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ABSTRACT

The El Niño of 2015-16 was among the strongest El Niño events observed

since 1950, and took place almost two decades after the previous major event

in 1997-98. Here, perspectives of the event are shared by scientists from

three national meteorological or climate services that issue regular opera-

tional updates on the status and prediction of the El Niño-Southern Oscil-

lation (ENSO). Public advisories on the unfolding El Niño were issued in the

first half of 2015. This was followed by significant growth in sea surface

temperature (SST) anomalies, a peak during November 2015 - January 2016,

subsequent decay, and its demise during May 2016. The lifecycle and mag-

nitude of the 2015-16 El Niño was well predicted by most models used by

national meteorological services, in contrast to the generally over-exuberant

model predictions made the previous year. The evolution of multiple atmo-

spheric and oceanic measures demonstrates the rich complexity of ENSO, as

a coupled ocean-atmosphere phenomenon with pronounced global impacts.

While some aspects of the 2015-16 El Niño rivaled the events of 1982-83 and

1997-98, we show that it also differed in unique and important ways, with im-

plications for the study and evaluation of past and future ENSO events. Unlike

previous major El Niños, remarkably above-average SST anomalies occurred

in the western and central equatorial Pacific, but were milder near the coast of

South America. While operational ENSO systems have progressed markedly

over the past several decades, the 2015-16 El Niño highlights several chal-

lenges that will continue to test both the research and operational forecast

communities.
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CAPSULE SUMMARY: The El Niño of 2015-16 rivaled the major El Niño events of 1982-8355

and 1997-98, showcasing advancements in operational observing and prediction systems, while56

offering challenges for the future.57

1. Introduction58

The 2015-16 El Niño was likely the most widely anticipated El Niño-Southern Oscillation59

(ENSO) event ever, and it was preceded by nearly four decades of advancements in observing60

and prediction systems. Unlike the previous major El Niño event of 1997-98 (e.g., McPhaden61

1999), the most recent El Niño was embedded within the fabric of the Internet and social media,62

with arguably more frequent updates and pathways to convey information than ever before. By63

mid-2015, operational forecast centers around the world were nearly unanimous: El Niño was64

very likely to be strong, with the potential of rivaling previous major El Niño events in 1982-8365

and 1997-98. Given the widespread coverage of these ENSO outlooks and the comparisons made66

to other similarly strong El Niño events, there was considerable concern about significant global67

impacts. While the El Niño phenomenon itself was well predicted in 2015-16, climate impacts68

near El Niño’s peak matched historical patterns in some areas (e.g., Ropelewski and Halpert 1987;69

Halpert and Ropelewski 1992), but in other regions, additional climate factors clearly played a70

role.71

Because the ENSO cycle, with its warm (El Niño) and cool (La Niña) phases, is a leading source72

of seasonal climate variability and predictability, it is closely monitored by many national and in-73

ternational organizations. The authorship on this paper is composed of individuals associated with74

three national-level assessments on ENSO from the National Oceanic and Atmospheric Adminis-75

tration (NOAA) in the United States, the Bureau of Meteorology (BoM) in Australia, and one of76

the agencies that comprises the Multisectoral Committee of the National Study of El Niño (EN-77
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FEN) in Peru. All provide operational, or regularly updated, ENSO assessments, in part because78

these countries are known to have climates — and indeed economies and societies — significantly79

influenced by ENSO. These three agencies also happen to be geographically complementary, span-80

ning the Pacific Ocean basin. They go beyond the automatic generation of observational and model81

output to provide summary level information of the progress of ENSO and its forecast, which is82

aimed at a diverse set of users among the general public, whose knowledge ranges from technically83

savvy to novice.84

ENSO is a sprawling and multi-faceted coupled ocean-atmosphere climate phenomenon that85

affects every country in a different manner. Table 1 summarizes the current El Niño definitions and86

watch/alert/warning systems in association with the national-level ENSO updates. As in past years,87

the timing of El Niño status updates and declarations varied during 2015-16 due to differences in88

datasets and ENSO criteria and thresholds, which are governed by differing regional impacts. For89

example, Peru issues forecasts for a “coastal El Niño” because the amount of coastal rainfall they90

receive is very sensitive to how warm sea surface temperatures (SST) adjacent to South America91

become (e.g., Takahashi 2004). Ultimately, though, every agency examines a broad range of92

oceanic and atmospheric anomalies to inform their updates. Internationally, the Niño-3.4 SST93

region (thin red box in Fig. 6, in the east-central equatorial Pacific Ocean, is perhaps the most94

common measure of ENSO because this region is strongly coupled with the overlying atmosphere95

(e.g., Barnston et al. 1997) and to global teleconnections. This index also tends to be the focus of96

operational model displays.97

These operational updates have evolved over past decades due to lessons learned from previous98

ENSO events and user demands placed on them. The 2015-16 El Niño not only showcased the99

latest generation of ENSO climate services, but this knowledge was disseminated and interpreted100

across a wide variety of media platforms, ranging from traditional mainstream outlets to social101
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media — a vastly different communication environment compared to the last major El Niño event102

of 1997-98. This came with its own set of advantages, such as exposure to far broader audiences,103

and disadvantages, such as the sometimes-questionable interpretation of datasets and forecast out-104

looks, which differed from official assessments. While the ENSO assessments and dissemination105

processes vary by national agency, the following sections summarizes our collective experience in106

tracking the observational evolution, verifying the model forecasts, and documenting the global107

climate anomalies associated with the historic 2015-16 El Niño.108

2. Datasets and Methods109

Since the major El Niño of 1997-98, many observational reconstructions and reanalysis datasets110

have been created or improved. Unlike station-based data or point “in situ” observations (e.g. a111

buoy), these gridded datasets are complete both spatially and temporally and, for the statistical112

reconstructions of SST, extend as far back as the late 1800s. Several operationally oriented centers113

update datasets in near real-time, which allows scientists to monitor the tropical Pacific. Given114

the interest in the 2015-16 El Niño and its potential impacts, these real-time datasets were popular115

with users, many of whom were interested in the strength of the event and its ranking relative to116

past El Niño events.117

Complicating this assessment, however, each center relies on a set of core observational datasets118

for its ENSO updates, so the exact values for a given variable (e.g. Niño-3.4 SST) will vary de-119

pending which dataset is examined. These differences between datasets primarily arise due to120

structural reasons, such as the choice of the dynamical model or the statistical method used to121

infill between available observations. The disparities are particularly evident across the tropical122

Pacific Ocean, which contains large regions that are not covered by point measurements (e.g.123

buoys, ships). Many centers additionally rely on datasets that ingest not only buoy or ship data,124
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but also satellite information. However, the modern satellite record began in the late 1970s, which125

prevents the use of these datasets for historical rankings going further back in time. Moreover,126

satellite estimates have biases (due to issues like varying equatorial crossing times), which need to127

be corrected by in situ surface observations, and these corrections can vary over time and space as128

new satellites are incorporated (e.g., Huang et al. 2015a). Some datasets like the NOAA Extended129

Reconstructed SST (ERSST) opt to not include satellite information in order to preserve the con-130

sistency, or homogeneity, of the record. But, for purposes outside of historical comparisons and131

to provide more real-time ENSO updates, these satellite-based datasets are strongly relied upon132

both to get an overall sense of the ENSO evolution and as the initial conditions for many forecast133

models.134

Because of the interest in how the 2015-16 event compares with other major El Niño events, we135

prioritize datasets that are routinely updated and, when possible, datasets that were constructed136

with the intent of providing a consistent, homogenous climate record. Individually, none of these137

datasets represent “the truth” or perfect measurements over the entire tropical Pacific Ocean. For138

that reason, in addition to showing the individual datasets, we also display the average of multiple139

datasets to compare events, which we hypothesize can reduce the structural error associated with140

the observational datasets, analogous to the reduction of error through multi-model averaging (e.g.,141

DelSole et al. 2014).142

To compare historical strength, we focus on the SST statistical reconstructions: two versions of143

ERSST (v3b and v4; Smith et al. 2008; Huang et al. 2015b), the Hadley Centre SST (HadISST;144

Rayner et al. 2003), and the Centennial In Situ Observation-Based Estimates (COBE) SST (Ishii145

et al. 2005), which extend back to the late 1800s. All Niño index regions (shown in Fig. 6)146

are computed to provide a sense of how the events varied in location. These indices span the147

equatorial Pacific Ocean and are used to summarize the breadth of the SST anomalies and where148
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they are largest. Thus, these regions are also used to provide information on the “El Niño flavor,”149

a term popularized in recent years to describe the continuum of different spatial patterns of SST150

anomalies that result from ENSO (Capotondi et al. 2015).151

To evaluate the tropical Pacific atmosphere, we feature the zonal gradient of 1000-hPa geopo-152

tential height between Indonesia and the eastern equatorial Pacific, the Equatorial Southern Os-153

cillation Index (EQSOI) and the more traditional, station-based Tahiti minus Darwin Southern154

Oscillation Index (SOI). To compare the former, we use seven reanalysis datasets that extend back155

to at least 1979 (see caption of Fig. 5). We also examine three satellite-based outgoing longwave156

radiation (OLR) records, a proxy for tropical convection, which compared to precipitation, is bet-157

ter monitored over the tropical Pacific Ocean and therefore more stable in time and space. Data are158

based on the Advanced Very High Resolution Radiometer (AVHRR; Liebmann and Smith 1996)159

and the High Resolution Infrared Radiation Sounder (HIRS) v2r2 and v2r7 (Lee et al. 2007).160

To describe the within event evolution of the 2015-16 El Niño and how similar it was to past161

major events, we make use of the daily depth of the 20◦C isotherm from the Tropical Atmo-162

sphere Ocean (TAO; McPhaden et al. 2010) buoys and Argo floats (e.g., Roemmich and Gilson163

2009), weekly SST from Optimal Interpolation SST (OISSTv2; Reynolds et al. 2002), and daily164

10-meter winds from ERA-Interim (Dee et al. 2011). To evaluate the combined multi-model fore-165

casts made by the IRI and Climate Prediction Center (CPC) during 2014-16, the newer, higher166

resolution (0.25◦x0.25◦) daily OISST product is used to compute seasonal mean Niño-3.4 index167

values (Reynolds et al. 2007). While most models are not initialized with the same SST data, the168

dynamical models use higher resolution analyses like the daily OISST.169

To examine the 500-hPa geopotential height anomalies over the globe during the Northern170

Hemisphere winter, we make use of monthly data from the NCEP/NCAR Reanalysis (Kalnay171

et al. 1996). Observed surface air temperature data are obtained from the 2.5◦x2.5◦ gridded172
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GHCN+CAMS temperature dataset (Fan and van den Dool 2008), a combination of two large173

station datasets, the Global Historical Climate Network (GHCN) and Climate Anomaly Moni-174

toring System (CAMS). Global precipitation data are from the 2.5◦x2.5◦ gridded Precipitation175

Reconstruction Dataset (PREC; Chen et al. 2002), which is also based on gauge observations from176

GHCN and CAMS.177

Unless clearly specified otherwise, anomalies are calculated as departures from a 1981-2010178

monthly mean climatology or, for sub-monthly data, a climatology that is based on the first four179

harmonics of the seasonal cycle. Because of this fixed 30-year base period, longer decadal or180

secular trends are likely to be incorporated into the anomalies (e.g., L’Heureux et al. 2013).181

3. Evolution of Tropical Pacific Oceanic and Atmospheric Anomalies182

During the 2015-16 El Niño, all of the Niño SST indices registered values that were at least183

among the top three in the historical record, reinforcing its categorization as one of the strongest184

El Niño events on record extending at least back to 1950. Fig. 1 presents the evolution of the185

seasonal (3-month) average values of the Niño SST indices during 2015-16 relative to 1972-73,186

1982-83, and 1997-98. Overlapping seasonal index values are presented because ENSO is a cli-187

mate phenomenon, typically identified on seasonal-to-interannual timescales. With the exception188

of Niño-1+2, the Niño indices were nearly +0.5◦C above average at the beginning of 2015. This189

was warmer than at the start of 1997 and 1982 and likely the remnants of a borderline El Niño-190

Neutral situation in 2014 (McPhaden 2015). Positive SST anomalies were largest near the In-191

ternational Date Line through March 2015 (Fig. 2, left panel). Beneath the surface, temperature192

anomalies were also warm in the western and central equatorial Pacific (Fig. 3, left panel). As in193

1997, a series of westerly wind bursts during the first quarter of 2015 (Fig. 4, left panel) resulted in194

the eastward progression of a downwelling oceanic Kelvin wave (Fig. 3, left panel). As the ther-195
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mocline deepened in the eastern Pacific, positive SST anomalies significantly strengthened near196

South America where the Niño-1+2 and Niño-3 indices reached +1.5◦C by May-June-July (MJJ)197

2015 (Fig. 1, bottom row).198

The region of the largest positive SST anomalies expanded westward from May through Novem-199

ber 2015, which was also similar to the evolution during 1997 (Fig. 2). Primarily because of the200

increase of the thermocline depth and surface temperatures anomalies, NOAA, BoM, and ENFEN201

all declared the onset of El Niño conditions by mid-May 2015. Most Niño regions closely tracked202

the evolution of the 1997-98 El Niño through July 2015, which, alongside model forecasts, was203

factored into the outlooks as corroborating information that this event would likely peak as a strong204

event based on warming in the Niño 3.4 and the Niño 1+2 indices. In accordance with this out-205

look, the Niño-3.4 and Niño-3 indices grew monotonically during the rest of 2015, peaking near206

+2.5◦C during November-December-January (NDJ) 2015-16 (Fig. 1). However, across the eastern207

Pacific, the thermocline depth anomalies during NDJ 2015-16 were not as deep as 1997-98.208

Going back to at least 1950, seasonal Niño-3.4 index values were near record at the peak of209

the event, but the spread among different datasets (Fig. 1) and the uncertainty as documented in210

ERSSTv4 by Huang et al. (2016) precludes clear designation as a record. The westernmost Niño-4211

index values were particularly remarkable compared to the previous events, with seasonal values212

near +1.0◦C through most of 2015, and a peak just shy of 1.5◦C during NDJ 2015-16. In contrast,213

the other significant El Niño events failed to reach +1◦C. Interestingly, the 2015-16 warming in214

the Niño-4 region was comparable to that of the 2009-10 El Niño, which was not a major event,215

but had record warming in this region (Lee and McPhaden 2010).216

After the midpoint of 2015, the growth in the Niño 1+2 and Niño-3 SST indices noticeably217

slowed relative to the 1997-98 El Niño (Fig. 1). In fact, the easternmost Niño-1+2 index did not218

perceptibly strengthen beyond the May-June-July 2015 (MJJ) value of +2◦C, which clearly fell219
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short of the nearly +4◦C maximum achieved during the 1997-98 and 1982-83 events. While there220

were roughly the same number of downwelling Kelvin waves as in 1997-98, they did not have221

as much of an influence on the amplitude of the subsurface temperature anomalies in the eastern222

Pacific (Fig. 3), consistent with the smaller eastward extent, and weaker magnitude, of the westerly223

wind anomalies (Fig. 4). This may be tied to cooling related to the decadal shift toward stronger224

trade winds (e.g., Hu et al. 2013) or possibly related to the non-linear convective feedback across225

the eastern Pacific Ocean (e.g., Takahashi and Dewitte 2016).226

Indices that measure the atmospheric component of ENSO over the tropical Pacific (e.g. pressure227

and convection) were also indicative of an impressive El Niño in 2015-16, albeit not record-setting.228

Fig. 5 (top panel) shows that the traditional Southern Oscillation Index (SOI), based on the differ-229

ence in sea level pressure between Tahiti minus Darwin stations (dashed lines), and the Equatorial230

SOI (solid lines) were both substantially negative, reflecting the weakening of the Pacific Walker231

circulation that is typical of El Niño. During 2015-16, the SOI minimum was nearly 2 standard232

deviations below the 1981-2010 mean, and the minimum EQSOI value was approximately -2.5233

standard deviations using the mean of the reanalyses, with noticeable spread among the individual234

datasets. The 2015-16 values were not as low as in 1982-83 (the historical record for both the SOI235

and EQSOI) and also fell short of 1997-98 values.236

The OLR indices over the eastern and central tropical Pacific Ocean were also quite negative,237

indicating increased convection and rainfall over the areas of above-average SST (Fig. 5, middle238

and bottom panels; Chiodi and Harrison 2013; L’Heureux et al. 2015). The eastern Pacific OLR239

index is strongly skewed compared to the central Pacific index, reflecting non-linearity in SSTs240

(e.g., Takahashi and Dewitte 2016), so the differences in evolution with 1997-98 and 1982-83 are241

more dramatic. However, seasonal values in both indices were among the top three most significant242

events.243
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As is typical with the evolution of ENSO events, all ENSO indices weakened after the Northern244

Hemisphere winter of 2015-16. As the event decayed, there was a steeper drop off in the eastern245

regions of Niño-1+2 and Niño-3 compared to 1982-83 and in Niño-1+2 compared to 1997-98 (Fig.246

1). The Niño-1+2 region was most similar to the trajectory of 1972-73, which was in stark contrast247

to the 1982-83 event that maximized during May-June-July of the second year and the 1997-98248

event. During the latter two events, the anomalous westerly winds across the eastern Pacific helped249

to maintain larger positive SST anomalies (Vecchi and Harrison 2006), which were absent in 2015-250

16 (Fig. 4). After April-May-June (AMJ) 2016, the Niño regions returned to values reflective of251

ENSO-neutral conditions, though the decrease in Niño-4 lagged the other El Niño events because252

it achieved higher SST anomalies at its peak.253

Overall, one of the more distinct aspects of 2015-16 El Niño, compared to 1997-98 and 1982-254

83, was the cooler SST anomalies in the east and warmer SST anomalies in the west; this was255

especially noticeable at the maximum in November and December 2015 (Fig. 2). Consistent with256

the Bjerknes feedback (coupling between SST and wind anomalies), Fig. 4 shows that the westerly257

wind anomalies from August through December 2015 were not as strong as in the same months258

in 1997 over the central and eastern equatorial Pacific Ocean (this is also replicated using NCEP259

CFSR 10-m winds; not shown). Hence, relative to the anomalies of the last major El Niño, the260

zonal or east-west differences in anomalous SST, subsurface temperatures, winds, and pressure261

during the last half of 2015 were not as pronounced across the equatorial Pacific Ocean.262

Supp. Figs. 1 and 2 also indicate that the anomalous meridional SST gradient was more relaxed263

during 2015-16 relative to 1997-98 and 1982-83. Typically, during El Niño, SSTs are above264

average on the equator and then taper to smaller values off the equator. During 2015-16, across265

the eastern Pacific (150◦W-90◦W), the anomalous SSTs were relatively warmer just to the north of266

the equator (5◦-10◦N) and cooler immediately on the equator (2.5◦S-2.5◦N). Supp. Fig. 2 suggests267
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that the weakening of the typical anomalous El Niño meridional gradient was associated with a268

corresponding dearth of enhanced convection across the central and eastern Pacific Ocean (also269

see Fig. 5).270

The exceptional Niño-4 SST index values reflect the enhanced westward extension of positive271

SST anomalies during 2015-16. While one could define this pattern as a major El Niño event with272

a bit of a “Central Pacific” flavor in a relative sense compared to the other major events, it would273

be remiss not to point out the broad stretch of above-average SSTs extending across the central274

and eastern equatorial Pacific. In fact, the SST anomalies with the largest amplitudes occurred275

within the east-central Pacific and, in particular, within the Niño-3.4 region (Fig. 1). Fig. 6 shows276

that the observed SST anomalies spatially correlate very well onto the pattern that results from277

regressing SST anomalies onto the Niño-3.4 index. At its peak in November-January, the pattern278

of SST anomalies extended farther westward and projected better onto the Niño-3.4 index than in279

previous major El Niño events (Supp. Fig. 1).280

In addition to the most recent El Niño projecting well onto the Niño-3.4 index relative to past281

years between 1982-2016 (compare individual black dots in bottom panels of Fig. 6), the 2015-282

16 boreal winter also was associated with nearly equal weights (∼2 standard deviation values)283

in the so-called “E” and “C” indices of Takahashi et al. (2011). While there are many different284

indices to evaluate ENSO flavors, the “E” and “C” indices isolate SST anomalies in the eastern and285

central equatorial Pacific Ocean, respectively. For example, the 1982-83 and 1997-98 El Niño had286

strongly projected onto the “E” index relative to 2015-16, while the previous El Niño in 2009-10287

was well captured by the “C” index. Therefore, the most recent event was approximately in the288

middle of the ENSO continuum (Capotondi et al. 2015), with less intensification in the far eastern289

Pacific Ocean.290
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4. Model Forecasts of the Niño-3.4 Sea Surface Temperature Index291

Operational forecast centers consider their own in-house climate models and a number of model292

plumes, which display members and/or ensemble means from an assortment of different models.293

The IRI/CPC multi-model plume of Niño 3.4 SST forecasts is perhaps the longest running, opera-294

tional collection of various models, which includes both dynamical and statistical models. Once a295

month, agencies around the world provide ensemble-average, overlapping seasonal Niño-3.4 SST296

index values going out to 9 months. The exact dates of initialization, number of members in the297

ensemble mean, and mean bias correction is left up to the model providers.298

An average of the multi-model ensemble (MME) of just over 15 “dynamical” and nearly 10299

“statistical” models are displayed in the latest updates of the IRI/CPC plume1. However, embedded300

within the dynamical category are a set of ∼5 models called Intermediate-complexity Coupled301

Models (ICMs) that are not comprehensive like the state-of-the-art dynamical models and rely302

more heavily on statistical methods. Over the last couple of years, in general, the skill scores303

associated with the dynamical average improves when the ICM are excluded, and the ICM-only304

average is not an improvement upon the statistical model average (Supplementary Figs. 3-5).305

Fig. 7 illustrates, in grey-scale, every individual model forecast made for targets during DJF306

2013-14 through FMA 2015-16 for the dynamical (top panel), which include the ICMs, and sta-307

tistical models (bottom panel). The solid blue and red lines lie within the spread of the grey lines308

because they represent the MME average of the individual models. Generally, the MME mean309

tends to be more skillful than any individual model because the averaging helps to cancel out310

model error (Palmer et al. 2004; Kirtman et al. 2014). However, a single observation will be a311

result of some predictable signal (e.g. ENSO dynamics) and unpredictable, random noise, while312

1Dynamical models typically require supercomputing resources, involve data assimilation systems, and explicitly calculate the future state based
on the physics of the atmosphere, land, ice and oceans and their interactions. Statistical models can be run on a desktop computer, and rely upon
historical relationships in the observational record and assumes these relationships will hold into the future.
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averaging in the MME is designed to suppress the unpredictable noise in order to enhance the313

signal. ENSO events are forecast opportunities when the role of the predictable signal becomes314

greater than the typical level of noise (e.g., Vecchi et al. 2006; Kumar and Hu 2014).315

The 2015-16 predictions of the Niño-3.4 SST index were successful, especially when juxtaposed316

with the low ENSO predictability of the previous decade (Barnston et al. 2012) and the predictions317

of an El Niño in 2014-15 that did not grow as expected (McPhaden 2015). For target periods in318

2014, the statistical MME average anomalies (blue lines) were closer to the observed anomalies319

(black line), while the dynamical MME average (red lines) largely over-forecasted the amount of320

warming in Niño-3.4. But, after mid-2014, the forecasts improved and were generally closer to321

the modest warming (Niño-3.4 near +0.5◦C) observed for several seasons in 2014-15.322

Coming out of the 2014-15 Northern Hemisphere winter, a number of dynamical and statistical323

models were predicting a decrease in the Niño 3.4 index. Once the observational data showed324

warming in early 2015, many dynamical and statistical models began to forecast a more significant325

El Niño. However, both MME averages underestimated the peak strength of the episode, not326

catching onto the possibility of a +2◦C sized event until mid-July 2015 for the dynamical and327

mid-August 2015 for the statistical.328

By August 2015, official ENSO outlooks were more assertively playing up the potential of a329

historically strong event. At this time, public communications explicitly favored an event rivaling330

the peak amplitudes of past major El Niños. As far back as May 2015, BoM noted that the331

dynamical model averages from the WMO Global Producing Center of Long Range Forecasts332

(a subset of models in the IRI/CPC plume) were in excess of +2◦C for the upcoming fall/winter333

seasons. ENFEN also noted that Niño 1+2 forecasts created using the North American Multi-334

model Ensemble (Kirtman et al. 2014) approached the strength of 1997-98.335
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Statistical models largely lagged the growth rate seen in the dynamical models in 2015, and336

never foresaw the peak amplitude of the event as well as the dynamical models. This disparity337

is consistent with past ENSO forecasts; in general, the statistical models often lag the dynamical338

models because they are not configured to take advantage of the most recent changes in the ob-339

servational evolution (e.g., Barnston et al. 2012). Many statistical models are trained on monthly340

or seasonal averages, so cannot resolve the short-term changes (e.g. westerly wind bursts) that the341

dynamical models are initialized with. Thus, the statistical model “success” during 2014 may be342

due to the fact they were not equipped to react to conditions that the dynamical models saw as343

important precursors or amplifiers of El Niño growth.344

Evaluating skill using the temporal anomaly correlation (AC) within a ∼2 year sliding interval,345

the dynamical and statistical MME average forecasts were the highest for the most recent event346

since the IRI/CPC model plume was created in 2002 (see Appendix for details on the forecast347

verification metrics). Fig. 8 (left column) shows that targets during DJF 2014-FMA 2016 (thick348

red and blue lines) had the largest AC compared to equivalent length time ranges going back to349

2002 (grey lines are past windows of 26 consecutive overlapping seasons, each sliding by one350

season). The thinner red and blue lines correspond to ranges that are strongly associated with the351

recent period (e.g. NDJ 2013 - JFM 2016). The ACs were in excess of 0.6 going out to lead-8 for352

both model types, with dynamical models demonstrating slightly more skill for lead-0 to lead-7.353

The dynamical MME average had an AC greater than 0.9 going out to lead-4, while the statistical354

MME average only did so going out to lead-2. The AC metric rewards a good fit between the355

forecast and observational time series during a larger event (relative to a good fit during a smaller356

event) and, so, the greater AC were partially due to the fact that this event was, by far, the largest357

in the model record (2002-2016) and was well forecasted.358
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Compared to the AC, the root mean squared error (RMSE) was generally not as skillful relative359

to past IRI/CPC model forecasts of the Niño-3.4 index (Fig. 8, right column). For the statistical360

MME, the RMSE was roughly 0.8◦C to 1.0◦C past lead-4, while they were 0.5◦C to 0.8◦C for361

the dynamical MME. For the longest leads, the statistical and dynamical models had amongst362

the largest errors going back to 2002. Conversely, for the shorter lead times (lead-0 to lead-363

4), the dynamical MME average had among the smallest errors in the IRI/CPC plume history.364

Beyond lead-1, the statistical model RMSE remained roughly in the upper quartile of the historical365

error spread, while improving to the mid-point of the spread for the very shortest leads. Fig. 9366

indicates that all multi-model averages tend to underestimate the observed values the stronger the367

event becomes and the longer the lead time (for both El Niño and La Niña). This result may be368

unsurprising for a large amplitude event, but the low errors (0.2◦C to 0.3◦C) in the dynamical369

models at short lead times were rather exceptional.370

There are other multi-model plumes, such as the North American Multi-Model Ensemble (Kirt-371

man et al. 2014) and EUROSIP (Palmer et al. 2004), that are increasingly relied upon by forecast-372

ers who regularly comment on the probability of ENSO events. The advantage of these plumes373

is that they additionally display the individual ensemble members, which capture the intrinsic374

“noise” or uncertainty associated with climate forecasts. Probabilistic verification metrics also375

need to be applied to evaluate whether observations were within the spread of outcomes. It is also376

worth testing whether the spread of model forecasts reflects the real-world uncertainty because377

it is generally thought most models are under-dispersive or tend to be overly confident (e.g., Shi378

et al. 2015).379

Not only is there uncertainty associated with the models, but there is uncertainty among the ob-380

servational data used as verification (e.g., Goddard et al. 2009). In general, the prevailing trend is381

toward development of higher resolution products, so daily OISST was selected herein as the basis382
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for model verification. But, undoubtedly, statistical models, with their generally coarser inputs and383

outputs, are at an inherent disadvantage when compared against a high-resolution observational384

dataset. Because statistical models are often built and trained with data from statistical reconstruc-385

tions (because of the longer records they provide), it may be worthwhile to develop new strategies386

to increase the resolution of these datasets.387

5. Global Anomalies during December-February (DJF)388

The strength of El Niño is usually greatest during the Northern Hemisphere winter and its im-389

pacts generally widespread, with pronounced changes in the Walker circulation across the global390

tropics and anomalous wave trains that extend into the extratropical latitudes of both hemispheres391

(Bjerknes 1969; Horel and Wallace 1981). At mid-to-high latitudes, changes to the long-wave pat-392

tern interacts with synoptic-scale eddies, resulting in the persistence and re-occurrence of storms393

and other synoptic events over certain regions. As a result, the influence of El Niño is often iden-394

tified in seasonal averages and not in shorter time averages.395

During December-February (DJF) 2015-16, above-average 500-hPa geopotential heights dom-396

inated the tropical latitudes and the mid-latitudes of both hemispheres, with a large anticyclonic397

anomaly over Siberia during DJF 2015-16 (Fig. 10, top row). Associated with this pattern, strongly398

above-average temperatures prevailed over most of the globe, with particularly significant positive399

anomalies over the mid-to-high latitudes of the Northern Hemisphere (Fig. 10, middle row). The400

most significant regions of increased precipitation were located over the northwestern and south-401

eastern United States, southern and eastern South America, southeast China, and just south of the402

equator in eastern Africa (Fig. 10, bottom row). Drier conditions were prominent over northern403

South America and around Indonesia. So, how well did this observed pattern relate to El Niño?404
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One way to quantify the match is to compute the spatial correlation coefficient between the405

observed pattern and a typical El Niño pattern. To estimate the latter, detrended DJF climate406

anomalies are regressed onto standardized and detrended values of the DJF Niño-3.4 index from407

1979-2014. The regression map is then weighted with the observed DJF 2015-16 Niño-3.4 index408

value in order to obtain the same units as the observational data (Fig. 10, right column). Thus, the409

analysis shown here is assuming a linear response to Niño-3.4 SST anomalies and will exclude410

non-linear relationships. For all three variables in Fig. 10, the spatial correlation coefficients be-411

tween the observations and the linear ENSO pattern are between 0.3 and 0.5, which means roughly412

10-25% of the spatial variance was explained by ENSO during DJF 2015-16. While significant,413

this is not very large, and indicates that there was other variability during the Northern Hemisphere414

winter that was not well described by this linear estimate of El Niño.415

The aspects of the circulation that were perhaps most consistent with El Niño were the distinctive416

wave trains tracing a great circle route across the North and South Pacific Oceans. Anomalous417

cyclonic flow was observed in the Gulf of Alaska and middle latitudes of the South Pacific Ocean,418

with anomalous anticyclones poleward and east of the anomalous troughs over Canada and closer419

to West Antarctica. However, the cyclonic anomaly in the Gulf of Alaska and the anticyclonic420

anomaly near West Antarctica were shifted northward compared to the typical El Niño response.421

Over North America, the anomalous warmth projected well onto the El Niño pattern, but the422

observed anomalies were more intense and widespread than otherwise expected with El Niño.423

The anticipated pattern of below-average temperatures and heights over the southern tier of the424

United States did not emerge. Globally, many of the regions that typically experience warmer425

conditions during El Niño were also above average in 2015-16, and these anomalies were more426

prominent.427
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Relative to the temperature anomalies, precipitation was more consistent with El Niño during428

DJF 2015-16. However, there were some notable exceptions from the El Niño pattern, such as429

the lack of increased precipitation over the southwestern and south-central United States. Like-430

wise, southernmost Africa was not as dry as one might expect in an El Niño during DJF - though431

dry conditions over southern Africa were more prominent during ASO through OND 2015 (not432

shown). In northern Australia, December brought significantly more rainfall than normal, though433

both January and February were very much below the median — more in line with El Niño ex-434

pectations. During the 1982-83 and 1997-98 events, devastating rainfall impacted Ecuador and435

coastal Peru during boreal winter/spring, but this was much weaker in 2015-16. However, the436

expected drier conditions in the Andean region did prevail in the recent event (see Supp. Fig. 6,437

which because of low station coverage, provides a comparison with TRMM data).438

In order to examine longer-term changes, the ∼35 year linear trend was computed (with its start439

point at the beginning of the modern satellite era). Interestingly, this simple estimate nearly rivals440

the ENSO anomalies as a descriptor in the 500-hPa geopotential height anomalies, with a spatial441

correlation coefficient of 0.37 during DJF 2015-16 (Supp. Fig. 7). Upon inspection, this is found442

largely due to the Southern Hemisphere trend toward lower heights over Antarctica and higher443

heights spanning the middle latitudes, which matches well with the observed anomalies. Neither444

the DJF linear trends in temperature nor precipitation anomalies correlate significantly with the445

observed pattern (Supp. Fig. 7).446

To estimate the portion of observed DJF 2015-16 variability that was not related to either the447

linear trend or linear ENSO, the summed maps are subtracted from the observations (Fig. 11).448

The resulting so-called “residual” pattern will still include non-linearity in ENSO or any other449

variability that is not well described by the linear trend or linear ENSO. The stochastic nature of450

the atmosphere will also result in event-to-event differences. We find that the residual anomalies451
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are highly correlated to the observed pattern with spatial correlation coefficients between 0.5 and452

0.8. The linear removal clearly does an adequate job removing the elevated heights in the tropics453

and the typical anomalous wave trains that span the extratropical North and South Pacific during454

El Niño. What remains are zonal bands of above-average heights encircling the middle latitudes455

of both hemispheres, with below-average heights located poleward (the only notable exception456

being the large anticyclonic anomaly near Siberia). Thus, the residual identifies a nearly global,457

poleward shift in the mid-latitude westerly wind anomalies or jet streams. Accompanying this458

shift in the Northern Hemisphere, the residual of precipitation is strikingly La Niña-like over the459

contiguous United States, with rainfall enhanced over the Pacific Northwest and suppressed along460

the southern tier. Western Europe is also wetter than average, likely due to anomalous westerly461

flow. Similarly, in the Southern Hemisphere, an anomalous increase in precipitation is evident over462

southeastern Australia and southern Africa, perhaps due in part to the easterly wind anomalies463

off the ocean on the equatorward side of the anomalous ridges. The northward shift of the jet464

(more mid-latitude ridging) and strong anomalous anticyclone near Siberia also overlaps with the465

strongly above-average temperatures across the Northern Hemisphere extratropics.466

Despite the fact the observed and residual circulation anomalies have a distinctive annular ap-467

pearance in the Northern Hemisphere, the DJF 2015/16 Arctic Oscillation (AO) index value was468

near zero when standardized relative to DJF seasons over 1979-2016. In the Southern Hemisphere,469

the DJF Antarctic Oscillation (AAO) index was more significant with a positive value of 0.8 stan-470

dardized units. This outcome was somewhat surprising given El Niño is often associated with471

negative values of the AAO during November-February (e.g., L’Heureux and Thompson 2006).472

Instead, increased rainfall over portions of southeastern Australia during DJF 2015-16 appears473

consistent with the overall positive trend in the AAO (also reflected in Supp. Fig. 7; Hendon et al.474

2007; Murphy and Timbal 2008; Thomas et al. 2015).475
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Overall, it appears that El Niño coupled with a poleward shift in the jet streams significantly476

influenced the global climate during December-February 2015-16. It is possible that non-linearity477

in El Niño (for example, the specific location of the strongest SST anomalies) contributed to the478

departures from the classically linear anomalies across the globe. Also differences from the linear479

pattern can be expected to occur simply due to sampling variability, with event-to-event differences480

naturally arising because of the limited record. It is interesting that a nearly hemispheric structure481

in the residual circulation was uncovered, which suggests an origin that was not simply isolated to482

the Pacific sector. The zonal structure may have arisen from random extratropical internal atmo-483

spheric variability, aided by feedbacks between eddies and the zonal mean flow (e.g., Limpasuvan484

and Hartmann 2000). Also, positive temperature anomalies throughout the tropical troposphere485

may have contributed to the poleward shift in the jet (Butler et al. 2010; Lim et al. 2016). A486

final possibility for the departure from the linear ENSO estimate is the potential influence of sub-487

seasonal activity across the global tropics (e.g. Kelvin waves, Madden Julian Oscillation), which488

exerted an influence on tropical rainfall and was aliased into the seasonal averages. We leave it489

to others to provide a more exhaustive attribution of the possible drivers of the 2015-16 climate490

anomalies, including exploring other seasons, which can have a greater influence on certain coun-491

tries (e.g. Australian impacts are largest during the Southern Hemisphere spring).492

6. Summary and Future Considerations493

Most atmospheric and oceanic indices suggest the 2015-16 El Niño was among the top three494

strongest El Niño events in the historical record dating back to 1950. While it was not unequivo-495

cally a record, there were several ways in which this El Niño differed from previous major events496

in 1982-83 and 1997-98. The west-central Pacific subsurface and surface temperature anomalies497

were much warmer, while the eastern Pacific was comparatively cooler. As expected during El498
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Niño, the trade winds were weaker, but not as weak during the last half of 2015 as during previous499

significant events. Related to this, the pressure differences across the tropical Pacific, as measured500

by the two Southern Oscillation indices, suggest the 2015-16 El Niño had less amplitude relative501

to the other events. The two OLR indices were both among the top three going back to 1979, but502

lagged the other two events in the eastern Pacific.503

In some aspects, the operational model forecasts for the Niño-3.4 index were among the most504

skillful going back to at least 2002. However, this should not suggest complacency as seen during505

the borderline El Niño-Neutral situation during 2014-15 when the dynamical models, in partic-506

ular, largely overestimated the degree of warming. The longest-lead predictions in the dynami-507

cal, intermediate, and statistical models contain relatively large errors (0.5◦C past lead-4), which508

make predictions of ENSO strength an ongoing challenge. Also, the ensemble average of the509

multi-model ensemble lagged the initial increases in Niño-3.4 during early 2015, especially for510

the statistical models, and under-predicted strength beyond the more immediate leads. Statistical511

models appear to be hampered by their inability to respond to sub-monthly factors that portend512

ENSO growth, though this may have paradoxically been to their advantage during 2014. While513

forecast improvements should be sought, an important challenge is to communicate that a portion514

of forecast uncertainty is irreducible: there will always be error in the initial conditions, boundary515

forcing, and through the use of imperfect models.516

Given the historical stature of the 2015-16 El Niño, it is clear that it will be an event that will517

be vigorously dissected. From an operational perspective, however, there are a couple areas worth518

examining further. One fundamental challenge is to better understand the influence of trends in the519

real-time observational data. The WMO recommends that the most recent 30-year base period be520

used to define anomalies (currently, 1981-2010; Arguez et al. 2012), but it is likely that some part521

of the ENSO indices is not related purely to ENSO dynamics, but climate change and warming522
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trends. So, how do we best quantify the portion of anomalies related to ENSO versus the portion523

related to decadal, multi-decadal, or secular variability? And how important is it to diagnose the524

role of trends when it comes to El Niño monitoring and prediction on a monthly or seasonal basis?525

For example, what are the consequences of a +2.3◦C seasonal Niño-3.4 index value that is revised526

to +2.1◦C after trends are removed? Overall, how substantial is the effect of long-term variability527

on seasonal ENSO characteristics, dynamics, and predictability?528

While the scientific understanding of climate change and its consequences has progressed529

markedly since 1997-98, there are still challenges to quantify and communicate its role on the530

shorter time scales. While the statistical decomposition in Section 5 is offered as a first estimate,531

there are certainly other methods to extract the role of various components of the climate system532

(e.g., Bonfils et al. 2015). Given the tremendous interest from the public to understand the drivers533

of recent climate anomalies, it remains worthwhile to fine-tune methods and test their applicability534

to a real-time environment.535

The 2015-16 event was the first major “24-7 El Niño” coming within a vastly different media536

setting, with a fast and diverse network (e.g. mobile devices) that did not exist during the last537

major event of 1997-98. The forecast centers approached this in a variety of ways, using social538

media, videos and infographics, and blogs (e.g., Climate.gov ENSO Blog , cited 2016) to provide539

additional information beyond that provided in routine operational assessments, typically issued540

at bi-weekly to monthly intervals. However, the constant coverage and frequent media updates541

remained surprising, as ENSO is a slow, seasonally evolving phenomenon that helps set the back-542

ground flow and increases the chances for certain weather events to re-occur over certain areas,543

but does not directly cause any weather event.544

Thus, there was a visible disconnect between the demands of “here and now” coverage and the545

pace of useful updates that could be provided by the centers on ENSO. For example, while daily or546
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weekly averaged data provides a useful snapshot of tendencies across the tropical Pacific Ocean,547

it is not currently designed to provide a long, continuous, stable record for historical comparison.548

Daily and weekly data can also be influenced by a variety of factors outside of ENSO (e.g. tropical549

cyclones, the Madden-Julian Oscillation, and a number of other intraseasonal phenomena; Hendon550

and Glick 1997). Yet, despite these caveats, some users relied on these real-time data records to551

publicize frequent updates on the strength or rank of El Niño. Also, when certain precipitation552

impacts began to occur, these weather events were sometimes labeled as “El Niño storms” even553

though El Niño does not directly cause storms, but rather sets the overall background for them.554

Additionally, there were signs that the forecast for El Niño itself was conflated with the forecasts555

for associated impacts. At the major national forecast centers, operations related to forecasting556

ENSO and operations related to creating outlooks of temperature and precipitation may be closely557

related, but separate endeavors. ENSO is a leading predictor over certain countries and therefore558

strongly influences the seasonal climate outlook, but it is clearly not the only factor in the models559

considered by forecasters. The signal-to-noise ratio becomes smaller as one moves away from the560

tropical Pacific Ocean (e.g., Kumar et al. 2000), and so, for most parts of the world, the confidence561

in an upcoming ENSO event is likely to be higher than the chance of its related impacts.562

To clarify some of these service and communication issues, climate services aimed at bridging563

the provider-user gaps may be helpful. These can range from supporting studies of how users564

interpret and apply products, to buttressing science communication efforts, such as building easy-565

to-navigate, clearly described webpages supported by an authoritative social media presence. The566

role of “learning by doing” also cannot be overstated. With the occurrence of each El Niño event,567

there are opportunities to learn and apply those lessons to future events. The 2015-16 event was no568

different in this regard, and will hopefully have provided many users with a greater appreciation569
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of the probabilistic nature of impacts related to El Niño, which needs to be explicitly recognized570

and factored into their risk analysis and decision-making.571
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APPENDIX578

Verification Metrics579

In this paper, the Anomaly Correlation (AC) coefficient is computed as:580

AC =
x′y′

σxσy
(A1)

where x and y are the observational and forecast time series, primes denote anomalies from the581

time mean, the overbar indicates the average over time, and the sigmas are the standard deviation582

of x and y. The numerator represents the covariance between x and y.583

The values associated with the AC lie between -1 and 1 and are dimensionless. Negative values584

indicate an inverse linear relations between x and y, while positive values indicate a direct linear585

relations. Values near zero indicate a poor fit between x and y, and values at 1 or -1 reflect a perfect586

fit or match between the variability in x and y.587

The Root Mean Squared Error (RMSE) is calculated as:588
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RMSE =

√
∑(x− y)2

n
(A2)

where n is the sample size. The RMSE is the square root of the average of the squares of the589

error, or the difference between x and y. Larger RMSE values indicate larger differences either of590

the same sign (bias) or of both signs between the observational and forecast time series. Smaller591

RMSE indicate smaller differences between the time series.592
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TABLE 1: Current ENSO Systems for Australia, Peru, and the United States

Australian Bureau of Meteorology

El Niño / La Niña Watch: The chance of an El Niño developing in the coming season has increased. When these criteria have been met in the past, El Niño / Niña has
developed around 50% of the time. The criteria are:

(1) ENSO phase is currently neutral or La Niña / El Niño is declining
(2) EITHER: of the closest ten analogue years (based on the Southern Oscillation Index (SOI)), four or more have shown El Niño / La Niña characteristics OR
significant sub-surface warming (El Niño) / cooling (La Niña) has been observed in the western or central equatorial Pacific Ocean
(3) One-third or more of surveyed climate models show sea surface temperature (SST) at least 0.8◦C above average (El Niño) / below average (La Niña) in the Niño-3
or Niño-3.4 regions by late winter or spring

El Niño / La Niña Alert: The chance of an El Niño / La Niña developing in the coming season has increased. When these criteria have been met in the past, El Niño /
La Niña has developed around 70% of the time. Any three of the following criteria are met:

(1) A clear warming (El Niño) / cooling (La Niña) trend has been observed in the Niño-3 or Niño-3.4 regions during the past three to six months
(2) Trade winds have been weaker (El Niño) / stronger (La Niña) than average in the western or central equatorial Pacific Ocean during any two of the last three months
(3) The two-month average SOI is -7 or lower (El Niño) / +7 or higher (La Niña)
(4) A majority of surveyed climate models show SSTs at least 0.8◦C above average (El Niño) / below average (La Niña) in the Niño-3 or Niño-3.4 regions by the late
winter or spring

El Niño / La Niña: An El Niño / La Niña has been declared and is underway. Any three of the following criteria are met:

(1) Temperatures in the Niño-3 or Niño-3.4 regions are 0.8◦C warmer (El Niño) / cooler (La Niña) than average
(2) Trade winds have been weaker (El Niño) / stronger (La Niña) than average in the western or central equatorial Pacific Ocean during any three of the last four months.
(3) The three-month average SOI is -7 or lower (El Niño) / +7 or higher (La Niña)
(4) A majority of surveyed climate models show SSTs remaining at least 0.8◦C above average (El Niño) / below average (La Niña) in the Niño-3 or Niño-3.4 regions of
the Pacific until the end of the year

Updated as part of the ENSO Wrap-Up: http://www.bom.gov.au/climate/enso/

ENFEN Committee (Comité encargado del Estudio Nacional del Fenómeno El Niño, Peru)

ENFEN monitors and predicts El Niño/La Niña in two regions:

“Coastal” El Niño/La Niña: When the Índice Costero El Niño (ICEN; 3-month running-mean Niño 1+2 SST index, http://www.met.igp.gob.pe/datos/icen.txt) is
above/below 0.4◦C/-1.0◦C for three or more consecutive months. The overall strength of the event is determined by the three largest ICEN values in the event, according
to pre-established thresholds. In the Northern Hemisphere winter/spring, warming can produce heavy rain over the arid coast.

“Central Pacific” El Niño/La Niña: Based on the Niño 3.4 SST index using a threshold of +/-0.5◦C. This impacts the Peruvian Andes and Amazon through
teleconnections.

The following are the Alert system states for the coastal El Niño/La Niña:

Coastal El Niño/La Niña Watch: There is a higher expectation that El Niño/La Niña will occur than not.

Coastal El Niño/La Niña Alert: The El Niño/La Niña is believed to have started based on observed ocean-atmosphere conditions and/or if the ICEN) qualifies.

Inactive: Neutral conditions are present or El Niño/La Niña are expected to end.

Updated as part of the ENFEN Official Statements: http://www.imarpe.pe/imarpe/lista.php?id seccion=I0166020000000000000000

National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center, United States

El Niño/La Niña Watch: When oceanic and atmospheric conditions across the tropical Pacific are favorable for the onset of El Niño/La Niña within the next 6 months

El Niño/La Niña Advisory: When El Niño/La Niña conditions are present as measured by three criteria:

El Niño Advisory:
(1) 1-month Niño-3.4 SST index value that is at or in excess of +0.5◦C
(2) Atmospheric conditions are consistent with El Niño (i.e. weaker low-level trade winds, enhanced convection over the central or eastern Pacific Ocean)
(3) The expectation that El Niño will persist as measured by at least 5 overlapping seasonal (3-month average) Niño-3.4 SST index values at or in excess of +0.5◦C.

La Niña Advisory:
(1) 1-month Niño-3.4 SST index value that is at or less than -0.5◦C
(2) Atmospheric conditions are consistent with La Niña (i.e. stronger low-level trade winds, suppressed convection over the central Pacific Ocean)
(3) The expectation that La Niña will persist as measured by at least 5 overlapping seasonal (3-month average) Niño-3.4 SST index values at or less than -0.5◦C.

Final El Niño/La Niña Advisory: When El Niño/La Niña has ended.

Not Active (NA): The ENSO Alert System is not active.

Updated as part of the ENSO Diagnostics Discussion: http://www.cpc.ncep.noaa.gov/products/analysis monitoring/enso advisory/index.shtml
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FIG. 1: Evolution of seasonal (3-month) averaged values of the Niño-3.4 SST index (top left
panel), Niño-4 SST index (top right panel), Niño-3 SST index (bottom left panel), and Niño-
1+2 SST index (bottom right panel) during 2015-16 (red), 1997-98 (blue), 1982-83 (green), and
1972-73 (purple). The Niño-3.4 region is 5◦N-5◦S, 170◦W-120◦W, the Niño-4 region is 5◦N-5◦S,
150◦W-160◦E, the Niño-3 region is 5◦N-5◦S, 150◦W-90◦W, and the Niño-1+2 region is 0◦-10◦S,
90◦W-80◦W (regions displayed in Fig. 6). Thin lines correspond to the ERSSTv3b, ERSSTv4,
COBE, and HadISST datasets and the thicker lines is the average of all datasets. Departures are
formed by removing monthly means during 1981-2010.
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FIG. 2: Longitude-Time (Hovmoller) diagram of weekly SST anomalies across the equatorial Pa-
cific Ocean (5◦S-5◦N) from 120◦E to 80◦W during 2015-16 (left panel), 1997-98 (middle panel),
and 1982-83 (right panel). Departures are formed by removing the first four harmonics of interpo-
lated daily data during 1981-2010. Data are based on weekly OISSTv2.
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FIG. 3: Longitude-Time (Hovmoller) diagram of 5-day running averages of the 20◦C isotherm
depth (in meters) across the equatorial Pacific (2◦S-2◦N) from 135◦E to 75◦W during 2015-16
(left panel) and 1997-98 (right panel). Data is based on the Tropical Atmosphere Ocean (TAO)
moored buoys from 11 transects and Argo floats near 85◦W. A 5-day running mean was applied
and spatial interpolation is based on Python contourf. The data was processed by the Instituto
Geofisico del Peru using the 1981-2010 climatology obtained from NCEP GODAS.
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FIG. 4: Longitude-Time (Hovmoller) diagram of daily 10-meter zonal wind anomalies across the
equatorial Pacific Ocean (5◦S-5◦N) from 120◦E to 80◦W during 2015-16 (left panel) and 1997-98
(middle panel), and the difference between 2015-16 and 1997-98 (right panel). Departures are
formed by removing the first four harmonics of interpolated daily data during 1981-2010. Data
are based on ERA-Interim.
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FIG. 5: Evolution of seasonal (3-month) averaged values of the traditional Tahiti-Darwin station
based Southern Oscillation Index (dashed lines) and Equatorial Southern Oscillation Index (EQ-
SOI; solid lines) (top panel), Central Pacific Outgoing Longwave Radiation (OLR) index (middle
panel), and Eastern Pacific OLR index (bottom panel) during 2015-16 (red), 1997-98 (blue), and
1982-83 (green). The EQSOI is based on the difference between the region from 5◦N-5◦S, 80◦W-
130◦W and 5◦N-5◦S, 90◦E-140◦E. CP OLR is based on the region from 170◦E-140◦W, 5◦S-5◦N
and the EP OLR region is 160◦W-110◦W, 5◦S-5◦N. Thin solid lines in the top panel correspond to
the NCEP CFSR (Saha et al. 2010), NCEP/NCAR Reanalysis I (Kalnay et al. 1996), NCEP/DOE
Reanalysis II (Kanamitsu et al. 2002), ERA-Interim (Dee et al. 2011), JRA-55 (Kobayashi et al.
2015), NASA MERRA1, and MERRA2 (Rienecker et al. 2011). Thin solid lines in the middle and
bottom panels are from AVHRR and the HIRS v2r2 and v2r7. The thick solid line in all panels is
the average of individual datasets. All indices are standardized using monthly means and standard
deviations during 1981-2010.
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FIG. 6: SST anomaly reconstruction based on the weighted regression map of the Niño-3.4 index
(top left panels) and the observed SST anomalies during 2015-16 (top right panels) for seasonal
averages during June-August (JJA), November-January (NDJ), and February-April (FMA). The
spatial correlation between the reconstruction and observations is on the ordinate and the seasonal
average Niño-3.4 index value is on the abscissa (bottom panels). Each dot represents a single year
between 1982-2016. The red dots indicate the 2015-16 El Niño, two other strong El Niños in
1997-98 and 1982-83, and the 2009-10 El Niño, which is the El Niño prior to the 2015-16 event.
The top left panel displays the Niño-4 region (blue), Niño-3.4 region (thin red), Niño-3 region
(green), and Niño-1+2 region (aqua). Departures are formed by removing monthly means during
1981-2010. Data are based on weekly OISSTv2.
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FIG. 7: Predictions of the Niño-3.4 index for overlapping, seasonal target periods from December
2013 - February 2014 (DJF) to February-April 2016 (FMA) for the dynamical models (top panel)
and statistical models (bottom panel) drawn from the IRI/CPC plume. Grey lines show every
individual model forecast and the red and blue lines show the dynamical and statistical multi-
model averages, respectively. The thick black line shows the observational data based on seasonal
averages of daily OISST data.
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FIG. 8: The anomaly correlation (left column) and root mean squared error (right column) between
the observations and multi-model averages of the dynamical (top row) and statistical (bottom row)
forecasts of the Niño-3.4 index. The thick blue and red lines show the skill for targets during
December 2013 - February 2014 (DJF) to February-April 2016 (FMA). The grey lines are the skill
of past windows of 26 consecutive overlapping seasons, each sliding by one season, with thin blue
and red lines showing windows that overlap with the DJF 2013/14-FMA 2016 period. Forecast
data are verified against seasonal averages of daily OISST data.
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FIG. 9: Scatterplots of observed Niño-3.4 index values (plotted on the abscissa) against Lead-
0 (top row), Lead-4 (middle row), Lead-8 (bottom row) forecasts based on the dynamical (left
column) and statistical (right column) multi-model averages (plotted on the ordinate) for all sea-
sonal (3-month) averages dating back to the beginning of the model plume in February 2002. The
color shading shows the year of the target season, and the numeral highlights the location of the
November-December-January (NDJ) target season and year (displaying last two digits between
2002-2015). The r-value in the top left corner is the correlation between the observations and
forecasts made between February 2002 and April 2016. Forecast data are verified against seasonal
averages of daily OISST data.
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FIG. 10: December 2015-February 2016 anomalies of 500-hPa geopotential height and winds (top
row), surface temperature (middle row), and precipitation (bottom row). The left column shows
the observational data, while the right column shows the reconstruction for 2015/16 (weighted re-
gression map of the Niño-3.4 index). The r-values show the spatial correlation coefficient between
the observational and the reconstructed anomalies (cosine weighted by latitude). Geopotential
height and wind data is from the NCEP/NCAR Reanalysis, the temperature is from the gridded
GHCN+CAMS dataset, and precipitation data is from the gridded Precipitation Reconstruction
Dataset (PREC) dataset. Departures are formed by removing monthly means during 1981-2010.
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FIG. 11: As in Figure 10, except showing the residual anomalies formed from subtracting the trend
plus ENSO reconstruction from the observational data. The r-values show the spatial correlation
coefficient between the observational and the residual anomalies.
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