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Abstract

Observed secular changes in the El Nino / Southern Oscillation (ENSO) phenomenon
are not well understood; nor are the major differences in ENSO simulations found among
state-of-the-art general circulation models of the tropical Pacific. To address these issues,
this study advances an efficient numerical model of the ocean-atmosphere system and then
uses it to explore the sensitivity of ENSO to changes in the climatological background. The
model includes dynamical, statistical, and stochastic components and provides a reasonably
good simulation of the observed climatology and interannual variability of the tropical
Pacific.

A series of idealized experiments reveals how changes in equatorial and off-equatorial
zonal wind stresses, meridional stresses, and radiative forcings affect the tropical climatol-
ogy. Because coupled feedbacks dominate the time-mean response, perturbed climatologies
tend to resemble either an El Nino (with warm sea surface temperatures in the eastern equa-
torial Pacific, weakened trade winds and flattened thermocline) or a La Nina (with cool
sea surface temperatures, enhanced trades and steeper-sloping thermocline).

The study then shows how these altered climates impact the behavior of ENSO, includ-
ing its amplitude, frequency, spatial structure, mechanism, sensitivity to transient distur-
bances, and predictability. An analysis of the oceanic mixed layer thermodynamics provides
a physical basis for understanding these changes. Results from a more sophisticated ocean-
atmosphere model are also presented, and the problem of detecting climate-induced ENSO
changes in short stochastic timeseries is discussed.
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