since there is no explicit equation for the pressure. There are two explicit equations for the density; one prognostic
(continuity) and one diagnostic (equation of state).

Differentiating the equation of state, the continuity equation can be related to changes in pressure:

Dρ

Dt
=

∂ρ

∂T

∣

∣

∣

∣

S,p

Dθ

Dt
+

∂ρ

∂S

∣

∣

∣

∣

θ,p

DS

Dt
+
∂ρ

∂p

∣

∣

∣

∣

θ,S

Dp

Dt
(A.36)

If the fluid is adiabatic, the derivatives of temperature and salt can be eliminated. The total derivative of density
can be substituted from the continuity equation yielding:

Dp

Dt
= −ρc2s∇.u (A.37)

where the speed of sound is given by c2s = ∂p
∂ρ

∣

∣

∣

θ,S
. The pressure equation replaces the continuity equation so that

there is now one explicit equation for each variable. It would be wrong to replace the equation of state with the
pressure equation since that would change the number of prognostic equations. There are six natural modes in the
system as described, and currently six prognostic equations.
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Appendix B

Scaling of non-hydrostatic effects

To aid the examination of the hydrostatic approximation, the Boussinesq equations of motion (2.11) will be tem-
porarily non-dimensionalised. External parameters will be assumed. The horizontal and vertical length scales of the
motion will be L and H . The horizontal and vertical velocity scales will be U and W . A density field will be written
as a perturbation, scaled by ∆ρ, from a reference stratification of

−ρo
g
N2 ∂

∂z̃
ρ̄(z̃)

where N2 = −(g/ρo)
∂ρo

∂z is the Brunt-Vasala or buoyancy frequency. Pressure will be split into two parts, a hydro-
static part, scaled by P , and a non-hydrostatic part scaled by rP where r is the ratio of non-hydrostatic pressure to
hydrostatic pressure. For the purposes of scaling the horizontal divergence, the non-dimensional horizontal flow is
further split into a rotational and a divergent part, the later being ε times smaller:

ρ′ =
ρo
g
N2Hρ̄(z̃) + ∆ρρ̃ (B.1)

p′ = P p̃
H

+ rP p̃
NH

(B.2)

{u, v} = U{ũ, ṽ} (B.3)

ũ = ũψ + εũχ (B.4)

∇h.ũψ = 0 ∇h ∧ ũχ = 0 (B.5)

w = Ww̃ (B.6)

{x, y} = L{x̃, ỹ} (B.7)

z = Hz̃ (B.8)

Non-dimensional variables are indicated by a tilde. The Boussinesq equations of motion (2.11) can then be written:

U2

L
dũh

dt̃
+ 2ΩU(sinφk̂ ∧ ũh − W

U ıw̃ cosφ) + P
ρoL

(∇hp̃H
+ r∇hp̃NH

) = 0 (B.9)

UW
L

dw̃
dt̃

+ 2ΩUũ cosφ+ rP
ρoH

∂p̃
NH

∂z̃ = 0 (B.10)

g∆ρρ̃+ P
H

∂p̃
H

∂z̃ = 0 (B.11)
U∆ρ
L

dρ̃
dt̃

−W ρo

g N
2 ∂ρ̄
∂z̃ w̃ = 0 (B.12)

εU
L ∇̃h.ũχ + W

H
∂w̃
∂z̃ = 0 (B.13)

The last three equations, hydrostatic, buoyancy and continuity, contain two terms each and so the parameters
multiplying each pair of terms must balance. Thus, the magnitude of hydrostatic pressure P , density perturbation
∆ρ and vertical velocity can all be eliminated:

P = g∆ρH (B.14)

g∆ρ

ρoH
=

WL

UH
N2 = εN2 (B.15)

W = ε
H

L
U (B.16)
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Eliminating these parameters from the equations of motion then gives:

Ro
dũh

dt̃
+ (sinφk̂ ∧ ũh − εδıw̃ cosφ) + εRoRi(∇hp̃H

+ r∇hp̃NH
) = 0 (B.17)

Ro
dw̃
dt̃

+ 1
εδ ũ cosφ+ rRoRi

δ2
∂p̃

NH

∂z̃ = 0 (B.18)

ρ̃+
∂p̃

H

∂z̃ = 0 (B.19)
dρ̃
dt̃

+ ∂ρ̄
∂z̃ w̃ = 0 (B.20)

∇̃h.ũχ + ∂w̃
∂z̃ = 0 (B.21)

Here, Ro ≡ U
2ΩL is the Rossby number and Ri ≡ N2H2

U2 is the Richardson number.
A geostrophically adjusted flow will have a zero order balance between the Coriolis term and horizontal hydrostatic

pressure gradient: εRoRi = 1. Typically, because of the influence of rotation (gradient flow is then Rossby number
smaller than rotational flow), ε = Ro and so the quasi-geostrophic scaling is recovered; RiR

2
o = 1.

Two scalings for the non-hydrostatic parameter r can be obtained from the vertical momentum equation:

i) r = δ2/Ri At high latitudes where the planetary rotation vector points nearly vertically upwards, the vertical
non-hydrostatic pressure gradient can be balanced with the vertical accelerations. In this instance, even at
an aspect ratio of one, the non-hydrostatic ratio is typically a small number unless the Richardson number is
small, as for an unstratified fluid.

ii) r = δ/(εRoRi) At lower latitudes, on the planetary scale, horizontal coriolis effects become more significant than
vertical accelerations. Under the quasi-geostrophic scaling above, r then goes like the aspect ratio. This is
considerably larger than scaling i) but at the relatively long horizontal scales consistent with QG scaling, the
aspect ratio is then a very small number.

The smallness of the parameter r justifies neglect of the non-hydrostatic pressure gradients in both the vertical
and horizontal momentum equations. The Coriolis term in the vertical momentum equation (the vertical acceleration
is Roεδ smaller then the coriolis term) is δ smaller than the buoyancy term if the flow is geostrophically adjusted
(εRoRi = 1). This is conventionally the justification behind the hydrostatic approximation since the aspect ratio is
inevitably a small number for almost all oceanic applications.
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Appendix C

Solution for zonal flow over a Gaussian
bump

Huppert [Hup75] solved the problem of stratified flow over an isolated topographic feature. The solution is for an
f-plane in an infinite domain. The non-dimensional anlaytic solution from Huppert is:

ψ(r, θ, η) = −r sin θ + hoBR
−1

∞
∫

0

g(t, η)ĥ(t)Jo(tr) dt (C.1)

where the kernal is

g(t, η) =
coshBt(1 − η)

sinhBt
(C.2)

and ĥ(t) is the zeroth-order Hankel transform of h(r):

ĥ(t) =

∞
∫

0

r′h(r′)Jo(tr
′) dr′ (C.3)

Here, B = NH
fL is the Burger number and R = V

fL is the Rossby number, both indicative of the upstream flow.
The length scale L is the inherent length scale of the topographic feature. r is the non-dimensional lateral radius
(non-dimensionalised by L) and η = z/H is the non-dimensional height.

h(r′) is a non-dimensional shape function of maximum value unity. ho is the non-dimensional height of the
topographic anomaly; the fraction of the upstream fluid depth. The dimensional depth of the bottom surface is
therefore given by:

zbottom = Hhoh(r) (C.4)

For the shape function

h(r) = e−
1
2
r2 (C.5)

the Hankel transform of h(r) can be evaluated:

ĥ(t) =

∞
∫

0

r′h(r′)Jo(tr
′) dr′ (C.6)

= [−h(r′)Jo(tr′)]∞0 − t

∞
∫

0

h(r′)J1(tr
′) dr′

= 1 −
∞
∫

0

e−
1
2

ξ2

t2 J1(ξ) dξ

= 1 −
[

1 − e−
1
2
t2

]

= e−
1
2
t2
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where the co-ordinate transform ξ = tr and the relation

∞
∫

0

e−
1
2

ξ2

t2 J1(ξ) dξ = 1 − e
1
2
t2 (C.7)

have been used.
The Taylor column part of the solution is then given by:

∞
∫

0

coshBt(1 − η)

sinhBt
e−

1
2
t2Jo(rt) dt (C.8)

which is integrated numerically for use in chapter 6.
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